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‘ Reading, HW, etc.

= Reading
a2 Quiz on Ch 3 today (in class!)
a For next week Ch 5 (Skip Ch 4 for now)

= HW 02 due tonight 1159 pm

= HW 03 (more on Ch 3 and IDMRAD) out later
today
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‘ Outline

= The Anscombe plots — why diagnostics matter

= Monday: The standard R diagnostic plots:
o Residuals,QQ plots, Scale-location, Leverage

2 Recommendations

» Wednesday: Transformations
o Intuitive / substantive theory-driven

o Variance stabilization
0 “Automagic”: Box-Cox
o Perspective and recommendations

...and Examples...
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The Anscombe plots: why summary(
statistics are not enough

m Anscombe data set #1

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 3.0001 1.1247 2.667 0.02573 *
x1 0.5001 0.1179 4.241 0.00217 **

Residual standard error: 1.237 on 9 deg of freedom
Multiple R-Squared: 0.6665, Adj R-squared: 0.6295
F-statistic: 17.99 on 1 and 9 DF, p-value: 0.002170

m Anscombe data set #2

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 3.001 1.125 2.667 0.02576 *
X2 0.500 0.118 4,239 0.00218 **

Residual standard error: 1.237 on 9 deg of freedom
Multiple R-Squared: 0.6662, Adj R-squared: 0.6292
F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179

m Anscombe data set #3

Estimate Std. Error t value Pr(>]|t])
(Intercept) 3.0025 1.1245 2.670 0.02562 *
X3 0.4997 0.1179 4.239 0.00218 *=*

Residual standard error: 1.236 on 9 deg of freedom
Multiple R-Squared: 0.6663, Adj R-squared: 0.6292
F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176

= Anscombe data set #4

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.0017 1.1239 2.671 0.02559 *
x4 0.4999 0.1178 4.243 0.00216 **

Residual standard error: 1.236 on 9 deg of freedom
Multiple R-Squared: 0.6667, Adj R-squared: 0.6297
F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
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‘ The Anscombe plots: why summary()
statistics are not enough

m Anscombe data set #1 m Anscombe data set #3
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The standard R residual plots:
casewise diagnostics

> kidig <- read.csv("kidig.csv") - Residuals vs Fitted Normal Q-Q
> fit.Ilm.1 <- 1lm(kid.score ~ mom.iq, :_ ) @
+ data=kidiqg) ;_ % j
> summary (fit.lm.1) § o ; B
& 8- s
Est StdErr t-val Pr(>|t]) ] 5
(Intcpt) 25.80 5.92 4.36 1.63e-05 *** 2 @
mom.igq  0.61  0.06 10.42 < 2e-16 *** o wm e o 110 e 4 e 4 s
Fitted values Theoretical Quantiles
Residual std err: 18.27 on 432 d.f.
R-sg: 0.201, Adj R-squared: 0.1991
F: 108.6 on 1 and 432 DF, p < 2.2e-16 §mbimmMn o Residuals vs Leverage
:3 24 LN
> par (mfrow=c(2,2)) g é -
> plot (fit.1lm.1) 3 2 § o
~ = 7w -~ Codieedistance
?L ah gh 1$u 140 u_énu u_éns 0_510 0_515
Fitted values Leverage
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‘Residuals...

= Last time we saw, for the fitted values v;,

1 (wi—2)(z; — 1)

QZ’ = ijlhijyj' where hij = E + SXX
so Var(g;) = Zé_lhfjJQ = hiio®  (ex!)

= Therefore, if we define residuals é; = vy; — Ui,

& = yi— U = (1—hu)y — Zj#hijyj
Var(é;) = Var(y; —y;) = Var(y;) — 2Cov (y;,9:) + Var (7;)
= o2 —2Cov (y;, Z::lhijyj) + h;;0°
= o* —2Cov (y;, hsiyi) + hiio®
= 0% —2hy0® + hyo®
= (1 —hy)o?
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‘ Standardized Residuals...

m So far...
i = ijlh?ljyj Var (§;) = hyo?
e = yi—i = (L=ha)yi =) hiy; Var(é) = (1—hi)o’

and we can calculate
1 1 1 (z—2)*\ 2
Ezih“ B Ezi <E+ SXX )_E

a Soh;; tend to be small, on average (but they still vary)...

o A common way to look for outliers is to plot the
standardized residuals

r; = é@/\/(l — hH)SQ (82 = ﬁRSS estimates 0'2)
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‘ Normality of Residuals...
= Look again at
& = Yi— Vi = (1_hii)yi_zj#ihijyj

a When the errors €; are normal, the y; are normal and
therefore so are the fitted values ¢; and residualsé; .

