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 Generalized Collinearity Diagnostics
 JOHN FOX and GEORGES MONETTE*

 Working in the context of the linear model y = X, + c, we generalize the concept of variance inflation as a measure of

 collinearity to a subset of parameters in , (denoted by ,1, with the associated columns of X given by XI). The essential idea
 underlying this generalization is to examine the impact on the precision of estimation-in particular, the size of an ellipsoidal
 joint confidence region for P1-of less-than-optimal selection of other columns of the design matrix (X2), treating still other

 columns (X0) as unalterable, even hypothetically. In typical applications, XI contains a set of dummy regressors coding categories
 of a qualitative variable or a set of polynomial regressors in a quantitative variable; X2 contains all other regressors in the model,

 save the constant, which is in X0. If o2V denotes the realized variance of P8 and o2U is the variance associated with an optimal
 selection of X2, then the corresponding scaled dispersion ellipsoids to be compared are Zv = {x: x'V-'x ' 1} and Zu = {x:
 x'U-'x ' 1}, where &u is contained in 4v. The two ellipsoids can be compared by considering the radii of 4v relative to Zu,
 obtained4 through the spectral decomposition of V relative to U. We proceed to explore the geometry of generalized variance
 inflation, to show the relationship of these measures to correlation-matrix determinants and canonical correlations, to consider
 X matrices structured by relations of marginality among regressor subspaces, to develop the relationship of generalized variance
 inflation to hypothesis tests in the multivariate normal linear model, and to present several examples.

 KEY WORDS: Canonical correlation; Joint confidence regions; Spectral decomposition; Variance inflation.

 1. INTRODUCTION

 Consider the linear model

 y = Xfi + -, (1)

 where y is an n x 1 vector of observations on a response

 or dependent variable; X is an n x p full-rank design matrix

 of fixed constants, the first column of which consists of Is;

 P is a p x 1 vector of parameters to be estimated; and e
 is an n x 1 vector of unobserved errors with E(e) = 0 and

 V(e) = o-21. For some purposes we shall also assume that

 e is normally distributed Nn(O, 0.21). The usual least squares

 estimate of , is f = (X'X)- X'y, for which V(P) =
 u2(X'X)-1 (e.g., Fox 1984).

 Since the methods developed in this article pertain to
 subspaces of the column space of X, a deficient-rank pa-
 rameterization of the model can be accommodated by se-

 lecting arbitrary bases for the subspaces. It is, likewise,

 possible to develop these methods for models without con-

 stants, simply by excluding the constant regressor from the
 X0 matrix defined subsequently.

 If interest inheres in individual coefficients of the model,
 as is common in regression analysis, then the diagonal en-

 tries of V(ft) reflect the (im)precision of estimation. Spe-
 cifically, it may be shown that (Fox 1984; Theil 1971)

 .1 O'2 1

 J08 =xjX) 1 (2)

 where 3,j is the jth entry in , (but not the intercept estimate
 f31); xi; is the entry in the ith row, jth column of X; x; is the
 mean of the jth column; and Rj is the square of the multiple

 correlation from the regression of the jth column of X on
 the other columns. The second term in Equation (2) is called
 the variance-inflation factor (VIF) (Marquardt 1970), for it

 reflects the degree to which the sampling variance of /% is
 increased as a consequence of correlations among the re-

 * John Fox is Professor of Sociology and Mathematics and Statistics
 and Georges Monette is Associate Professor of Mathematics and Statistics
 at York University, Toronto, Ontario, Canada M3J 1P3. Both are asso-
 ciated with the Statistical Consulting Service of the York University In-
 stitute for Social Research.

 gressors: If the regressors are uncorrelated, then Rj = 0 and

 VIFj attains its minimum value of 1.
 The variance-inflation factor is a useful diagnostic be-

 cause it indicates directly the harm inflicted by collinearity

 on the precision of estimation: Indeed, a confidence inter-

 val around f,j has width proportional to VIFj'2, which we
 term the standard-error inflation factor (SIF). But the VIF

 (or SIF) is only relevant when individual coefficients are

 of direct interest.

 It is often natural to be concerned with sets of regressors

 and the column subspaces of X that they span rather than

 with individual regressors and their associated coefficients.

