36-617: Applied Linear Models

Logistic Regression/GLMs: estimation & diagnostics Brian Junker 132E Baker Hall brian@stat.cmu.edu

Announcements...

- Project 01 rough drafts due tonight
- I will assign peer reviews sometime after midnight
- This week:
 - This week: More on GLMs
 - And a new hw assignment, HW07
- Next week:
 - Some basic ideas about causal inference
 - Reading will be from causal inference.pdf from Gelman and Hill, not Sheather
 - Chapters 9 (especially) & 10 (skim)
 - You don't have to read in detail but definitely "get the ideas"

Outline

- An example where AIC (and BIC) are not comparable across "model families"
- MLE's and diagnostics for logistic regression
 - Finding MLE's by Newton's Method
 - Predicted values
 - Residuals
 - Goodness of Fit, Deviance Residuals
 - Hat Matrix, Standardized Residuals, Cook's Distance
- Interpreting R's casewise diagnostic plots
- Alternative residuals: DHARMa

An example of non-comparability of AIC/BIC

Logistic regression model says

$$p_i = P[y_i = 1|X_i] = \frac{e^{X_i\beta}}{1 + e^{X_i\beta}}$$

Suppose we have i=1..N binomial outcomes with n_i trials per outcome and y_i successes per outcome. We can write the likelihood as

$$L_{bin}(\beta) = \prod_{i=1}^{N} \binom{n_i}{y_i} p_i^{y_i} (1-p_i)^{n_i-y_i}$$

VQ

or

$$L_{ber}(\beta) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

where

$$n = \sum_{i=1}^{N} n_i$$

$$L_{bin}(\beta) = \prod_{i=1}^{N} \binom{n_i}{y_i} p_i^{y_i} (1-p_i)^{n_i-p_i} \quad \text{vs.} \quad L_{ber}(\beta) = \prod_{i=1}^{n} p_i^{y_i} (1-p_i)^{1-p_i}$$

The log-likelihoods are

$$\ell_{ber}(\beta) = \log L_{ber}(\beta) = \sum_{i=1}^{N} \left[y_i \log(p_i / (1 - p_i)) + n_i \log(1 - p_i) \right]$$

and

SO

$$\ell_{bin}(\beta) = \ell_{ber}(\beta) + \sum_{i=1}^{N} \log \binom{n_i}{y_i}$$

$$AIC_{ber} = -2\ell_{ber}(\hat{\beta}) + 2(p+1) = AIC_{bin} + 2\sum_{i=1}^{N} \log \binom{n_i}{y_i}$$

 $\quad \text{and} \quad$

$$BIC_{ber} = -2\ell_{ber}(\hat{\beta}) + (p+1)\log N = BIC_{bin} + 2\sum_{i=1}^{N}\log\binom{n_i}{y_i} - 2(p+1)\log n/N$$

Example...

```
+ newdata <- rbind(newdata,row)
```

+ }

```
+ row$Top10 <- 0
```

```
+ if(reps<9) for (j in 1:(9-reps)) {
```

```
+ newdata <- rbind(newdata,row)
```

```
+ }
```

```
+ }
```

```
> newdata <- newdata[-1,]
```

```
> # arranged so that each state is represented by 10 rows,
```

> # with a 1 or 0 indicating "top 10 finalist" or not, from that > # state, in each of 10 years.

```
> glm.2 <- glm(Top10 ~ . - abbreviation, data=newdata,</pre>
```

```
+ family=binomial)
```

> round(cbind(coef(summary(glm.1)),coef(summary(glm.2))),2) ------ glm.1 ------ glm.2 ------># Est SE p Est SE Z Z p -7.52 2.53 -2.97 0.00 -7.52 2.53 -2.97 0.00 (Intercept) LogPopulation 0.60 0.18 3.36 0.00 0.60 0.18 3.36 0.00 LogContestants 1.37 0.41 3.32 0.00 1.37 0.41 3.32 0.00 LogTotalArea -0.36 0.14 -2.64 0.01 -0.36 0.14 -2.64 0.01 -0.06 0.03 -2.15 0.03 -0.06 0.03 -2.15 0.03 Latitude 0.01 0.01 0.67 0.51 0.01 0.01 0.67 0.51 Longitude > round(data.frame(AIC=c(glm.1=AIC(glm.1),glm.2=AIC(glm.2)),

```
+ BIC=c(glm.1=BIC(glm.1),glm.2=BIC(glm.2))),2)
```

AIC BIC glm.1 144.57 156.16 glm.2 420.83 446.24

- glm.1 fit the data as a binomial logistic regr.
- glm.2 fit the data as a Bernoulli logistic regr.
- The fit to the data is the same, estimated betas, SE's, etc. all the same; AIC & BIC "should" reflect this
- AIC & BIC show different values for glm.1 & glm.2, because "normalizing constants" different

MLE's & Diagnostics for Binomial Logistic Regression...

