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Case Diagnostics for Linear Models

In simple linear regression we saw how outliers and influential points could influence our regression model.
We’re going to expand on that idea with multiple linear regressions. There are four measures we will discuss
about how to identify an outlier and/or influential points.

Leverage

Each point of data consists of (Xi, yi). However, leverage is calculated using only the explanatory variables,
the Xi. Thus if a point has high leverage it has an unusual explanatory variable (or a combination of unusual
explanatory variables). In the simple linear case leverage is calculated by

hi = 1
n

+ (xi − x̄)2∑
j(xj − x̄)2

ne

In simple linear regression, 
∑

i
n
=1 hi = 2. With multiple linear regression, leverage is the diagonal elements

of the hat matrix, hence the notation of h. You don’t∑ need to know how to calculate the hat matrix for
Stat 110 or Stat 201, but you do ed to know that i

n
=1 hi = p + 1; p = number of explanatory variables.

The average leverage value is h̄ =
∑n

i=1
hi

n = p+1
n , thus a point of data should have a leverage value of about

≈ p+1
n . When a point of data has a leverage value greater than 2(p+1)

n it is considered a point of high leverage
and should the value be greater than 3(p+1)

n the point has very high leverage.

Residuals

There are two types of residuals we will discuss in this class: standardized residuals and studentized residuals.
Both residuals are based off the difference between the observed value and the fitted value. This means
that if a point of data is flagged for having a high standardized or studentized residual the response value is
considered unusual. Standardized residuals are calculated as:

yi − ŷi√
σ̂2(1 − hi)

and the Studentized residuals are calculated as:

yi − ŷi√
σ̂2

(i)(1 − hi)

where σ̂2
(i) is the estimate of population variance with data point i omitted from the regression.
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Cook’s distance

The final measure we will discuss is Cook’s Distance. To calculate Cook’s Distance:

Di = (yi − ŷi)2

σ̂2(1 − hi)︸ ︷︷ ︸
stand. residual2

× hi

1 − hi
× 1
p+ 1

The Cook’s distance is considered high if it is greater than 0.5 and extreme if it is greater than 1. If a point
has been flagged by the Cook’s distance, the point is considered highly influential and has a combination of
unusual explanatory variables and response values (the combination of Xi’s and yi are unusual).

How to visually spot outliers and influential points of data

Below is an example of how to find influential points and possible outliers using the Cereal data set. Recall
the Cereal data set consists of the following variables:

Cereal Brand name of cereal
Calories Number of calories per serving
Sugar Number of grams of sugar (per serving)
Fiber Number of grams of fiber (per serving)

We want to create a linear model that predicts the amount of calories in a serving of a cereal based on 
its sugar and fiber content.
data("Cereal")
cereal.mod <- lm(Calories ~ Fiber + Sugar, data = Cereal)

Previously you saw how to plot the linear model object using the plot() function in R. Let’s do that with 
cereal.mod and see what we get:
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plot(cereal.mod)

In the first plot, we get the residuals vs. fitted values, this plot can help us determine which residuals are high, 
but because it plots the raw residual it is not very useful. The second plot, the QQ plot, has been discussed in the 
past and is not relevant to this topic. The third plot, the scale-location plot is also not relevant. The fourth plot, 
the residuals vs. leverage, is quite useful. On the y-axis are the standardized residuals, so any point that is 
above 2 (or below -2) can be classified as having a high standardized residual value. The x-axis gives us the 
leverage value for each point; since there are 36 cereals in the data set and 3 coefficients to fit (2 explanatory 
variables + the intercept) then the average leverage is 3/36 ≈ 0.083 then any point beyond 0.167 (2 × 0.083) has 
a high leverage value. Lastly, the plot draws the contours for the Cook’s Distance; any point that exists outside 
of the 0.5 contour line has a high Cook’s distance.

Alternatively, you can use ggfortify package to create similar plots using ggplot.
library(ggfortify)
autoplot(cereal.mod, which = c(1:2,5:6), label.size = 3)
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Note that the third and fourth plot are not the same as above! The third plot is the standardized residuals
vs. the leverage, which is the same as the fourth plot from the plot function in base R. The fourth plot is
Cook’s distance versus leverage, which is not included in plot function in base R. To read this plot, the
y-axis models Cook’s distance, so any point above 0.5 has a high Cook’s distance value, while the x-axis is
leverage, so any point beyond 0.167 has a high leverage value.
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How to flag outliers and influential data points

From a linear model object, in our example, cereal.mod, we can get the leverage, standardized residuals,
studentized residuals, and Cook’s distance for each point of data. It is very helpful to add each of these to
our initial data set. Let’s look at the first six rows to see what happens when we add those columns to the
cereal data set.
Cereal$Leverage <- hatvalues( cereal.mod )
Cereal$Stand.resid <- rstandard( cereal.mod )
Cereal$Stud.resid <- rstudent( cereal.mod )
Cereal$Cooks.dis <- cooks.distance( cereal.mod )