 This is the case, for example, when a qualitative indepen-

 dent variable gives rise to a set of dummy-variable regres-

 sors and when polynomial terms in a quantitative indepen-

 dent variable appear in a linear model. In each of these

 cases, the specific basis selected for a subspace of X is

 essentially arbitrary, though the subspace itself is not. Here

 relations among different sets of regressors and the sub-

 spaces that they generate are still of interest.

 The plan of this article is as follows: In Section 2 we

 suggest a generalization of variance inflation to subsets of

 coefficients, and in Section 3 we consider a simple special

 case of generalized variance inflation that will often be of

 interest in applications and develop the relationship of vari-

 ance inflation to correlation-matrix determinants. Section 4

 presents some elementary examples. Section 5 develops the

 relationship of generalized variance inflation to angles be-

 tween regressor subspaces and to multivariate test statistics.

 Section 6 shows how the notion of generalized variance
 inflation may be applied to models in which the design ma-

 trix is structured by relations of marginality among regres-

 sor subspaces. Section 7 presents an illustrative application,

 and Section 8 offers brief conclusions.

 2. GENERALIZED VARIANCE INFLATION

 We begin by rewriting model (1):

 y = XOPO + XIlSI + X2s2 + E, (3)

 ? 1992 American Statistical Association
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 Fox and Monelte: Collinearity Diagnostics 179

 where the n x p design matrix X has been partitioned into

 (a) XO with po columns, containing variables whose values
 could not have been selected differently by the investigator,
 even hypothetically (the archetypal example is the constant

 regressor); (b) X1 with p, columns, containing variables
 whose "effects" are of simultaneous interest-a set of dummy
 regressors, for example; (c) X2 with P2 columns, containing
 variables that are "controlled" in defining the effects of the
 variables in X1 and whose values could potentially be se-
 lected by the investigator, at least in imagination.

 We wish to assess the impact of the particular "selection"

 of values for X2 on the estimation of PI in model (3). Let
 Wij denote XXj. We can compare the variance of 6,

 WOO) = f[Wl - [WI09 W12] [w20 W22J LW21 ]

 = 0&V, (4)

 with what the variance could have been had the X2 vari-
 ables been selected to maximize the precision of estimation

 of f 1:

 2U = 2(W1 - W1OWo'WO0)-. (5)
 Expressions (4) and (5) are obtained using standard for-
 mulas (Graybill 1976) for the inverse of a partitioned ma-

 trix. That (5) minimizes (4) for fixed X1 and a fixed span
 for XO is shown in Section 5. We will refer to (5) as the
 "utopian" variance of 1, to emphasize that it is the best
 attainable variance for a selection of X2 that may not be
 feasible under the circumstances of the investigation. It is
 easily shown that the dispersion ellipsoid

 %v= {x: x'Vlx ?1} (6)

 contains the utopian ellipsoid

 %u = {x : x'UWlx ? 1}. (7)

 The motivation for adopting an explicit point of comparison
 in assessing collinearity was well developed by Cook (1984).

 The two ellipsoids (6) and (7) can be compared by con-
 sidering the radii of Zv relative to Wu, obtained through the
 spectral decomposition of V relative to U. By a version of
 the spectral decomposition theorem (Rao 1973), there ex-
 ists a nonsingular matrix G of order Pi such that U = GG'

 and V GA2G', where A = diag(AI, ..., Akpl) with A1 '
 A2 > .- .> Apl. Because V 2 U, the smallest eigenvalue
 A2 ,> 1. The A's are all 1 when the ellipsoids tv and Zu PI -

 coincide.

 The sequence of A's is invariant under the following
 transformations:

 1. Nonsingular linear transformation of the variables in

 XO.
 2. Nonsingular linear transformation of the variables in

 X1 and addition of linear combinations of variables in XO
 to those in X1.

 3. Nonsingular linear transformation of the variables in

 X2 and addition of linear combinations of variables in XO
 to those in X2.

 Properties 1-3 follow easily by observing that V-1 =

 W1I.02, the residual sum of squares and cross-products (SSCP)
 matrix for X1 regressed on X0 and X2, whereas U`1 = WIIO,
 the residual SSCP matrix for X1 regressed on X0 alone. We
 shall also show in Section 5 that the set of A's exceeding
 1 remains the same when the roles of X1 and X2 are
 interchanged.