- Let
 - $i = 1 \dots N$, total # of observations
 - $n_i = (\text{number of trials})_i$
 - $p_i = P[(success)|X_i]$
 - $y_i = (\text{number of successes})_i$

 $\mu_i = E[y_i|X_i]$

- For Bernoulli, $n_i=1$, $\mu_i=p_i$, and $y_i=0$, 1
- For Binomial, $n_i > 1$, $\mu_i = n_i p_i$ and $y_i = 0, 1, ..., n_i$

For Binomial logistic regression

 \mathbf{V} . $\boldsymbol{\rho}$

•
$$p_i = P[(\text{success})|X_i] = \frac{e^{X_i\beta}}{1 + e^{X_i\beta}} = p_i(\beta)$$

•
$$\mu_i = E[y_i|X_i] = n_i p_i = \mu_i(\beta)$$

and

$$L_{bin}(\beta) = \prod_{i=1}^{N} {n_i \choose y_i} p_i^{y_i} (1-p_i)^{n_i-y_i} \propto \prod_{i=1}^{N} p_i^{y_i} (1-p_i)^{n_i-y_i}$$
$$= \prod_{i=1}^{N} \left(\frac{e^{X_i\beta}}{1+e^{X_i\beta}}\right)^{y_i} \left(\frac{1}{1+e^{X_i\beta}}\right)^{n_i-y_i} = \prod_{i=1}^{N} e^{y_iX_i\beta} \left(1+e^{X_i\beta}\right)^{-n_i}$$

SO

$$\ell_{bin}(\beta) = \sum_{i=1}^{N} y_i X_i \beta - n_i \log \left(1 + e^{X_i \beta}\right) + C_{[we \ don't \ care]}$$
$$= \sum_{i=1}^{N} y_i \sum_{s=0}^{p} X_{is} \beta_s - n_i \log \left(1 + e^{\sum_{s=0}^{p} X_{is} \beta_s}\right) + C_{[we \ don't \ care]}$$

To Maximize, set the gradient $\ell'_{bin}(\beta)$ to zero and solve for β . $\ell'_{bin}(\beta) = (\frac{\partial \ell}{\partial \beta_0}, \dots, \frac{\partial \ell}{\partial \beta_p})^T$

where

$$\frac{\partial \ell}{\partial \beta_r} = \sum_{i=1}^N y_i X_{ir} - n_i \left(\frac{e^{X_i \beta}}{1 + e^{X_i \beta}}\right) X_{ir}$$
$$= \sum_{i=1}^N (y_i - n_i p_i) X_{ir} = \sum_{i=1}^N (y_i - \mu_i) X_{ir}$$

which we can write in matrix form as

$$\ell'(\beta) = X^T(y - \mu(\beta))$$

Checking the maximum...

At the value β at which

$$\ell'(\beta) = X^T(y - \mu(\beta)) = 0$$

we can verify that we have achieved a maximum, by checking that

$$\ell''(\beta) = \left[\frac{\partial^2 \ell}{\partial \beta_r \partial \beta_s}\right]_{r,s=0}^p$$

is negative definite. We can calculate that

$$\begin{split} \frac{\partial^2 \ell}{\partial \beta_r \partial \beta_s} &= \frac{\partial}{\partial \beta_s} \left[\sum_{i=1}^N \left(y_i - n_i \frac{e^{X_i \beta}}{1 + e^{X_i \beta}} \right) \right] X_{ir} \\ &= -\sum_{i=1}^N n_i X_{is} \frac{e^{X_i \beta}}{(1 + e^{X_i \beta})^2} X_{ir} = -\sum_{i=1}^N n_i X_{is} p_i (1 - p_i) X_{ir} \\ \text{so} \quad \ell''(\beta) &= -X^T D X, \text{ where } D = \text{diag}(n_i p_i (1 - p_i), i = 1 \dots, N), \end{split}$$

