36-617: Applied Linear Models

Regression Basics Brian Junker 132E Baker Hall brian@stat.cmu.edu

Reading, HW, etc.

Reading

Quiz on Ch 3 today (in class!)

- □ For next week Ch 5 (Skip Ch 4 for now)
- HW 02 due tonight 1159 pm
- HW 03 (more on Ch 3 and IDMRAD) out later today

Outline

- The Anscombe plots why diagnostics matter
- Monday: The standard R diagnostic plots:
 - Residuals,QQ plots, Scale-location, Leverage
 - Recommendations
- Wednesday: Transformations
 - Intuitive / substantive theory-driven
 - Variance stabilization
 - "Automagic": Box-Cox
 - Perspective and recommendations

...and Examples...

The Anscombe plots: why summary() statistics are not enough Anscombe data set #1 Anscombe data set #3

	Estimate	Std. Error	t t	value	Pr(> t)	
(Intercept)	3.0001	1.1247	7	2.667	0.02573	*
xl	0.5001	0.1179)	4.241	0.00217	* :

Residual standard error: 1.237 on 9 deg of freedom Multiple R-Squared: 0.6665, Adj R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.002170

	Estimate	Std. Error	t	value	Pr(> t)	
(Intercept)	3.0025	1.1245		2.670	0.02562	*
Х3	0.4997	0.1179		4.239	0.00218	* *

Residual standard error: 1.236 on 9 deg of freedom Multiple R-Squared: 0.6663, Adj R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176

Anscombe data set #2

	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	3.001		1.125		2.667	0.02576	*
x2	0.500		0.118		4.239	0.00218	* *

Residual standard error: 1.237 on 9 deg of freedom Multiple R-Squared: 0.6662, Adj R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179

Anscombe data set #4

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3.0017	1.1239	2.671	0.02559	*
x4	0.4999	0.1178	4.243	0.00216	**

Residual standard error: 1.236 on 9 deg of freedom Multiple R-Squared: 0.6667, Adj R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165

The Anscombe plots: why summary() statistics are not enough

*x*1 Anscombe data set #2

Anscombe data set #1 Anscombe data set #3

Anscombe data set #4

The standard R residual plots: casewise diagnostics

0.06 10.42 < 2e-16

Residual std err: 18.27 on 432 d.f. R-sq: 0.201, Adj R-squared: 0.1991 F: 108.6 on 1 and 432 DF, p < 2.2e-16

> par(mfrow=c(2,2))

0.61

> plot(fit.lm.1)

Residuals vs Fitted

mom.iq

Normal Q-Q

Residuals...

• Last time we saw, for the <u>fitted values</u> \hat{y}_i ,

$$\hat{y}_i = \sum_{j=1}^n h_{ij} y_j, \quad \text{where } h_{ij} = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{SXX}$$

so $\operatorname{Var}(\hat{y}_i) = \sum_{i=1}^n h_{ij}^2 \sigma^2 = h_{ii} \sigma^2 \quad (\text{ex!})$

• Therefore, if we define <u>residuals</u> $\hat{e}_i = y_i - \hat{y}_i$,

$$\begin{split} \hat{e}_{i} &= y_{i} - \hat{y}_{i} = (1 - h_{ii})y_{i} - \sum_{j \neq i} h_{ij}y_{j} \\ \mathsf{Var}\left(\hat{e}_{i}\right) &= \mathsf{Var}\left(y_{i} - \hat{y}_{i}\right) = \mathsf{Var}\left(y_{i}\right) - 2\mathsf{Cov}\left(y_{i}, \hat{y}_{i}\right) + \mathsf{Var}\left(\hat{y}_{i}\right) \\ &= \sigma^{2} - 2\mathsf{Cov}\left(y_{i}, \sum_{j=1}^{n} h_{ij}y_{j}\right) + h_{ii}\sigma^{2} \\ &= \sigma^{2} - 2\mathsf{Cov}\left(y_{i}, h_{ii}y_{i}\right) + h_{ii}\sigma^{2} \\ &= \sigma^{2} - 2h_{ii}\sigma^{2} + h_{ii}\sigma^{2} \\ &= (1 - h_{ii})\sigma^{2} \end{split}$$

Standardized Residuals...

So far...

$$\hat{y}_{i} = \sum_{j=1}^{n} h_{ij} y_{j} \qquad \text{Var}(\hat{y}_{i}) = h_{ii} \sigma^{2} \hat{e}_{i} = y_{i} - \hat{y}_{i} = (1 - h_{ii}) y_{i} - \sum_{j \neq i} h_{ij} y_{j} \qquad \text{Var}(\hat{e}_{i}) = (1 - h_{ii}) \sigma^{2}$$

and we can calculate

$$\frac{1}{n}\sum_{i}h_{ii} = \frac{1}{n}\sum_{i}\left(\frac{1}{n} + \frac{(x_i - \bar{x})^2}{SXX}\right) = \frac{2}{n}$$

□ So *h*_{*ii*} tend to be small, on average (but they still vary)...