 A consequence of Property 2 is that the variables in X1
 can be individually rescaled and centered (if X0 contains a
 constant regressor) without changing the A's. The same, of
 course, is true (from Property 3) for the variables in X2.

 Measuring the "loss" due to the choice of X2 is a ques-

 tion of assessing how much larger Zv is than Zu. Although
 this assessment can be made by considering the entire se-
 quence of A's, it is convenient in practice to have a single
 index as a summary. The following possibilities are sug-
 gested in analogy to test statistics used in multivariate anal-

 ysis of variance (MANOVA) (Eaton 1983) to compare the
 marginal dispersion of the dependent variables with their
 conditional dispersion under a hypothetical model:

 1. HtAi measures the ratio of volumes of the ellipsoids
 and corresponds to Wilks's criterion in MANOVA. We prefer
 this measure, which we term a generalized standard-error

 inflation factor (GSIF), for its straightforward interpreta-
 tion if for no deeper reason., Thus the generalized variance-

 inflation factor is GVIF = GSIF2. Similar measures com-
 paring confidence-ellipsoid volumes were suggested by An-
 drews and Pregibon (1978) and Belsley, Kuh, and Welsch
 (1980) for assessing the influence of observations on the
 precision of regression estimates.

 2. 'A 2 corresponds to Pillai's trace criterion in
 MANOVA.

 3. A2 corresponds to Roy's maximum-root criterion in
 MANOVA.

 3. GENERALIZED VARIANCE-INFLATION FACTORS AND
 CORRELATION-MATRIX DETERMINANTS

 In many, likely most, applications, the investigator is in-
 terested in assessing the effect of a particular set of re-
 gressors (perhaps a set of dummy regressors) adjusting for
 all other variables in the model. In this case X0 of model
 (3) contains only the constant regressor. We find it con-

 venient here to scale each column of X1 and X2 to 0 mean
 and length 1 which, as we have shown, does not affect
 generalized variance inflation. Under these transformations

 sums of cross-products are correlations and thus (special-
 izing Eq. 4),

 V(W1) = 2(RI, - R2R221R2I) 1, (8)

 where Ri1 is the matrix of correlations between Xi and Xj.
 More generally; when X0 contains more than the constant

 regressor, Rij represents the correlations between Xi and Xj
 partialing for X0.

 In the utopian situation, where, X1 and X2 are uncorre-
 lated, Equation (8) reduces to V(W1) = &r2Rj11, and the gen-
 eralized variance-inflation factor may, therefore, be ex-
 pressed in the following simplified form:

 detR1
 GVIF1 =deR1-R1RR)(9
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 Now, let R denote the correlation matrix among all of

 the columns of X excluding the constant (or correlations

 among all columns in X1 and X2 partialing for X0). Then

 det R = det R22 x det(R11 - R12RJ-R2,) and, conse-
 quently, Equation (9) simplifies further to

 GVIF1 = det RI, x det R22 (10)
 det R

 This last result establishes the equality of GVIF1 and GVIF2.

 The determinant of R, incidentally, is a common ad hoc

 global measure of collinearity (e.g., Kmenta 1986), usually

 justified by noting that det R = 1 for orthogonal data and

 det R = 0 for perfectly collinear data. Alternatively, some

 researchers no doubt have noted that det R is inversely pro-

 portional to the generalized variance of j8 (omitting the con-

 stant) in a model in which the X variables are standardized.

 A deeper, and related, justification of this measure is pro-

 vided by examining the size of the joint confidence region

 for f (excluding the constant) relative to that obtained for

 orthogonal X (again, excluding the constant): GVIF* = det

 R-1/det I; thus det R = GVIF*-1. (Here we use GVIF* to
 represent a ratio of squared ellipsoid volumes, but not of

 the ellipsoids defined in Section 2-hence the asterisk.)

 Admitting det R as a global index of collinearity suggests

 the following interpretation of Equation (10): The gener-

 alized variance-inflation factor GVIF1 = GVIF2 represents
 the global collinearity in X scaled by the product of the

 collinearity internal to each of X1 and X2. This scaling in
 effect adjusts for the arbitrary selection of bases for the spans
 of X1 and X2.

