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Overview

e Definition of overdispersion
e Detection of overdispersion

e Modeling of overdispersion
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Overdispersion in logistic regression
Collett (2003), Chapter 6

Logistic model: Y; ~ bin (n;, p;) independent
= %P1 + %3P
=  E(Y;) = np; Var(Y;) = nipi(1 — ps)

If one assumes that p; is correctly modeled, but the observed variance is larger or
smaller than the expected variance from the logistic model given by n;p;(1—p;),
one speaks of under or overdispersion. In application one often observes only
overdispersion, so we concentrate on modeling overdispersion.
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How to detect overdispersion?

If the logistic model is correct the asymptotic distribution of the residual deviance
D ~ x7_,. Therefore D >n —p = E(x; _,) can indicate overdispersion.

Warning: D > n — p can also be the result of

missing covariates and/or interaction terms;

negligence of non linear effects;

wrong link function;

existance of large outliers;

binary data or n; small.

One has to exclude these reasons through EDA and regression diagnostics.
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Residual deviance for binary logistic models

Collett (2003) shows that the residual deviance for binary logistic models can

be written as
= —2 Z p; In (

where p; = eXitﬂ/(l + e*i B). This is independent of Y;, therefore not useful to
assess goodness of fit.

) +In(1 — p;)),

Need to group data to use residual deviance as goodness of fit measure.
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Reasons for overdispersion

Overdispersion can be explained by
- variation among the success probabilities or
- correlation between the binary responses

Both reasons are the same, since variation leads to correlation and vice versa.

But for interpretative reasons one explanation might be more reasonable than
the other.
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Variation among the success probabilities

If groups of experimental units are observed under the same conditions, the
success probabilities may vary from group to group.

Example: The default probabilities of a group of creditors with same conditions
can vary from bank to bank. Reasons for this can be not measured or
imprecisely measured covariates that make groups differ with respect to their
default probabilities.
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Correlation among binary responses

i 1 success
Let ¥i = jgl His Fij = { 0 otherwise PR =1) =
= Var(y;) = i Var(R;;) + ZZCO’U Ri;, Rik)
]:1 p@(l pz) ‘7 1k7é]
20

# n;p;(1 — p;) = binomial variance
Y; has not a binomial distribution.

Examples:

- same patient is observed over time

- all units are from the same family or litter (cluster effects)
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Modeling of variability among success

probabilities

Williams (1982)
Y, = Number of successes in n; trials with random success probability v,
1=1,...,n

Assume  E(v;) = p; Var(v;) = ¢pi(1 —p;), ¢ > 0  unknown scale
parameter.

Note: Var(v;) =0if p, =0o0r 1

v; € (0,1) is unobserved or latent random variable
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Conditional expectation and variance of Y;:

E(Yi|lvi)) = nv;
Var(Yilv,) = nvi(1 —v;)
Since
E(Y) = Ex(E(Y[X))

Var(Y) = ExVar(Y|X))+ Varx(E(Y|X)),
the unconditional expectation and variance is

E<Yt) — EUZ(E(YH/U’L)) — Evi(niv’i) — NPy

Var(Y;) = E,(nvi(1 —v;)) + Vary,(nv;)

= ni[Ey,(vi) = B, (v])] + nidpi(1 — pi)
= ni(pi — ¢pi(1 — pi) — p7) + niopi(1 — pi)
= npi(1 —p)|l + (n; — 1)¢]
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Remarks

- ¢ = 0 = no overdispersion
- ¢ > 0 = overdispersion if n; > 1

- n; = 1 (Bernoulli data) = no information about ¢ available, this model is
not useful
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Modelling of correlation among the binary

responses
i 1 success
Yi= ng Rajy Faj = { 0 otherwise P(Rij =1) =pi

= E(Y;) = np;

but COT(Rij,Rik) =90 k #]

— CO’U(RU, Rzk) — 5\/VGT(RW)V@T(R@I€) — 5pz(1 — pi)

= Var(Y;) = zz: Var(R;;) + i > Cov(Rij, Rik)
j=1 i=1k#j

= nipi(1 — pi) + ni(n; — 1)[0pi(1 — p;)]
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Remarks

0 = 0 = no overdispersion

0 > 0 = overdispersion if n; > 1
0 < 0 = underdispersion.

Since we need 1+ (n; —1)6 > 0 ¢ cannot be too small. For n; — oo =
6 > 0.

