A summary of the interpretation of regression coefficients for the untransformed variables
and for log transformations.

Simple linear regression

The “casual” argument looks like this:
Yo = Bo+pilx+1)
y = Po+pix
Bi-1

Ay=y -y

But in fact on the right hand side we are really dealing with expected values, so we should write instead that
for the model
y=Bo+pix+e e~NO?)

we have
Elylx+1] = Bo+Bi(x+1)
Elylx] = Bo+pBix
AE[y] = Elylx + 1] = E[ylx] pr-1

so that 5 is the change in the expected value of y, for a one unit change in x.

In casual language we might say S, is the change in y for a one-unit change in x, but we know that’s not
quite true. We don’t know the change in y exactly (because of €) but we do know about the expected value
of the change.

Generalization to multiple regression

If we focus on the change from x; to x; + 1 in the regression model
y=Bo+pixi+-+Bpxp+ e €~ NO,0?)

we have

Elylx; + 1]
Elylx;]
AE[y] = Elylx; + 1] — E[ylx;]

B0+ﬂ1x1 +'--+,8j(x]'+ 1)+---,8pxp
Bo+Bixi + -+ Bjxj+ - Bpxp

Bj-1

so that ; is the change in the expected value of y, for a one unit change in x;, holding the other x’s fixed.
Since the adjustment is always like this for multiple regression, we will only consider simple regression
examples for the rest of these notes.



log(Y)
Now we want to consider the model
logy =80 +B1x+€, €~ N(, o)
Following what we did for simple linear regression, we want to consider
AE[logy] = E[logylx + 1] — E[log y|x].
To simplify the notation a bit and prepare for the application of a Taylor approximation, we will write
logly + Ay) =Bo+pi(x+1) +€

for the value observed at x + 1 and
log(y) = Bo + Bi1x + €

for the value observed at x. Taking expected values to get rid of the €’s, we get

Eflog(y + Ay)] Bo+pi(x+1)
Ellog(y)] = Bo+pix

AE[logy] = E[log(y + Ay)] - E[log(y)] Bi-1

Continuing the calculation to get a “percent” interpretation, we have

Bi Ellog(y + Ay)] — E[log(y)]

2]

A
E [_y] Taylor approx: log(1 + u) = u — u?/2 + - -
Yy

Q

So, for the model
logy =80 +B1x+¢€, €~ N(, 0'2)

we can say 31 is the expected value of the fractional change in y for a 1 unit change in x. It is perhaps more
colorful to say that
“B1 X 100% is the expected percent change in y for a one-unit change in x.”
In casual language we could say “a one-unit change in x is associated with a 8; X 100% change in y, but
we now know that’s not quite accurate; we don’t really know what the change in y will be (because of €) but
we do know about the expected value of the (percent) change.



log(X)
Now let’s consider the model
y=po+pilogx+e, €~ NO,0%)

We will consider a small change Ax in x:

Elylx+ Ax] = Bo+pBilog(x + Ax)
Elylx] = Bo+pilogx
Ax
AEDY] = EDlx+ Axl - EDld] = B -log(l . 7)

A
B+ (_x) Taylor approx: log(1 + u) = u — u2/2 +---
X

Q

If we put Ax = 0.01x (a one-percent change in x), we get
AE[y] = E[y[(1.01)x] = E[ylx] = 81 - (0.01)

Thus we can say that “B; X (0.01) is the change in the expected value of y for a 1% change in x.”
Both log(X) and log(Y)

Next we consider the model
logy =80 +pB1logx+e€, €~ N(0,0?)

Combining the calculations for log y and log x we get

Eflog(y + Ay)] = Bo+pB1log(x + Ax)
Ellog»)] = Po+pBilog(x)
AE[logy] = E[log(y + Ay)] - E[log(y)] ~ pi - (%)
S0
B - (%) = Ellog(y + Ay)] - Ellog(y)] = E [log(l + %)] ~ E [%}

Putting Ax = 0.01x, we get that 81 - (0.01) is the expected fractional change in y for a 1% change in x.
Multiplying through by 100% we get that 81 - (0.01) - 100% is the expected percent change in y for 1%
change in x. Since (0.01)(100) = 1, we can say more succinctly that

“B1 (itself!) is the expected percent change in y for a 1% change in x.”

So this at least is nice and simple!



Logistic regression

Untransformed x: For logistic regression with an untransformed x, we have

P
I-p

log =Po +p1x

where p = P[y = 1|x]. In order to keep things clear, let’s write p(x) = P[y = 1|x]. Following what we did
for simple linear regression we get

. _ px+1)
10g1tp(x+1)—10g—1_p(x+1) = Bo+pix+1)
logit p(x) = log PO Bo +Bix
1 - p(x)

Alogit p = logit p(x + 1) — logitp(x) = ;-1

so that B is the (additive) change in logit p, for a one unit change in x.
Exponentiating both sides and simplifying, we get

px+l) P g
1-px+1)  1-p(x)

so that 8! is the (multiplicative) change in the odds of y = 1, for a one unit change in x.
Transforming to log(x): Finally let’s consider the model

1p =pBo +pB1logx
-p

log

Following what we did for log x in simple regression we get

A
logit p(x + Ax) = log m = Bo+B1log(x + Ax)
1 — p(x + Ax)
i by
logit p(x) = log P Bo + B1 log(x)
1 = p(x)
A A

Alogitp = pi log(l + TX) ~p - (TX)

Putting Ax = 0.01x again, we get that 8; - (0.01) is the (additive) change in logit p, for a 1% change in x.

Exponentiating again, we get that 00D js the (multiplicative) change in the odds of y = 1, for a 1%
change in x.

Following the logic of the case of simple regression where both x and y are replaced with logaritthms,
we could also say that 8 is the expected percent change in the odds of y = 1, for a 1% change in x. If you
use the Taylor approximation e = 1 + u + - -- with u = 8; - (0.01), you can also get this interpretation from
the multiplicative interpretation in the previous paragraph.



