
A summary of the interpretation of regression coefficients for the untransformed variables
and for log transformations.

Simple linear regression

The “casual” argument looks like this:

y′ = β0 + β1(x + 1)

y = β0 + β1x

∆y = y′ − y = β1 · 1

But in fact on the right hand side we are really dealing with expected values, so we should write instead that
for the model

y = β0 + β1x + ε, ε ∼ N(0, σ2)

we have

E[y|x + 1] = β0 + β1(x + 1)

E[y|x] = β0 + β1x

∆E[y] = E[y|x + 1] − E[y|x] = β1 · 1

so that β1 is the change in the expected value of y, for a one unit change in x.
In casual language we might say β1 is the change in y for a one-unit change in x, but we know that’s not

quite true. We don’t know the change in y exactly (because of ε) but we do know about the expected value
of the change.

Generalization to multiple regression

If we focus on the change from x j to x j + 1 in the regression model

y = β0 + β1x1 + · · · + βpxp + ε, ε ∼ N(0, σ2)

we have

E[y|x j + 1] = β0 + β1x1 + · · · + β j(x j + 1) + · · · βpxp

E[y|x j] = β0 + β1x1 + · · · + β jx j + · · · βpxp

∆ jE[y] = E[y|x j + 1] − E[y|x j] = β j · 1

so that β j is the change in the expected value of y, for a one unit change in x j, holding the other x’s fixed.
Since the adjustment is always like this for multiple regression, we will only consider simple regression
examples for the rest of these notes.
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log(Y)

Now we want to consider the model

log y = β0 + β1x + ε, ε ∼ N(0, σ2)

Following what we did for simple linear regression, we want to consider

∆E[log y] = E[log y|x + 1] − E[log y|x].

To simplify the notation a bit and prepare for the application of a Taylor approximation, we will write

log(y + ∆y) = β0 + β1(x + 1) + ε

for the value observed at x + 1 and
log(y) = β0 + β1x + ε′

for the value observed at x. Taking expected values to get rid of the ε’s, we get

E[log(y + ∆y)] = β0 + β1(x + 1)

E[log(y)] = β0 + β1x

∆E[log y] = E[log(y + ∆y)] − E[log(y)] = β1 · 1

Continuing the calculation to get a “percent” interpretation, we have

β1 = E[log(y + ∆y)] − E[log(y)]

= E
[
log

(
1 +

∆y
y

)]
≈ E

[
∆y
y

]
Taylor approx: log(1 + u) = u − u2/2 ± · · ·

So, for the model
log y = β0 + β1x + ε, ε ∼ N(0, σ2)

we can say β1 is the expected value of the fractional change in y for a 1 unit change in x. It is perhaps more
colorful to say that

“β1 × 100% is the expected percent change in y for a one-unit change in x.”
In casual language we could say “a one-unit change in x is associated with a β1 × 100% change in y, but

we now know that’s not quite accurate; we don’t really know what the change in y will be (because of ε) but
we do know about the expected value of the (percent) change.
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log(X)

Now let’s consider the model

y = β0 + β1 log x + ε, ε ∼ N(0, σ2)

We will consider a small change ∆x in x:

E[y|x + ∆x] = β0 + β1 log(x + ∆x)

E[y|x] = β0 + β1 log x

∆E[y] = E[y|x + ∆x] − E[y|x] = β1 · log
(
1 +

∆x
x

)
≈ β1 ·

(
∆x
x

)
Taylor approx: log(1 + u) = u − u2/2 ± · · ·

If we put ∆x = 0.01x (a one-percent change in x), we get

∆E[y] = E[y|(1.01)x] − E[y|x] = β1 · (0.01)

Thus we can say that “β1 × (0.01) is the change in the expected value of y for a 1% change in x.”

Both log(X) and log(Y)

Next we consider the model

log y = β0 + β1 log x + ε, ε ∼ N(0, σ2)

Combining the calculations for log y and log x we get

E[log(y + ∆y)] = β0 + β1 log(x + ∆x)

E[log(y)] = β0 + β1 log(x)

∆E[log y] = E[log(y + ∆y)] − E[log(y)] ≈ β1 ·

(
∆x
x

)
so

β1 ·

(
∆x
x

)
= E[log(y + ∆y)] − E[log(y)] = E

[
log

(
1 +

∆y
y

)]
≈ E

[
∆y
y

]
Putting ∆x = 0.01x, we get that β1 · (0.01) is the expected fractional change in y for a 1% change in x.
Multiplying through by 100% we get that β1 · (0.01) · 100% is the expected percent change in y for 1%
change in x. Since (0.01)(100) = 1, we can say more succinctly that

“β1 (itself!) is the expected percent change in y for a 1% change in x.”

So this at least is nice and simple!
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Logistic regression

Untransformed x: For logistic regression with an untransformed x, we have

log
p

1 − p
= β0 + β1x

where p = P[y = 1|x]. In order to keep things clear, let’s write p(x) = P[y = 1|x]. Following what we did
for simple linear regression we get

logit p(x + 1) = log
p(x + 1)

1 − p(x + 1)
= β0 + β1(x + 1)

logit p(x) = log
p(x)

1 − p(x)
= β0 + β1x

∆logit p = logit p(x + 1) − logit p(x) = β1 · 1

so that β1 is the (additive) change in logit p, for a one unit change in x.
Exponentiating both sides and simplifying, we get

p(x + 1)
1 − p(x + 1)

=
p(x)

1 − p(x)
· eβ1

so that eβ1 is the (multiplicative) change in the odds of y = 1, for a one unit change in x.

Transforming to log(x): Finally let’s consider the model

log
p

1 − p
= β0 + β1 log x

Following what we did for log x in simple regression we get

logit p(x + ∆x) = log
p(x + ∆x)

1 − p(x + ∆x)
= β0 + β1 log(x + ∆x)

logit p(x) = log
p(x)

1 − p(x)
= β0 + β1 log(x)

∆logit p = β1 log
(
1 +

∆x
x

)
≈ β1 ·

(
∆x
x

)
Putting ∆x = 0.01x again, we get that β1 · (0.01) is the (additive) change in logit p, for a 1% change in x.

Exponentiating again, we get that eβ1·(0.01) is the (multiplicative) change in the odds of y = 1, for a 1%
change in x.

Following the logic of the case of simple regression where both x and y are replaced with logaritthms,
we could also say that β1 is the expected percent change in the odds of y = 1, for a 1% change in x. If you
use the Taylor approximation eu = 1 + u + · · · with u = β1 · (0.01), you can also get this interpretation from
the multiplicative interpretation in the previous paragraph.
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