 A common way to look for outliers is to plot the standardized residuals

$$r_i = \hat{e}_i / \sqrt{(1 - h_{ii})S^2}$$
 $(S^2 = \frac{1}{n-2}RSS \text{ estimates } \sigma^2)$

Normality of Residuals...

Look again at

$$\hat{e}_i = y_i - \hat{y}_i = (1 - h_{ii})y_i - \sum_{j \neq i} h_{ij}y_j$$

- □ <u>When the errors ϵ_i are normal</u>, the y_i are normal and therefore so are the fitted values \hat{y}_i and residuals \hat{e}_i .
- □ <u>When the y_i are not normal</u>, the CLT will still tend to make $\sum_{j \neq i} h_{ij} y_j$ "look" normal
 - When the sample size is modest, $\sum_{j \neq i} h_{ij} y_j$ will dominate and the \hat{e}_i may "look" normal
 - When the sample size is larger, $(1 h_{ii})y_i$ will dominate, and the \hat{e}_i will be better at revealing non-normality of y_i and ϵ_i .

The R Residual and QQ plots

should center at zero

- loess curve helps eye
 - Ignore "edge effects"
- Normal -> Should see no "vertical pattern"...

The three largest r_i are labelled. (|r_i| > 2 would be better!)

Checking for (non)constant variance

- Under the hypothesis that Var (ε_i) ≡ σ²,
 Var (ê_i) = (1 h_{ii})σ² so ê_i can't be used to test constant variance
 r_i = ê_i/√(1 h_{ii})S² does have const variance (≈ 1), so can use variation in the size of |r_i| to test constant variance...
- Unfortunately $|r_i|$ are skewed, but we can remove skewing by taking a square root...

The R Scale-Location Plot

- If $Var(\epsilon_i) \equiv \sigma^2$ then r_i should have constant variance
 - should see no vertical patterns
 - Loess line helps eye
 - Careful of edge effects
- Designed to catch patterns that depend on x_i (or y_i?)
- Patterns can be caused by
 - Nonconstant variance in ϵ_i
 - Nonlinear relationship between x_i and y_i

Fitted values

• Again, three largest $|r_i|$ get labelled...

Leverage h_{ii} ...

We saw before that

$$\bar{h} = \frac{1}{n} \sum_{i} h_{ii} = \frac{1}{n} \sum_{i} \left(\frac{1}{n} + \frac{(x_i - \bar{x})^2}{SXX} \right) = \frac{2}{n}$$

We can also calculate

$$\sum_{j} h_{ij} = \sum_{j} \left(\frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{SXX} \right) = 1$$

We know

$$\hat{y}_i = \sum_{j} h_{ij} y_j = h_{ii} y_i + \sum_{j \neq i} h_{ij} y_j$$

• h_{ii} measures how much y_i affects \hat{y}_i $(\frac{1}{n} \le h_{ii} \le 1)$

• When $h_{ii} \approx 1$, SXX must be dominated by $(x_i - \bar{x})^2$ and therefore all other $(x_j - \bar{x}) \approx 0$, so $h_{ij} \approx \frac{1}{n}$ and the other y_j will have less effect on \hat{y}_i

Leverage h_{ii} & Cooks' Distance D_i

- Leverage $h_{ii} = \frac{1}{n} + \frac{(x_i \bar{x})^2}{SXX}$ measures how far x_i is from \bar{x} .
- To have an effect, $\hat{e}_i = y_i \hat{y}_i$ must be large also.
- How much effect can be measured by Cook's D_i :

$$D_{i} = \frac{\sum_{j=1}^{n} (\hat{y}_{j(i)} - \hat{y}_{j})^{2}}{2S^{2}}$$
$$= \frac{r_{i}^{2}}{2} \frac{h_{ii}}{1 - h_{ii}} \text{ (not obvious)!}$$

where $\hat{y}_{j(i)}$ is the fitted value for y_j , omitting the pair (x_i, y_i) from the data set.

The R Leverage Plot

- We need both high leverage h_{ii} and high standardized residual r_i to worry...
 - Rule of thumb:

 $egin{array}{rll} h_{ii} &>& 2\cdotar{h}~(=~4/n) & \ {
m and} \ |r_i| &>& 2 \end{array}$

Actual effect measured

by
$$D_i = \frac{r_i^2}{2} \frac{h_{ii}}{1 - h_{ii}}$$

- D_i is not large enough to show in this example
- Nevertheless, the 3
 highest D's are labelled.

Some Leverage Examples

Casewise Diagnostics and Patterns

- Don't automatically delete unusual or non-fitting cases
 - Discuss first with investigator; usually meaningful to him/her!
- We'll discuss ways to fix non-constant variance and functional patterns next time!

Summary

- HW02 due tonight, 1159pm
 - Quiz on Ch 3 (today in class)
 - □ HW03 due next Monday, 1159pm
- Monday: The standard R diagnostic plots:
 - Residuals,QQ plots, Scale-location, Leverage
 - Recommendations
- Wednesday: Transformations (& Examples...)
 - Intuitive / substantive theory-driven
 - Variance stabilization; by hand vs. Box-Cox
 - Perspective and recommendations