Unconditional mean and variance are the same if 0 > 0 for both approaches,
therefore we cannot distinguish between both approaches
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Estimation of ¢

Yi|v; ~ bin(ng, v;) E(v;) = p;

Special case n; = n Vi

Var(Y;) = np;(1 —p;) 1+ (n—1)¢|

One can show that

E(x*) = (9 —p)[1+ (n—1)¢] = (9 — p)o”

Var(v;) = ¢pi(1 — p;)

1=1,...,9

heterogenity factor

where p = number of parameters in the largest model to be considered and

2 __ zg: (yi—npi)*
X 0 npi(1=p;)”

1=

Estimation of 3 remains the same
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Analysis of deviance when variability among the
success probabilities are present

model df deviance covariates
1 " D1 LijiyeyLiuyg
2 V9 D2 337;1, “ e 73;1"/17 ZEi(V1+1), “ e ,ZL’i,/2
0 o D() Lirye -y Liyg

For Y;|v; ~ bin(ng,v;), i=1,...,9.
Since E(x?) =~ 0?(g — p) we expect

2 a 2.2 a 2 a 2.2
X ~ 0 XG—p and D~yx“~oc Xg—p
x?2 Statistic distribution
2
(Dl - D2)/<V2 _ Vl) a XV2—1/1 a E
= D / ~ 5 ~ Vo —U1,10
0/ V0 Xvg

— no change to ordinary case
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Estimated standard errors in overdispersed models

where
s/e\o(ﬁj) — estimated standard error in the model without overdispersion

This holds since Var(Y;) = o°n;p;(1—p;) and in both cases we have EY; = p;.
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Beta-Binomial models

latent success probability € (0,1)
Beta(a;, b;)

B(ali,bz)vgli_l(l —v;)% 1 a;,b; > 0 density
Jzomi(1 1)~ 1dx — Beta function
0
@ .
a;+b; ° Di

a;b; _ .
(ai—|—bi)2(ai+bi+1) _ pi(l T pi)/[ai + bi + 1] — pi(l — pi)Ti
1

a;+b;+1

If a;, > 1,0, > 1 Vi we have unimodality and Var(v;) < p;(1 —pi)%.
If 7, = 7, the beta binomial model is equivalent to the model with variability
among success probabilities with ¢ = 7 < % (= more restrictive).
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(Marginal) likelihood

1B = II

1=1

f(yilvi) f (vi)dv;

O

B rLfQ)m%mz(l—%W’wwz%1—%VFWW

1=1

where p;,=ce zﬁ/(l—i—e i) P = —i—

n
_ H B(yz"‘az:nz yz+b)
= 1 Bla; by

1=

needs to be maximized to determine MLE of 3.

Remark: no standard software exists
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Random effects in logistic regression

Let v; = latent success probability with FE(v;) = p;

log (1 vi ) =B+, “random effect”

0, measures missing or measured imprecisely covariates. When an intercept is

included we can assume F(d;) = 0. Further assume d; 7.i.d. with Var(d;) = o3

Let Z; i.i.d. with E(Z;) =0 and Var(Z;) =1
D . 2
= 0; = V4, with v=o05>0

Therefore

10g( - >:w$/6+72i

1 — V;
Remark: this model can also be used for binary regression data
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Estimation in logistic regression with random
effects
If Z; ~ N(0,1) ¢.i.d. the joint likelihood for B,~, Z; is given by

L(B.7.2) = I (et —v)m

n - exp{a} ,8+*yZ }yZ
1)

+ 1 + n parameters
1—|—exp{$ ,3—|—fyZ} P P

Too many parameters, therefore maximize marginal likelihood

L(B,~)

ﬁ (nl) 70 eXp{wgﬂJr’YZi}y" 1
. ) [

_1z7?
e dz;
50 1+eXP{$§IB+WZi}] Var”
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This can only be determined numerically. One approach is to use a Gauss-
Hermite approximation given by

/ f(u)e_“2du > Z c;f(s;)
e j=1

for known ¢; and s; (see tables in Abramowitz and Stegun (1972)).
m ~ 20 is often sufficient.
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Remarks for using random effects

- no standard software for maximization
- one can also use a non normal random effect

- extension to several random effects are possible. Maximization over high
dim. integrals might require Markov Chain Monte Carlo (MCMC) methods

- random effects might be correlated in time or space, when time series or
spatial data considered.
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