 These observations explain why det R is an unreasonable

 global measure of collinearity when the columns of X par-

 tition naturally into sets, some of which contain more than
 one member: To the extent that these sets have arbitrary

 bases for their column spans, some of the collinearity de-

 tected is artifactual. Instead, given a partition of X into k

 sets, it is natural to compute det RI, x det R22 X ... X
 det Rkk/det R as a global index of collinearity invariant
 with respect to changes of basis within sets.

 To preserve comparability across subspaces of different

 dimension, we suggest examining GVIF'/2P' = GSIF'/P1 (the
 geometric mean of the A's) in place of GVIF. Notice that
 when Pi = 1 the generalized variance-inflation factor re-

 duces to the usual VIF (Eq. 2), since then RI =
 R12R2lR21.

 4. SOME SIMPLE ILLUSTRATIONS

 Table 1 shows several two-way contingency tables, each

 of which, we imagine, relates two qualitative independent
 variables in a linear model. From the contingency tables

 we constructed dummy-variable regressors for rows and

 columns, employing a 0/1 coding scheme and treating the
 last row and column as "baseline" categories (the coding
 scheme implicitly employed by the SAS GLM procedure,
 for example); then we computed correlations among the

 dummy regressors; and, finally, we evaluated the gener-

 alized variance-inflation factors for row and column re-

 gressors (shown as GVIFR and GVIFC) using Equation (9).

 Table 1. Illustrative Cell Frequencies for Two-Way Classifications,
 Showing Generalized Variance-Inflation Factors for Row and Column

 Effects Employing Dummy-Variable Coding

 (A) Row and Column Classifications Independent

 10 20 30
 20 40 60
 5 10 15
 15 30 45

 GVIFP = .694/.694 = 1
 GVIFC= .9.9 = 1

 A1 = A2 = 1

 (B) Weak Association

 20 15 10 5
 15 20 15 10
 10 15 20 15
 5 10 15 20

 GVIFRq = .556/.490 = 1.14
 GVIFc = .556/.490 = 1.14

 GVIFl/2x3 = 1.02
 A1 = 1.06, A2 = 1.00, A3 = 1.00

 (C) Stronger Association

 10 0 0 0
 2 10 0 0
 0 2 10 0
 0 0 2 10
 0 0 0 10

 GVIFR = .514/.00421 = 122
 GVIFC = .476/.00390 = 122

 GVIFl'/2X4 = 1.82
 GVIF1/2x3 = 2.23

 A1 = 2.61, A2 = 1.41, A3 = 1.08

 (D) A Perfect Dependency

 10 10 10 0
 10 10 10 0
 10 10 10 0
 0 0 0 10

 GVIFR = .292/0 = 00
 GVIFc = .292/0 = 00
 A1 = 00, A2 = A3 = 1

 Note that the specific bases selected for the regressor
 subspaces generated by rows and columns are immaterial,
 affecting the determinants in the numerator and denomi-

 nator of Equation (9) but not their ratio. Furthermore, note
 that (as is clear from Eq. 10, as well as the results given

 in Sec. 5) GVIFR and GVIFc are necessarily equal since R,
 C, and the constant comprise the entire design. The se-
 quence of X's is also shown for each example. In Section
 6, we consider analysis-of-variance designs that include
 interactions.

 In Example A, the row and column classifications are
 independent, yielding GVIF's of 1. In Example B, there is

 a weak dependency between rows and columns, producing
 GVIF's slightly in excess of 1. Example C illustrates a
 stronger dependency between rows and columns, giving rise
 to larger variance-inflation factors (of 122), though even
 here the one-dimensional indices (GVIF112P') are not par-
 ticularly large. Finally, Example D illustrates a perfect de-

 pendency (produced by the coincidence of the last row and

 last column), which yields infinite GVIF's. Note though
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 Fox and Monette: Collinearity Diagnostics 181

 that two of the three A's are 1, reflecting the balance of the
 first three rows and columns of the design.

 5. GVIF's, CANONICAL ANGLES, AND
 MULTIVARIATE TESTS

 The ellipsoids tv and Cu [given in (6) and (7)] occur in
 two problems that are closely related to variance inflation:
 Fitting a multivariate linear model and canonical correla-
 tions between two sets of variables adjusted for a third.
 These relationships illuminate the essential character of
 variance inflation.