Finding MLE's by Newton's method

- $\ell'(\beta) = X^T(y \mu(\beta)) \equiv 0$ seldom has a closed-form solution, so instead we want an iterative approach...
- Newton's method for a single variable: 0.8 y = f(t)Solve f(t) = 0 iteratively: 0.6 • Find tangent line at $t^{(r)}: y - f(t^{(r)}) = f'(t^{(r)})(t - t^{(r)})$ 4.0 • Find $t^{(r+1)}$ by solving y = 0 for t: 0.2 $t^{(r+1)} = t^{(r)} - \frac{f(t^{(r)})}{f'(t^{(r)})}$ 1.0 0.5 2.0 • We apply the multivariate version to $\ell'(\beta)$ and get r(r+1)t(r) $\beta^{(r+1)} = \beta^{(r)} - [\ell''(\beta^{(r)})]^{-1} \ell'(\beta^{(r)})$ $\rho(r) + \langle \mathbf{v}T \mathbf{p} \rangle \rho(r) \mathbf{v} - 1 \mathbf{v}T \rangle$ (r)

$$= \beta^{(r)} + (X^{T} D(\beta^{(r)}) X)^{-1} X^{T} (y - \mu^{(r)})$$

where $D(\beta^{(r)}) = \text{diag}(n_{i} p_{i}^{(r)} (1 - p_{i}^{(r)}), i = 1, ..., N)$
and $\mu^{(r)} = n_{i} p_{i}^{(r)} = n_{i} \frac{e^{X_{i} \beta^{(r)}}}{(1 + e^{X_{i} \beta^{(r)}})}$

Summary (so far...)

 The log-likelihood for Binomial¹ logistic regression is (proportional to)

$$\ell(\beta) = \sum_{i=1}^{N} y_i X_i \beta - n_i \log\left(1 + e^{X_i \beta}\right)$$

• We can find the MLE's $\hat{\beta}$ by solving

$$\ell'(\hat{\beta}) = X^T(y - \mu(\hat{\beta})) \equiv 0$$

by iteration²

$$\begin{split} \beta^{(r+1)} &= \beta^{(r)} + (X^T D(\beta^{(r)})X)^{-1} X^T (y - \mu(\beta^{(r)})) \\ \text{where} \quad D(\beta^{(r)}) &= \operatorname{diag}(n_i p_i^{(r)} (1 - p_i^{(r)}), \ i = 1, \dots, N) \\ \text{and} \quad \mu(\beta^{(r)}) &= n_i p_i^{(r)} = n_i \frac{e^{X_i \beta^{(r)}}}{(1 + e^{X_i \beta^{(r)}})} \\ SE(\hat{\beta}) \text{ given}^3 \text{ by the square roots of the diagonal} \end{split}$$

elements of
$$[-\ell''(\hat{\beta})]^{-1} = (X^T D(\hat{\beta}) X)^{-1}$$

¹Same for Bernoulli, but with N=n and $n_i=1$

²With more work, can convert this to a *weighted least squares* calculation 12 ³By std MLE theory (CLT for MLE's)

Predicted values for logistic regression

Predicted or fitted values that may be useful:

□ **raw:** fitted(glm.1)*glm.1\$prior.weights

$$\hat{y}_i = n_i \hat{p}_i = n_i \frac{e^{X_i \beta}}{1 + e^{X_i \hat{\beta}}} = \mu_i(\hat{\beta})$$

□ response: fitted(glm.1) or predict(glm.1, type="response") $\hat{p}_i = \frac{e^{X_i \hat{\beta}}}{1 + e^{X_i \hat{\beta}}}$

□ link: predict(glm.1) or predict(glm.1, type="link")

$$X_i\hat{\beta} = \log \frac{\hat{p}_i}{1-\hat{p}_i}$$

(there is another prediction type, predict (..., type="terms"), that is
not very useful for us...)

You can add SE's by adding se.fit=TRUE to the predict() arguments...

