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Alan's response is great.  Here's another way of looking at it, perhaps less satisfying but

"correct".   It is similar to Alan's last paragraph.

Linear models are all about the equation y-hat = H* y, where y is an n-dimensional data vector, H*

is a projection matrix onto some lower-dimensional space; let's call that space L.  Then y-hat is

the projection of y in L.  In case H* is symmetric and idempotent, we know from linear algebra
that dim(L) = rank(H*) = tr(H*).  In fact, df is just theoretical statistics' name for dim(L):

df=dim(L). 

So, for a well behaved smoother S, H* = S, y-hat = S y, df = tr(S).  This is also true for the

standard linear model y = Xb + eps, where now H* = H, our usual hat matrix; in this case,  y-hat =

H y, and df=tr(H)=p+1.  Same result as for the general linear smoother.

The sums of squares in an anova table are based on different projections into different-

dimensional subspaces.  Each sum of squares is just the squared length of the projection of y into

each subspace.  The cool thing from a statistics pov is that when y is normally distributed, this

squared length is distributed as chi-squared rv's with df equal to the dimension of the subspace.

  SST is based on the projection y-hat(1) = (I-H1) y, where H1 is the hat matrix from the

  intercept only model y = b0 + eps onto a subspace L(1).

  SSreg is based on the projection y-hat(2) = (H-H1) y onto a subspace L(2).

  RSS is based on the projection y-hat(3) = (I - H) y onto a subspace L(3).

it's easy to see that each of (I-H1), (H-H1) and (I-H) are symmetric, idempotent projection

matrices (as long as X has a column of ones!), and hence

  dim(L(1)) = tr(I-H1) = n-1 = df(SST)

  dim(L(2)) = tr(H-H1) = (p+1)-1 = p = df(SSreg)
  dim(L(3)) = tr(I-H)  = n - p - 1 = df(RSS)

So SSreg has different df from the full model (p vs p+1) since it is based on projection into a

different, smaller, subspace: the one defined by H-H1, rather than the one defined by H.

If you're interested in a summary of the theory of applying Cochran's theorem in order to get that

the SS's actually are independent chi-squared rv's with the df listed above, see for example

http://www.stat.columbia.edu/~fwood/Teaching/w4315/Fall2009/lecture_cochran.pdf

hope this helps!

-BJ

On 9/20/2018 11:05 PM, Alan Mishler wrote:

Hi Jun Hee,

The first line of the ANOVA table here is the degrees of freedom of SSReg, not of the model as a

whole. When you're es<ma<ng the model, you're es<ma<ng a parameter vector of length p + 1, so
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you know your es<mate has to lie in a (p + 1)-dimensional subspace. A priori, before you've chosen

an es<ma<on method, you could pick any vector in that space (though of course that would be

silly). That's the sense (or at least a sense) in which the model degrees of freedom are p + 1.

When it comes to SSreg, the "Source of varia<on" is the model, but SSreg isn't quite the same as

the model itself.  SSreg = $\sum_{i=1}^n (\hat{y}_i - \bar{y})$ which is a func<on of the p + 1

parameters, but also a func<on of $\bar{y}$. The es<ma<on procedure we've chosen enforces that

$(\hat{y}_i - \bar{y})$ has to sum to 0 (since the residuals have to sum to 0), so in a sense, we've

lost a degree of freedom by insis<ng on this condi<on.

That's probably not a totally sa<sfying explana<on; maybe Professor Junker has a beMer way of

looking at it.

For myself, there are cases like the first where I find it helpful to think of degrees of freedom in

terms of subspaces, and there are cases like the second where I simply think of them as

parameters of distribu<ons that let us test hypotheses. As in, it's a nice convenient fact that we

have this sta<s<c F on the right side of the ANOVA table that lets us test a null hypothesis that

we're interested in; and I'm content to call $p$ and $n - p - 1$ the "degrees of freedom" of the

distribu<on even if I can't easily think about them in linear algebraic terms.

I hope that helps,

Alan

On Wed, Sep 19, 2018 at 6:00 PM Jun Hee Kim <junheek1@andrew.cmu.edu> wrote:
Dear Professor Junker and Alan:

Hello! This is Jun Hee, one of the MSP students.

I have a ques<on about degrees of freedom (df) in linear regression. (I asked Professor Junker about this at the end of this

Monday class, but we didn't have much <me to discuss it.)

Let p denote the number of predictors (so there are total p+1 parameters including the intercept parameter). I remember in

36-402 that for any linear smoother (including linear regression), the df of the model is the trace of the weight matrix, which is

p+1 in linear regression. But in the ANOVA table (aMached), it says the df for the regression is p.

Why/how exactly do these two quan<<es differ so that one is p+1 and the other is p?

Thank you!

Sincerely,

Jun Hee Kim

--

Alan Mishler

PhD Student

Department of Sta<s<cs and Data Science

Carnegie Mellon University (PiMsburgh)

www.linkedin.com/in/alanmishler
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-- 

Brian Junker                    (412) 268 - 2718

Department of Statistics        brian@stat.cmu.edu

232 Baker Hall                  FAX: (412) CMU-STAT

Carnegie Mellon University        or (412) 268-7828

Pittsburgh PA 15213 USA

WWW: http://www.stat.cmu.edu/~brian/
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