 A multivariate linear model with X1 as dependent vari-

 ables and XO and X2 as regressors may be written as X1 =
 X000 + X2X2 + A, where ,: and '2 are PO X Pi and P2
 x Pi matrices of regression coefficients, respectively, and
 A is an n x Pi matrix of "errors."

 In considering the hypothesis Ho 2 = 0 we are led to
 compare the residual SSCP matrices resulting from fitting
 a full model and from fitting a restricted model in which
 2 = 0. The full model yields the residual SSCP matrix

 WII.02 = V-1; the restricted model yields the residual SSCP
 matrix WII.O = UW1. Expression (5) is a minimum for (4)
 if X2 is free to vary because WII.O is a maximum for W11.02.

 If the rows of A are independent and normally distrib-
 uted, then the usual tests of Ho are based on the eigenvalues
 in the spectral decomposition of U-1 relative to V-1 (Eaton
 1983). These eigenvalues are the same as those of V rel-
 ative to U. In the present context, we can make no as-
 sumptions about the distribution of A, but the various test
 criteria (enumerated in Sec. 2) nevertheless provide mea-

 sures of the association of X1 with X2 adjusting for XO.
 The A's are also interpretable as "angle cosecants" of the

 column spaces of X1 and X2 adjusted for XO. Let XI.O be
 the residuals of X1 on regression on XO, and let X2.0 be
 defined similarly. Let ?io.0 = span(Xi.0) for i = 1, 2. Finding
 canonical correlations between XI.O and X2.0 is equivalent
 to finding the cosines of angles between pairs of "canonical

 vectors" in 21.o and ?2.0 (Eaton 1983). Let Pi, . . ., p,P be
 the ordered angle cosines (correlations) between 21. and
 ?T2.0. Since Pi, . . ., p,P are the nonnegative roots of the de-
 terminantal equation det(W12.0W22.0W21.0 - P2W11.0) = 0
 (Rao 1973), it follows that A2 = (1- p2)-l' for i = 1,
 Pi* Hence the A71 are angle sines and the Ai are angle co-
 secants between the two spaces. This result also shows the
 equality of the A's greater than 1 when the roles of X1 and
 X2 are interchanged and, hence, the equality of the GVIF's
 for X1 and X2 (a property that was established in an alter-
 native manner in Sec. 3).

 6. MARGINAL SUBSPACES

 In certain linear models-for example, those containing
 both main-effect and interaction regressors-some sub-
 spaces are marginal to others when the model is "overpar-
 ameterized" (e.g., McCullagh and Nelder 1983). A simple,
 and common, example is the two-way analysis-of-variance

 model Yijk = y+ ai+ PJ+ yi+E1ijk fori =1,**., r; j
 = 1,... c;k = , .., iz. Here, the regressors for the

 interactions -yi span the full colum space of the design

 matrix, and the regressors for the main effects ai and /38 of
 rows and columns span subspaces that are marginal to this
 space. A simple approach to the model is to employ a con-
 venient reparameterization that yields a full-rank design and
 permits direct tests of hypotheses of interest concerning cell
 and marginal means. One such reparameterization is pro-

 duced by constraining Eai = 0; EY3j = 0, Yi2yij = O(j = 1,
 ..., c), and Ejyij = 0 (i = 1, ..., r). The resulting design
 matrix is of full column rank as long as all cells of the
 design are filled. The essential point here is not to argue
 for full-rank as opposed to deficient-rank parameterizations
 of the model, since the two are equivalent if treated prop-
 erly, but rather to demonstrate how collinearity of the sub-
 space for interactions with the subspaces for main effects.
 may reasonably be assessed despite the fact that the latter
 subspaces are marginal to the former.

 For our purposes, the reparameterization has the conve-

 nient property that for "balanced" data (i.e., all nij = nl
 rc), the main-effect and interaction subspaces are mutually
 orthogonal. For unbalanced data, the generalized variance-
 inflation factor for the interactions after main effects ex-
 ceeds 1 and is a useful index of the extent to which im-
 balance compromises our ability to estimate interactions
 accurately.

 Since we are typically not interested in separately esti-
 mating main effects in the presence of interactions, we would
 usually find generalized variance-inflation factors for main
 effects adjusted for each other (as in Table 1) but ignoring
 interactions (corresponding, for example, to Type II sums
 of squares in SAS). Our approach is more general, how-
 ever, and permits assessing collinearity of main effects ad-
 justing for other main effects and interactions (correspond-
 ing to Type III sums of squares).

