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 Reading, HW, Quiz

= Reading
o This week: Sheather Ch 5 (Skip Ch 4 for now)
o For next week: Sheather Ch 6

= HW 03 due tonight 1159pm

= HW 04 will be on Canvas later today — Due next
Monday

® Quiz on Ch 5in class —today!
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‘ Outline

= Matrix Form of Multiple Regression Model
= Multivariate Normal Distribution

= ML/LS Estimates

= Two Interpretations

= Distributional Properties

= SS Decompositions and F Statistics

= Some Comments
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‘ Matrix Form of Multiple Regression
Model

s Let X; = (x; ..., X;,) and 5= (0, ..., B,)"; then

yi = PoXio+ L1 X+ + BpXip + €
= X;0+¢

m If wealsostackY={(y,..y,), X=(X/7,.. X)),
and € = (e, ...€,)T, we can write

Ynxl :ankﬁkx1+€nx1 (k:p_l_l)
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‘ Matrix Form of Multiple Regression
Model

Y = X[(+e¢€
Y1 r1i0 L11 -+ Tip Bo €1
Y2 20 X211 - T2p 51 €2
= . +
- Yn | Ln0 Tnl " Tpp | | /8];) i | En
Usually z;,0 = 1, so we get
Y1 I 211 -+ Z1p Bo €1
Y2 I 221 -+ g 51 €2
— +

Un 1 Lni e Lnp /Bp €n
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‘ Multivariate Normal Distribution

= |In the model

y@:XZ,B—I—E@,’L:L,TL

o -
it is usual to assume ¢; ~ N(0,0?)

= Recall
0 Y~ N(O,1) iff f(y) = L v
V4 \/%
a Y~ N(u,0?) iff SH N(0,1)
o)
1 _(:u—»u)2
fly) = e 207
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\ Multivariate Normal Distribution

/'0' 1 0 .. O_\
Y=(Y Y )" ~N(O,l) =N : o
= Y=(Yy, .., n) (0,1) = 17l o o 0
\[0] [0 0 1]/
n n 1 5
fis-yn) = fw) =] ="
E 71;[1 27

Z—l/Z(Y o /11) -~ N(O, I) ...and some ugly formula

for f(yy, ..., ¥,)---
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‘ Multivariate Normal Distribution

= WhenY ~ N(u,2.), then

{2
M:(/J’lal-@)“'ﬂun)T .

Is the mean vector:

lﬁhﬁ]iiﬁ%, i::]ﬂ...jn

_M-

| Hn_

- _
0p 012 " Oln
2
021 09 '+ 02
=
2
| On1 Op2 ' 0,

Is the variance-covariance matrix:

Var(y;)) = o2, i=1,...,n

7

Cov(yi,y;) = 0ij, i,j=1,...,n
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‘ Many Equivalent Model Formulations

m Y~ N(X3, 02%l),i.e.:
o Ely] =XG,i=1,..,n
a Var(y,) =0?i=1, ..., n
0 Cov(y,y;) =0, Vi#]
= We could also write
2 Y=XB+¢, e~ N(0,02l)
a y; =X0B+e¢,;, €, ~N(0,0?), iid
oy, =0 X+ ...+ 3. X +¢€ €~ N(0,0?, iid
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‘ ML/LS Estimates

m Y, =X3+¢€, e ~ N(0,0?)
= So Var(Y;) = E[(Y, — X.0)?] = E[¢,2] = Var(e;) =
= Then we can estimate (MoM!):

A2 = Zz l(y’b X’L@)2

= Fitting the model |s basically just finding values 3
to minimize

L3y — XiB)? = (Y - XB)T (Y — XP)
= [t turns out that B — (XTX)_lXTy
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‘ ML/LS Estimates

y=XB+e e~ N(0,0%1)
= 5= (XTX)'XTy
s j=XA=XXTX)"'XTy=Hy
= The “residual SD” is the square root of

6° = i Wi — XiB)? = Ay — XP) T (y — XB)
= We will see below that—

e

Var(8) = (X'X) 1o?
Var(9) = X(X'X)"'Xx'o?

Recall that k=p+1
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‘ ML/LS Estimates - Example

> str(kidiq)
> y <- cbind(kidig$kid.score)

> X <- cbind (1, with(kidigqg,
cbind (mom.hs,mom.1iq)))

dim (X)

1] 434 3
n <- dim/(
k <= dim(

beta.hat

vV V.V V V  —V

var.beta
betal.sd
betal.sd
betaZ.sd

vV V. V V V V

X)
X)

V <- solve (

<_

res.var <- t
$*% (y - X%*Sbeta.hat) / (

res.sd <- sqgrt(res.var)

<-
<-
<-
<-

[1]

[2]

t(X) $*% X)

V $*% t(X) $*%
(

y
y — X%*Sbeta.hat)
n-k)

V * c(res.var)

sgrt (var.betall,1])
sgrt (var.betal2,2])
sgrt (var.betal3,3])

> round (cbind(beta.hat,
c (betal0.sd, betal.sd,
betaZ2.sd)), 2)

[,1] [,2]
25.73 5.88
mom.hs 5.95 2.21
mom.1iq 0.56 0.06
> round(res.sd, 2)
[,1]
[1,] 18.14