## Calories Sugar Fiber Leverage Stand.resid Stud.resid Cooks.dis
## 1 100 6 3 0.0286 -0.270 -0.266 0.000715
## 2 100 3 1 0.0770 -0.579 -0.573 0.009329
## 3 50 0 14 0.2667 -0.522 -0.516 0.033032
## 4 140 9 2 0.0426 1.931 2.020 0.055311
## 5 70 5 10 0.1385 -0.482 -0.476 0.012429
## 6 90 5 6 0.0417 -0.124 -0.122 0.000222

The which() function

Producing the data frame with these new columns is good, but we need to somehow filter this list so it only
displays high or extreme values. One way to catch these cases is to use the which() function in R. The
which() function simply returns a vector of which rows meet these conditions.
which( abs( Cereal$Stand.resid ) >=2 )

## [1] 9 27

By subsetting the original dataset we can identify which cereals have high standardized residuals:
Cereal[ which( abs( Cereal$Stand.resid ) >=2 ) , ]

## Calories Sugar Fiber Leverage Stand.resid Stud.resid Cooks.dis
## 9 150 9 2 0.0426 2.59 2.86 0.0998
## 27 160 13 3 0.1146 3.37 4.09 0.4892

If we repeat the same procedure for Cook’s distance we get an odd result:
Cereal[ which( Cereal$Cooks.dis >= 0.5 ) , ]

## [1] Calories Sugar Fiber Leverage Stand.resid Stud.resid
## [7] Cooks.dis
## <0 rows> (or 0-length row.names)

The output here indicates that there are no data points in the cereal data set that have a Cook’s distance
that is greater than 0.5. The output integer(0) means there is no row that matches this criteria.
which( Cereal$Cooks.dis >= 0.5 )

## integer(0)

How to flag for leverage

Recall, to identify a point with a high leverage value we need to know the number of beta coefficients (typically,
this equals the number of explanatory variables + 1 for the intercept) and the number of data points in our
model. Acquiring both of these values via R can make it easier to flag cases with high leverage values.
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num.Of.Coefs <- length( cereal.mod$coefficients )
num.Of.Cases <- length( cereal.mod$residuals )

which( Cereal$Leverage > 2 * num.Of.Coefs / num.Of.Cases )

## [1] 3 26 34

The data points which are flagged as having high leverage are:
Cereal[ which( Cereal$Leverage > 2 * num.Of.Coefs / num.Of.Cases ), ]

## Calories Sugar Fiber Leverage Stand.resid Stud.resid Cooks.dis
## 3 50 0 14 0.267 -0.5219 -0.5161 0.033032
## 26 100 0 0 0.172 -0.6635 -0.6577 0.030453
## 34 60 0 13 0.222 -0.0466 -0.0459 0.000207

Flagging all the influential points

Many of the points with high leverage will likely be the points with high residual values. It would be nice to
create a table of all the data points that are flagged for one reason or another. Below are all the data points
we want in this table with only flagged cases:
which( abs( Cereal$Stand.resid ) >= 2 )

## [1] 9 27

which( abs( Cereal$Stud.resid ) >= 2 )

## [1] 4 9 27

which( Cereal$Leverage >= 2 * num.Of.Coefs / num.Of.Cases )

## [1] 3 26 34

which( Cereal$Cooks.dis >= 0.5 )

## integer(0)

By using the union() function we can create a nice table. The union() function simply joins the elements
from two sets with the or function.
resids <- union( which(abs(Cereal$Stand.resid) >= 2), which(abs(Cereal$Stud.resid) >= 2) )
lev.Cooks <- union( which( Cereal$Leverage >= 2*num.Of.Coefs/num.Of.Cases),

which( Cereal$Cooks.dis >= 0.5 ))
sort( union(resids, lev.Cooks) )

## [1] 3 4 9 26 27 34

All the flagged cases in the cereal data set:
Cereal[ sort( union(resids, lev.Cooks) ) , ]

## Calories Sugar Fiber Leverage Stand.resid Stud.resid Cooks.dis
## 3 50 0 14 0.2667 -0.5219 -0.5161 0.033032
## 4 140 9 2 0.0426 1.9314 2.0195 0.055311
## 9 150 9 2 0.0426 2.5944 2.8634 0.099795
## 26 100 0 0 0.1719 -0.6635 -0.6577 0.030453
## 27 160 13 3 0.1146 3.3681 4.0941 0.489201
## 34 60 0 13 0.2219 -0.0466 -0.0459 0.000207
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