 The full-rank methods developed in this article will func-
 tion properly as long as all cells in the design are filled. If
 there is an empty cell, then some interaction contrasts are
 not estimable, and the reduced design matrix based on the
 usual constraints is of deficient rank. In this case the gen-
 eralized variance-inflation factor is infinite. Equation (9)
 may fail, however, since in a sparse design the numerator
 as well as the denominator may be 0; this situation occurs
 when the regressors coding the interactions are themselves
 not of full column rank.

 Generalized variance-inflation factors for interactions in

 the two-way classifications given in Examples (A) and (B)
 of Table 1 are as follows: (A) GVIF = .0209/.00704 =
 2.96, GVIIFl/2x6 = 1.10; (B) GVIF = .0128/.00628 = 2.03,
 GVIFl/2x9 = 1.04. Note that Example (A) is unbalanced
 for the interactions even though the main-effect subspaces
 are orthogonal to one another.

 7. AN ILLUSTRATIVE APPLICATION

 Heberlein and Baumgartner (1978) developed a 10-re-
 gressor model for predicting response rates in mail surveys
 conducted principally in the United States. When they failed
 to replicate certain of Heberlein and Baumgartner's find-
 ings in a similar study of surveys conducted in Europe,
 Eichner and Habermehl (1981) suggested that the discrep-
 ancy might be partly due to collinearity, producing unstable
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 estimates of regression coefficients. Further work by Goy-

 der (1982), employing a different sample of mail surveys

 mostly from the United States, yielded results similar to

 those in the initial study. Goyder (1985) provided a com-

 parison between surveys conducted in the United States and

 Canada.

 The issue of interstudy coefficient differences should, of

 course, be addressed directly-for the coefficient vector as

 a whole and for individual coefficients-but none of the

 reports cited includes the necessary information (for ex-

 ample, coefficient standard errors). On the basis of Table

 2, calculated from Goyder's (1985) data, it seems likely

 that some of the coefficient differences between the He-

 berlein and Baumgartner (1978) and Eichner and Haber-

 mehl (1981) studies are statistically significant. Neverthe-

 less, several coefficients are imprecisely estimated.

 Table 2. Regression Coefficients and Variance-Inflation Factors for
 Regression of Final Percent Response Rates in U.S. Mail Surveys
 on Sponsorship, Type of Population, Saliency of Topic, Length in

 Pages, Number of Contacts, Special Third Contact, and Incentive

 (A) Regression Results

 Standard

 Regressor Coefficient Error SIF

 Constant 29.3 3.15
 Sponsorshipa
 Market research -4.34 2.78 1.28
 Government 12.4 3.25 1.12

 Type of populationb
 General -5.73 2.65 1.13
 Employee -1.00 4.69 1.04
 School or army 4.42 3.45 1.03

 Saliency of topicc 11.8 1.75 1.31
 Length in pages -0.343 0.199 1.07
 Number of contacts 7.00 1.09 1.59
 Special third contactd 3.88 1.66 1.56
 Incentivee 7.27 1.49 1.06

 Standard error of regression 15.34
 R2 .618
 Number of casesf 270

 (B) Generalized Variance-Inflation Factors
 Sponsorship

 Pi Aj

 .639 1.30
 .380 1.08

 GVIF = 1.97
 GVIFl/2x2 = 1.19

 Type of population

 Pi Ai

 .448 1.12
 .231 1.03
 .130 1.01

 GVIF = 1.34
 GVIFl12x3 = 1.05

 NOTE: The source of the data is personal communication from John Goyder. See Goyder
 (1985) and Heberlein and Baumgartner (1978) for more detailed information about the defi-
 nition of variables.

 aBaseline category for sponsorship: neither govemment nor market research.
 bBaseline category for type of population: other type of population.
 cCoding of saliency: (0) not salient; (1) possibly salient; (3) salient.
 dco_ing of special third contact: (0) no third contact; (1) regular mail; (2) special mail; (3)

 telephone or personal.

 eCoding of incentive (on first contact): (0) no incentive; (1 ) less than $.25; (2) $.25; (3) $.50;
 (4) $1.00 or more.

 fThe reported results are based on imputing missing values, as in Goyder (1985); there are
 102 complete cases.