Logistic Regression Residuals¹

- Residuals that correspond to fitted values:
 - Raw residuals: resid(glm.1,type="response")
 *glm.1\$prior.weights

$$r_{raw,i} = y_i - \hat{y}_i = y_i - n_i \hat{p}_i = y_i - \mu_i(\hat{\beta})$$

- Response residuals: resid(glm.1,type="response") $r_{resp,i} = y_i/n_i - \hat{p}_i = y_i/n_i - \frac{e^{X_i\hat{\beta}}}{1 \perp e^{X_i\hat{\beta}}}$
- □ Pearson residuals: resid(glm.1,type="pearson")

$$r_{pearson,i} = \frac{y_i - \mu_i(\hat{\beta})}{\widehat{SE}(\hat{y}_i)} = \frac{y_i - n_i \hat{p}_i}{\sqrt{n_i \hat{p}_i (1 - \hat{p}_i)}}$$

Note that the Pearson residuals can be written in vector form as $r_{pearson} = D(\hat{\beta})^{-1/2} [y - \mu(\hat{\beta})]$

Logistic Regression Goodness of Fit

Pearson Chi-squared statistic

$$P(X) = \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{SE(\hat{y}_i)} \right)^2 = \sum_{i=1}^{N} \left(\frac{y_i - n_i \hat{p}_i}{\sqrt{n_i \hat{p}_i (1 - \hat{p}_i)}} \right)^2 = \sum_{i=1}^{N} r_{pearson,i}^2$$

(Residual) Deviance statistic

$$\begin{split} D(X) &= -2[\ell(\hat{\beta}) - \log L(\text{``saturated model''})] = 2[\log L(\text{``saturated model''}) - \ell(\hat{\beta})] \\ &= 2\left[\log\prod_{i=1}^{N} \binom{n_{i}}{y_{i}} \left(\frac{y_{i}}{n_{i}}\right)^{y_{i}} \left(1 - \left(\frac{y_{i}}{n_{i}}\right)\right)^{n_{i} - y_{i}} - \log\prod_{i=1}^{N} \binom{n_{i}}{y_{i}} \hat{p}_{i}^{y_{i}} (1 - \hat{p}_{i})^{n_{i} - y_{i}}\right] \\ &= 2\left[\log\prod_{i=1}^{N} y_{i}^{y_{i}} (n_{i} - y_{i})^{n_{i} - y_{i}} - \log\prod_{i=1}^{N} (n_{i}\hat{p}_{i})^{y_{i}} (n_{i} - n_{i}\hat{p}_{i})^{n_{i} - y_{i}}\right] \\ &= 2\sum_{i=1}^{N} y_{i} \log\left(\frac{y_{i}}{\hat{y}_{i}}\right) + (n_{i} - y_{i}) \log\left(\frac{n_{i} - y_{i}}{n_{i} - \hat{y}_{i}}\right), \qquad \hat{y}_{i} = n_{i}\hat{p}_{i} = \mu_{i}(\hat{\beta}) \\ &= \sum_{i=1}^{N} r_{deviance,i}^{2}, \qquad r_{deviance,i} = \operatorname{sgn}(r_{raw,i}) \sqrt{y_{i} \log\left(\frac{y_{i}}{\hat{y}_{i}}\right) + (n_{i} - y_{i}) \log\left(\frac{n_{i} - y_{i}}{n_{i} - \hat{y}_{i}}\right)} \end{split}$$

Both are $\approx \chi^2_{n-p-1}$ when the model is correct (small is good)

- D(X) a little better than P(X); need $n_i > 5$ or so for either to be trustworthy
- $r_{deviance,i}$ tends to follow normal distribution better than other residuals

Logistic Regression Hat Matrix

For logistic regression, define

 $H = D(\hat{\beta})^{1/2} X (X^T D(\hat{\beta}) X)^{-1} X^T D(\hat{\beta})^{1/2}$

This mostly works like a hat matrix

- Sadly $Hy \neq \hat{y}$, but no matrix can satisfy this since logistic regression doesn't produce a linear fit¹
- But H still acts like a projection matrix:

Leverage and "standardized" resids

- *h_{ii}* = (ith diag element of H) is again a measure of leverage
 - $\square \sum_{i=1}^{N} h_{ii} = p+1; \quad 0 \le h_{ii} \le 1$
 - □ $h_{ii} > 2(p+1)/n$ is a common rule of thumb for "high leverage"
- Again use (1-h_{ii}) to correct for under-estimated standard errors:
 - □ Standardized Pearson Residuals: $s_{pearson,i} = \frac{r_{pearson_i}}{\sqrt{1-h_{ii}}}$
 - resid(glm.1, type="pearson")/sqrt(1 hatvalules(object)))
 - **Deviance Residuals:** $r_{deviance,i} = \operatorname{sgn}(r_{raw,i}) \sqrt{y_i \log\left(\frac{y_i}{\hat{y}_i}\right) + (n_i y_i) \log\left(\frac{n_i y_i}{n_i \hat{y}_i}\right)}$

resid(glm.1, type="deviance") or just resid(glm.1)