» summary (lm(kid.score ~ mom.hs

+ mom.1iq, data=kidiq))

coef.est coef.se

(Intercept) 25.73 5.88
mom.hs 5.95 2.21
mom. 1q 0.56 0.06

n = 434, k = 3
res sd = 18.14, R-Squared

0.21
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‘ Two Interpretations

= Inthe modely,= G, Xjo + ... + 0, X, + €,
ﬂj is the change in'y for a unit change in X ,
holding the other X’s fixed

0 Since,@jestimates B;, Bj inherits this interpretation
also.
= When we look at “added variable plots”, we will
see that 8;measures the variation in y, left after
controlling for the other X’s, that is uniquely
attributable to X..

9/20/2021
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 Distributional Properties: 3

Fact: Y ~ N(u,2) = AY ~ N(Au, ALAT)

y ~ N(XB,0%I)

Bo= (XTX)7'XTy
E[f] = E[XTX)"'XTy = (XTX) 'XTE[y]
= (XTX)"'XTXp=p
Var(8) = Var((XTX)1XxTy)

= (X'X)"'X'Var(p) X(xTx) !
= (X'X)'XTX(XTX) e = (XTX)o?

=8 ~ NG, (XTX)"'o?)
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‘ Hat Matrix H, & Distribution of § and é

g =X = X[XTX)'XTy] = [X(XTX)"'XT|y = Hy

\ J
|

HX = XX'X)"'X'TX =X
= V8", HXpB* = Xp*

Hat matrix, H

H" = H and(I-H)" = (I-H)
HH = H and(I-H)I-H)=(I—-H)
Elg] = E[Hy] = HEly] = HXp = X[
Var(§) = Var(Hy) = HVar(y)H' = HHo? = Ho?

=|§ = Hy ~ N(XB8,Ho?)

Similarly|é = y—9 = (I - H)y ~ N(0,(I — H)o?)
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‘ SS Decompositions and F Statistics
Fact: y" Ay +y' By = (y'A+y'B)y = y' (A+ By
SST = > (wi-9? = w-9" -9

= y (I-H)"(I-H)y = y'(I-H)y
SSreg = Do (@i—9? = G- G- = y"(H-H)y
RSS = > wi—9)? = w-9)"y-9) = y"(I-Hy

=58,y + RSS = yU(H—-H)y+y"(I-H)y = y"(I-H)y = SST

V)

[\

e Cochran’s Theorem implies| SS,.,/c? and RSS/c? are indep. x?'s|under
H()Z /81::/810:0

e The df for each x? will be the rank, or equivalently the trace, of each defining
matrix. Using tr(AB) =tr(BA): tr(H) =p 4+ 1, tr(Hy) =1 tr(I) =n, so
df (SSreq/0?) =p, df (RSS/c?) =n—p—1, df(SST/o?) =n—1

9/20/2021 (H; = hat matrix fory = g, + ¢) 16



‘ SS Decompositions and F Statistics

m The foregoing lead to the traditional Analysis of
Variance Table

Source of  Degrees of Sums of squares Mean square F
variation freedom (df) (SS) (MS)
Regression p SSreg SSreg/p F = Rs‘g‘?ﬁf@p_l)
Residual n—p-—1 RSS RSS/(n—p—1)
Total n—1 SST
= As before we can define “multiple R?”:
SSre RSS .
R? = g =1—- == = Corr (y,9)* )
SST SST

= “Adjusted R?”: mean-squares instead of sums of

squares, to account for capitalization on chance
R 1 RSS/(n—p—1)
adg SST/(n—1)
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‘ SS Decompositions and F Statistics

Since SST = y! (I-H,)y = RSSy,, the residual sum-of-square from
the smallest model (intercept-only), the F' statistic from the Anova

table can be written as

Ssreg/p (RSSHI - RSSH)/(del o de)

F = (%)

T RSS/n—-p—1 RSSy /df i

This idea, and the sum-of-square calculations we did earlier, can be
generalized so that, if Hyy; and Hycqucea are hat matrices from a
“full” model, and from a “reduced” model obtained by linear restric-

tions on the “full” model, then the partial F statistic

(RSSHreduced o RSSHfull )/(dereduced o defull )
RSSHfull /defull

will have an F distribution under the null hypothesis that the linear

restrictions are true.

9/20/2021 (*) The df throughout are residual df, that is, tr(I-H)
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‘ Some Comments

= It's good to know the “canonical” theory of the linear
model and the Analysis of Variance table
o Distribution assumptions and multiple testing matters
0 We will more fully discuss later in the course

m The “linear restrictions” for the partial F statistic
usually amount to just setting some B’s =0 . This is
especially useful when a regressor is categorical,
since a categorical X is recoded as a set of dummy
variables, one for each level of X

m The partial F test brings us into “variable selection”

o We will more fully discuss variable selection later as well!
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‘Summary

= Matrix Form of Multiple Regression Model
= Multivariate Normal Distribution

= ML/LS Estimates

= Two Interpretations

= Distributional Properties

= SS Decompositions and F Statistics

= Some Comments
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