36-617: Applied Linear
Models

Logistic Regression/GLMs: estimation & diagnostics
Brian Junker

132E Baker Hall
brian@stat.cmu.edu

10/18/2021



‘ Announcements...

m Project 01 rough drafts due tonight
m | will assign peer reviews sometime after midnight

= This week:
o This week: More on GLMs
o And a new hw assignment, HWO07

= Next week:

0 Some basic ideas about causal inference

0 Reading will be from causal inference.pdf from

Gelman and Hill, not Sheather

m  Chapters 9 (especially) & 10 (skim)
= You don’t have to read in detail but definitely “get the ideas”
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‘ Outline

= An example where AIC (and BIC) are not
comparable across “model families”

m MLE’s and diagnostics for logistic regression
o Finding MLE’s by Newton’s Method
0 Predicted values
0 Residuals
0 Goodness of Fit, Deviance Residuals
o Hat Matrix, Standardized Residuals, Cook’s Distance

m Interpreting R’s casewise diagnostic plots
m Alternative residuals: DHARMa
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‘ An example of non-comparability of
AIC/BIC

m Logistic regression model says X, 8
6 K
,Z) [Zj | ] ]-_+_ C})(iﬁg
= Suppose we have i=1..N binomial outcomes with n, trials per

outcome and y; successes per outcome. We can write the
likelihood as N

or

where
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N
T, , N — D ;
Lbzn(ﬁ) — H ( )pijz(l _pi) i b VS Lber sz pz

= The log-likelihoods are

N
lyer(B) =10g Lyer(B) = Y [yilog(pi/(1 = pi)) + n;log(1 — p;)]
i=1
and
o n
gbzn(ﬁ) — gber(ﬁ) + Zlog ( )
SO i=1 1
N .
AIOber — _2€be?"(/é) + 2(p + 1) — AICbin + 2 Zl()g (yz)
and

BICher = —2lper(B)+ (p+1)log N = BICy;,+2 ) log (”’) —2(p+1)logn/N

i=1 ¢

—Di
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‘ Example...

> data <- read.table("MissAmericato2008.txt",header=T)

> # arranged so that each row represents yi = # of top 10
> # finalists from each state in the US, in ni = 9 years

> glm.1 <- glm(cbind(Top10,9-Top10) ~ . - abbreviation,
+ data=data, family=binomial)

> newdata <- data[1,]

> for (rin 1:dim(data)[1]) {

+ row <- datalr,]

+ rowSTopl0<-1

+ reps<-dataSTop10[r]

+ if (reps>0) for (j in 1:reps) {

+ newdata <- rbind(newdata,row)
+ 1}

+ rowSTopl0<-0

+ if(reps<9) for (j in 1:(9-reps)) {

+ newdata <- rbind(newdata,row)
+ }

+}

> newdata <- newdata[-1,]

> # arranged so that each state is represented by 10 rows,

> # with a 1 or 0 indicating “top 10 finalist” or not, from that
> # state, in each of 10 years.

> glm.2 <- glm(Top10 ~ . - abbreviation, data=newdata,

+ family=binomial)

> round(cbind(coef(summary(gim.1)),coef(summary(gim.2))),2)
># e glm.1 ----—--

Est SE z p Est SE z p
(Intercept) -7.52 2.53-2.970.00-7.52 2.53-2.97 0.00
LogPopulation 0.60 0.18 3.36 0.00 0.60 0.18 3.36 0.00
LogContestants 1.37 0.41 3.32 0.00 1.37 0.41 3.32 0.00
-0.36 0.14-2.64 0.01-0.36 0.14-2.64 0.01
Latitude -0.06 0.03-2.15 0.03-0.06 0.03-2.15 0.03
Longitude 0.01 0.01 0.67 0.51 0.01 0.01 0.67 0.51

> round(data.frame(AIC=c(gIlm.1=AlC(gIm.1),glm.2=AlIC(gIlm.2)),
+ BIC=c(glm.1=BIC(glm.1),glm.2=BIC(gIm.2))),2)

AIC  BIC
glm.1144.57 156.16
glm.2 420.83 446.24

LogTotalArea

= glm.1 fit the data as a binomial logistic regr.
= glm.2 fit the data as a Bernoulli logistic regr.

= The fit to the data is the same, estimated betas,
SE’s, etc. all the same; AIC & BIC “should” reflect

this
= AIC & BIC show different values for gim.1 &

glm.2, because “normalizing constants” different
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‘ MLE’s & Diagnostics for Binomial
Logistic Regression...