a When the y; are not normal, the CLT will still tend to
makezj#ih@-jyj “look” normal

m  When the sample size is modest, Z hwyj will dominate
and the é; may “look” normal

=  When the sample size is larger, (1 — h;;)y; will dominate, and
the ¢; will be better at revealing non-normality of ¥; and ¢€;.
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‘The R Residual and QQ plots

Residuals vs Fitted
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= (1 — hy;)y; dominates, so

we are seeing evidence
about normality of ¢; .

m The three largest r; are

labelled. (|r;| > 2 would
be better!)
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‘ Checking for (non)constant variance

= Under the hypothesis that Var (¢;) = o2,
o Var (é;) = (1 — h;;)o? so é; can’t be used to test constant variance

o= éz-/\/(l — h;;)S? does have const variance (~ 1), so can use
variation in the size of ]Tz\ to test constant variance...

= Unfortunately |r;| are skewed, but we can remove skewing by
taking a square root...

r <- rstandard(fit.lm.1l)

hist (abs(r)) : F e
hist (sqgrt (abs(r))) “(#
O‘O 0‘5 1,‘0 1,‘5 ZfO Zfﬁ SfO 3?5 O‘O 0‘5 1‘5
abs(r
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‘The R Scale-Location Plot

Scale-Location

= If Var(e;) = 0% thenr;
should have constant
variance

1.5

1.0

+¥|Standardized residuals!

o should see no vertical patterns w |
0 Loess line helps eye N
o Careful of edge effects S
m Designed to catch patterns
that depend on x; (or y;?) Fitted values
= Patterns can be caused by = Again, three largest 75| get
o Nonconstant variance in €; labelled...

o Nonlinear relationship
between x; and y;
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‘ Leverage h;;...

= We saw before that
=3 S =15 (3 + ) - 2
= We can also calculate
IR VCESS o b
= We know
Ui = Zjhijyj = hiiyi + Zj#ihijyj
o hi; measures how muchy; affects §; (= < hi; <1)

a0 When hy; = 1, SXX must be dominated by (z; — T)*
and therefore all other (z; — ) ~ 0, 50 h;j; ~ <
and the other y; will have less effect on y;
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‘ Leverage h;; & Cooks’ Distance D;

(587; —3_3)2

%~ Mmeasures how farx;is

= Leverageh;; = + +

from x .

= To have an effect, é¢; = y; — y; must be large also.

= How much effect can be measured by Cook’s D::
> i (W) — 15)°

252
ri  h

= (not obvious)!

21— hy
where y;(;) is the fitted value for y,; , omitting
the pair (x;, y;) from the data set.

D;
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The R Leverage Plot_

Residuals vs Leverage

1

= We need both high
leverage h;; and high

Standardized residuals (T’
|

standardized residual r; 24 8 sesdsnes
to worry... 0000 0005 0010  0.015
0 Rule of thumb: Leverage (fy;; )

hi > 2-h (= 4/n) and ™ D;isnotlarge enough to

) > 2 show in this example

= Actual effect measured = Nevertheless, the 3

by r2  hy highest D/’s are labelled.

1

" 21—hy
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‘ Some Leverage Examples

Fine
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‘ Casewise Diagnostics and Patterns

Residuals

|Standardized residualsl

220 0 20 40 60

-60
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Residuals vs Fitted
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Fitted values

Scale-Location

70 80 90 100 110

Fitted values

« Don’t automatically delete unusual or non-fitting cases

Mean zero?
Vertical patterns?
Outliers?
Functional depen-
dence on gj; ?

Constant variance?
Vertical patterns?
Outliers?
Functional depen-
dence on g; ?

Standardized residuals

Standardized residuals

Normal Q-Q

Theoretical Quantiles

Residuals vs Leverage

@
- Codkeedistance

[
0.000

T
0.005

T
0.010

Leverage

T
0.015

Normal?
Outliers?
Large enough sample?

NE & SE corners:
- High leverage h;;
» High std resid r;
D, > 0.5 or so?

» Discuss first with investigator; usually meaningful to him/her!
« WEe'll discuss ways to fix non-constant variance and functional patterns

next time!
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‘Summary

= HWO02 due tonight, 1159pm
2 Quiz on Ch 3 (today in class)
2 HWO03 due next Monday, 1159pm

m Monday: The standard R diagnostic plots:

o Residuals,QQ plots, Scale-location, Leverage

2 Recommendations

s Wednesday: Transformations (& Examples...)

a Intuitive / substantive theory-driven

0 Variance stabilization; by hand vs. Box-Cox
o Perspective and recommendations
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