 Eichner and Habermehl (1981), Goyder (1982), and He-

 berlein and Baumgartner (1981) (in response to criticism)

 furnished multiple correlations between each regressor and

 all others in the model. The largest of these multiple cor-

 relations (less than .8) is not indicative of serious collin-

 earity (corresponding to inflation in coefficient standard er-

 rors of less than 2). As well, two of the variables employed

 in the model-sponsor and type of population-give rise

 to more than one dummy regressor. In the case of spon-

 sorship, the baseline category (neither government nor mar-

 ket research) provides an arguably natural comparison, but

 in the case of type of population, the selected baseline (nei-

 ther general, employee, nor school or army) is clearly ar-

 bitrary. Consequently, the methods of this article are rel-

 evant for addressing the issue of collinearity here.

 The results shown in Table 2 are for a data set generously

 provided by John Goyder (Goyder 1985). There were 270

 U.S. mail surveys included in the data set, 102 of which
 had valid data for all of the variables employed in the anal-

 ysis. To be consistent with Goyder (1985), missing data

 were imputed, primarily by substituting means for missing

 values. An analysis based only on complete cases provides

 essentially similar results. With this substantial quantity of
 missing data, however, a more sophisticated approach than
 mean imputation or complete-case analysis would be de-

 sirable [see, for example, Little and Rubin (1987)].
 Part A of Table 2 shows estimated regression coeffi-

 cients, standard errors, and individual standard error infla-

 tion factors. Multiple-degree-of-freedom tests for sponsor-
 ship and type of population yield the following results:

 Sponsorship, F(2,259) = 9.15, p < .0001; Type of Pop-
 ulation, F(3,259) = 2.41, p = .066. Part B of the table
 shows generalized variance-inflation factors for sponsor-
 ship and type of population. It is apparent that collinearity
 is not a substantial problem here.

 This conclusion has implications for how one might pro-
 ceed to obtain improved estimates. Were the level of col-

 linearity high, then the ideal procedure would be to collect

 additional, noncollinear data, perhaps experimentally. Be-
 cause collinearity is not seriously problematic, however, it
 would be more fruitful to increase the number of obser-

 vations, especially in sparse categories of qualitative in-

 dependent variables (such as surveys conducted on em-

 ployee populations), to increase the variability of quantitative
 independent variables (such as incentive for responding to

 the survey), and to reduce the error variance by improving
 the specification of the model. It might also be of interest
 to consider further the role of cultural differences among
 populations in determining survey nonresponse. Indeed, it
 is our impression that social scientisits are too quick to as-
 cribe imprecise and (upon replication) unstable coefficient
 estimates to collinearity when more likely culprits are large
 error variances, small effects, poorly specified models,
 nontrivial differences among studies, and other substantive
 problems.

 8. CONCLUDING COMMENTS

 When our interest in collinearity is not for its numerical

 consequences [the approach emphasized, for example, by
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 Belsley et al. (1980)] but for its impact on the variability
 of estimates (an admittedly related, though distinguishable
 phenomenon), it is important to realize that we essentially
 wish to compare two sets of X values-the ones that we
 have and the ones that we wish we had. This point was
 made clearly by Cook (1984); also see Leamer (1973, 1983).

 A reviewer of an earlier version of this article suggested
 that "collinearity is not so much a problem as a state of
 nature-like the law of gravity-and that railing against
 collinearity is rather like complaining about not being able
 to fly by flapping your arms." Although we have some
 sympathy with this point of view, we believe that it over-
 states the case: The identification of specific sources of im-
 precision in estimation may, in certain instances, suggest
 how estimates can be improved, for example, by collecting
 additional data (abandoning arm-flapping and trying an air-
 plane). In other instances, the discovery of collinearity may
 motivate respecification of a statistical model or reorien-
 tation of the goals of a study-as when a variable selection
 method is employed for prediction.

 The method introduced in this article extends collinearity
 diagnostics to subsets of coefficients. This method is easy
 to apply because it involves familiar computations; it is
 flexible because it permits distinctions between intrinsically
 fixed variables and those that could be selected or sampled
 differently; and it is cogent because it speaks directly to the
 harm produced by collinearity.

 [Received January 1990. Revised January 1991.]
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