□ Standardized Deviance Residuals: $s_{deviance,i} = \frac{r_{deviance_i}}{\sqrt{1-h_{ii}}}$

Cook's Distance

For ordinary regression, Cook's Distance was

$$D_{i} = \frac{r_{standardized,i}}{p+1} \cdot \frac{h_{ii}}{1-h_{ii}} = \frac{y_{i} - \hat{y}_{i}}{(p+1)\hat{\sigma}} \cdot \frac{h_{ii}}{(1-h_{ii})^{2}}$$

We can imitate this for logistic regression

$$D_i = \frac{s_{pearson,i}}{p+1} \cdot \frac{h_{ii}}{1-h_{ii}} = \frac{y_i - n_i \hat{p}_i}{(p+1)\sqrt{n_i \hat{p}_i (1-\hat{p}_i)}} \cdot \frac{h_{ii}}{(1-h_{ii})^2}$$

- Again, D_i gives us a measure of both
 - "outlierness" (how large is $y_i n_i p_i$?)
 - "leverage" (how large is h_{ii} ?)

Interpreting casewise diagnostic plots for logistic regression

0

0.0

 $s_{pearson,i} =$

Cook's distance

04

Leverage h_{ii}

0 6

0.2

Std.

- Raw residual plot nearly useless
 - Except for detecting extreme under-or over-prediction
 - Binned raw residuals somewhat useful

Normal QQ plot useful

- $s_{deviance,i}$ nearly normal when model holds
- Scale-location plot mostly useless
 - Since $Var(y_i) = n_i p_i (1-p_i)$ depends on location, always expect patterns here
 - Plot of h_{ii} , D_i , $s_{pearson}$ quite useful
 - Less useful for Bernoulli logistic regression than for Binomial

0

0.5

0.0

-5 -4 -3 -2 -1 0

Predicted values $X_i eta$

Alternative residuals for glm's

■ Insight: If a continuous r.v. X has CDF $F_X(x) = P[X \le x]$

then $Y = F_X(X) \sim Unif(0,1)$, a <u>uniform distribution</u> (ex!)

- Approach ("parametric bootstrap"):
 - Fit the logistic regression model
 - Simulate many batches (say, 250) of new data from the fitted model
 - □ Use the simulated data to estimate $F_R(r)$ for the residuals r_i , i = 1, ..., n
 - If the fitted model was "correct". then the transformed residuals will be uniformly distributed

Example: the wells data...

> library(DHARMa)

> data <- read.table("wells.dat",header=T)</pre>

> summary(glm.all <- glm(switch ~ ., + data=data,family=binomial))

	Est	SE	z	Pr(> z)
(Int)	-0.16	0.10	-1.57	0.12
arsenic	0.47	0.04	11.23	0.00
dist	-0.01	0.00	-8.57	0.00
assoc	-0.12	0.08	-1.61	0.11
educ	0.04	0.01	4.43	0.00

```
> par(mfrow=c(2,2))
> plot(glm.all)
```

> dev.new()

> simdata <- simulateResiduals(glm.all)
> plot(simdata)

A strategy for checking residuals of glm's

- Fit mymodel <- glm(y ~ x1 + x2 + ..., data=mydata, family=binomial) as usual
- Check the residuals vs leverage plot (lower right) from plot (mymodel) for high leverage or influential observations
- Use residual plot from DHARMa to check
 - Residuals Unif(0,1) (suggests model is good fit)?
 - Skewed left or right? Overdispersed? Underdispersed?
 - Outlying residuals?

Summary

- An example where AIC (and BIC) are not comparable across "model families"
- MLE's and diagnostics for logistic regression
 - Finding MLE's by Newton's Method
 - Predicted values
 - Residuals
 - □ Goodness of Fit, Deviance Residuals
 - Hat Matrix, Standardized Residuals, Cook's Distance
- Interpreting R's casewise diagnostic plots
- Alternative residuals: DHARMa