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Reading, HW, Quiz
◼ Reading

❑ This week: Sheather Ch 5  (Skip Ch 4 for now)

❑ For next week: Sheather Ch 6

◼ HW 03 due tonight 1159pm

◼ HW 04 will be on Canvas later today – Due next 
Monday

◼ Quiz on Ch 5 in class – today!



Outline

◼ Matrix Form of Multiple Regression Model

◼ Multivariate Normal Distribution

◼ ML/LS Estimates

◼ Two Interpretations

◼ Distributional Properties

◼ SS Decompositions and F Statistics

◼ Some Comments
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Matrix Form of Multiple Regression 
Model
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◼ Let Xi = (xi0, …, xip) and ¯ = (¯0, …, ¯p)
T; then

◼ If we also stack Y = (y1, …,yn)T, X = (X1
T, …, Xn

T)T, 
and ² = (²1, …²n)T, we can write



Matrix Form of Multiple Regression 
Model
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Multivariate Normal Distribution
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◼ In the model

it is usual to assume 

◼ Recall

❑ Y ~ N(0,1) iff

❑ Y ~ N(¹,¾2) iff



Multivariate Normal Distribution
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◼ Y = (Y1, …, Yn)T ~ N(0,I) 

◼ Y ~ N(¹,) iff  

…and some ugly formula
for f(y1, …, yn)…



Multivariate Normal Distribution
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◼ When Y ~ N(¹,), then



Many Equivalent Model Formulations
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◼ Y » N(X¯, ¾2 I), i.e.:

❑ E[yi]  = Xi¯, i = 1, …,n

❑ Var(yi) = ¾2, i=1, …, n

❑ Cov(yi,yj) = 0, 8 i j

◼ We could also write

❑ Y = X¯ + ², ²» N(0,¾2I)

❑ yi = Xi¯ + ²i, ²i» N(0,¾2), iid

❑ yi = ¯1 Xi1 + … + ¯k XiK + ², ²i» N(0,¾2), iid



ML/LS Estimates

109/20/2021

◼ Yi = Xi¯ + ²i, ²i» N(0,¾2)

◼ So Var(Yi) = E[(Yi – Xi¯)2] = E[²i
2] = Var(²i) = ¾2

◼ Then we can estimate (MoM!):

◼ Fitting the model is basically just finding values ¯
to minimize 

◼ It turns out that 



ML/LS Estimates
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◼

◼

◼ The “residual SD” is the square root of

◼ We will see below that
Recall that k=p+1



ML/LS Estimates - Example
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> str(kidiq)

> y <- cbind(kidiq$kid.score)

> X <- cbind(1, with(kidiq, 
cbind(mom.hs,mom.iq)))

> dim(X)

[1] 434   3

> n <- dim(X)[1]

> k <- dim(X)[2]

> V <- solve(t(X) %*% X)

> beta.hat <- V %*% t(X) %*% y

> res.var <- t(y - X%*%beta.hat) 
%*% (y - X%*%beta.hat) / (n-k)

> res.sd <- sqrt(res.var)

>

> var.beta <- V * c(res.var)

> beta0.sd <- sqrt(var.beta[1,1])

> beta1.sd <- sqrt(var.beta[2,2])

> beta2.sd <- sqrt(var.beta[3,3])

> round(cbind(beta.hat, 
c(beta0.sd, beta1.sd, 
beta2.sd)), 2)

[,1] [,2]

25.73 5.88

mom.hs 5.95 2.21

mom.iq  0.56 0.06

> round(res.sd,2)

[,1]

[1,] 18.14

➢ summary(lm(kid.score ~ mom.hs
+ mom.iq, data=kidiq))

coef.est coef.se

(Intercept) 25.73     5.88  

mom.hs 5.95     2.21  

mom.iq       0.56     0.06  

---

n = 434, k = 3

res sd = 18.14, R-Squared = 0.21

estimates-by-hand.r



Two Interpretations

◼ In the model yi = ¯0 Xi0 + … + ¯p Xip + ²i, 
¯j is the change in y for a unit change in X.j, 
holding the other X’s fixed

❑ Since     estimates      ,       inherits this interpretation 
also.

◼ When we look at “added variable plots”, we will 
see that     measures the variation in y, left after 
controlling for the other X’s, that is uniquely 
attributable to Xj.
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Distributional Properties: 
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Hat Matrix H, & Distribution of 
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c

c

Hat matrix, H



SS Decompositions and F Statistics
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SS Decompositions and F Statistics
◼ The foregoing lead to the traditional Analysis of 

Variance Table

◼ As before we can define “multiple R2”:

◼ “Adjusted R2”: mean-squares instead of sums of 
squares, to account for capitalization on chance 
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SS Decompositions and F Statistics

189/20/2021 (*) The df throughout are residual df, that is, tr(I-H)



Some Comments
◼ It’s good to know the “canonical” theory of the linear 

model and the Analysis of Variance table

❑ Distribution assumptions and multiple testing matters

❑ We will more fully discuss later in the course

◼ The “linear restrictions” for the partial F statistic 
usually amount to just setting some b’s = 0 . This is 
especially useful when a regressor is categorical, 
since a categorical X is recoded as a set of dummy 
variables, one for each level of X

◼ The partial F test brings us into “variable selection” 

❑ We will more fully discuss variable selection later as well!
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Summary

◼ Matrix Form of Multiple Regression Model

◼ Multivariate Normal Distribution

◼ ML/LS Estimates

◼ Two Interpretations

◼ Distributional Properties

◼ SS Decompositions and F Statistics

◼ Some Comments
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