Regression Robustness (and rough rules of thumb)

Statistic	All assumptions OK	Hetero-	Non-	Non-	Non-	X not fixed
	$Y_i = \mu_{x_i} + \varepsilon_i$	skedasticity	normality	linearity	independent	
	$\mu_{\mathbf{x}_i} = \mathbf{x}_i \cdot \vec{\boldsymbol{\beta}}$				errors	$Var(x_j) \neq 0$
	$\varepsilon_i \sim N(0, \sigma_r^2)$	$\sigma_{x_i}^2$ depends on x_i	$\varepsilon_i \sim F$	$\mu_{\mathbf{x}_i} = f(\mathbf{x}_i \cdot \vec{\beta})$		for some <i>j</i>
	$\sigma_{r_i}^2 = \sigma^2 \forall i$				$\operatorname{Cor}(\varepsilon_i, \varepsilon_j) \neq 0$	
	$\operatorname{Cor}(\varepsilon_i, \varepsilon_i) = 0$					
	$Cor(\varepsilon_i, x_{ji}) = 0$					
$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$ Unbiased: $E(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ $E(Y x_j+1) = E(Y x_j)+\beta_j$	yes	yes	yes	N/A except over a limited range when very mild	yes	robust up to, say, V(x)<0.2V(y)
$\widehat{\Sigma} = \sigma^2 (X^T X)^{-1}$ Variance estimate unbiased: $E(\widehat{\Sigma}) = V(\widehat{\beta})$	yes	robust up to, say, $\sigma_{\rm max} < 2 \ \sigma_{\rm min}$	robust to moderately severe non-normality	N/A except over a limited range when very mild	robust to mild correlation of errors, say, cor(ε _i ,ε _{i'})<0.2	robust up to, say, V(x)<0.2V(y)
95% CI = $[\hat{\beta}_j \pm t_{0.975} \Sigma_{j+1,j+1}]$ holds 95% of the sampling distribution of $\hat{\beta}$	yes	robust up to, say, $\sigma_{\rm max} < 2 \ \sigma_{\rm min}$	robust to moderately severe non-normality	N/A except over a limited range when very mild	robust to mild correlation of errors, say, cor(ε _i ,ε _{i'})<0.2	robust up to, say, V(x)<0.2V(y)
95% PI holds 95% of the sampling distribution of \hat{eta}	yes	less robust	not robust	N/A except over a limited range when very mild	less robust	robust up to, say, V(x)<0.2V(y)
p-value <0.05 5% of the time when H_0 is true	yes	robust up to, say, $\sigma_{\rm max} < 2 \ \sigma_{\rm min}$	robust to moderately severe non-normality	N/A except over a limited range when very mild	robust to mild correlation of errors, say, cor($\epsilon_i, \epsilon_{i'}$)<0.2	robust up to, say, V(x)<0.2V(y)

 $Cor(\varepsilon_i, x_{ji}) \neq 0$ (endogenicity): $\hat{\beta}$ and its variance are biased; CI, PI, and p-value are wrong; robust to small corr. of x_j and a missing x'