= Let
¢ = 1...N, total # of observations
n; = (number of trials),
p; = P|(success)|X;]
y; = (number of successes).
pi = Elyi|Xi]

= For Bernoulli, n=1, pu=p, andy, =0, 1
= For Binomial, n>1, u=np.andy=0,1,...,n.
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For Binomial logistic regression
lfjiﬁ = pi(B)

o 1, = Elyi| Xi] = nipi = pi(B)

e p; = P|(success)| X;] =

and

Lyin(8) = H( ) _p)h Y Hp; i,

N Yi 1 ni—Yi N « U
- H(l—i—exﬁ) (1—|—3Xiﬁ) - Heyi iﬁ(l_i_e ?ﬁ)

1= 1=1

—_

.

Y

SO

N
Coin (ﬁ) - Z szZIB — Ny log (1 + eXiﬂ) =+ C[we don’t care]

1=1

p
= Z Y; Z X@S,BS — Ny log (1 + €Z§:O XiSBS) =+ C[we don’t care]
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To Maximize, set the gradient ¢;. (3)
to zero and solve for 0.

ol ol
0, = (=—,..., — T
bzn(/ﬁ) (860 8,6p)
where
9/4 N eXiP
69[37= — ;%é;; z/i‘)(ET" — Ny (::1 —F'ff)(ila :) ;X:iT
N N
— Z(yz — nipi)X?lfr' = Z(y@ — /%)Xz'r
i=1 i=1

which we can write in matrix form as

0(B) =X"(y—n(B))
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‘ Checking the maximum...

At the value 8 at which

0'(B)=X"(y—p(B)) =0

we can verify that we have achieved a maximum, by checking that

o2 1"
06,005 ]

is negative definite. We can calculate that

52¢ 0 | & eXiB
= i — i3 | | Xir
053,0Ps 0B [Z; (y iy +exia)]

e - |

r,s=0

N
X
— _;nins(l_i_eXﬁ — _an zspz )X
SO "B = —-X'DX, whereDzdlag(mpi(l—pi),z:1...,N),
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‘ Finding MLE’s by Newton’s method

o /'(8)=XT(y— pu(B)) =0 seldom has a closed-form solution, so instead we
want an iterative approach. ..

e Newton's method for a single variable:
Solve f(t) = 0 iteratively:

o Find tangent line at t"): y— f(t()) = /() (t—t")

o Find t"t1) by solving y = 0 for t:

i)y JET)
T T )
e We apply the multivariate version to ¢'(/3) and get

BN = B — ("B (B)
= U+ (XTDE)X) X (y — p)
where  D(8")) = diag(n:p!”(1—p{"), i=1,...,N)
eszﬁ(T)

(1 + eXiB™)

4 4(r)

and pl" = nipgr):ni
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‘ Summary (so far...)

= The log-likelihood for Binomial! logistic regression is
(proportional to)

((B) = foil yi X3 —n;log (1 + e*iF)
= We can find the MLE’s @ by solving
0'(B) =X"(y —pu(B) =0
by iteration?
BUrHD = ) + (XTD(B) X)X (y — (™))
where D(ﬁ(r)) = diag(nipET)(l—pgT)), i=1,..., N)
XA
' (1 4 X8

= SE(B) given? by the square roots of the diagonal
elements of [-¢"(3)]~" = (X" D(8)X)~"

and  pu(87) = np”’ =n

1Same for Bernoulli, but with N=n and n;=1
10/18,/2021 2With more work, can convert this to a weighted least squares calculation {2
3By std MLE theory (CLT for MLE’s)



‘ Predicted values for logistic regression

= Predicted or fitted values that may be useful:

a raw. fitted(glm.1l)*glm.lSprior.weights
XB A
¥ — - A- h— . 6 ‘Z — -
Yi = NPy — 1y 1_|_€X@-5’ — uz(ﬁ)

d response: fitted(glm.1l) orpredict (glm.1, type=“response”)

A eXibB
: Pi = 1 exis
a link: predict (glm.l)orpredict (glm.1l, type="1ink”)

X‘ 3 — 10 A—ZA

il = log 175

(there is another prediction type, predict (.., type=“terms”), thatis
not very useful for us...)

= You can add SE’s by adding se . £1t=TRUE to the
predict () arguments...
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‘ Logistic Regression Residuals?

= Residuals that correspond to fitted values:

o Raw residuals: resid(glm.1l, type=“response”)
*glm.l$prior.weights

Fraw,g = Yi —Yi = Yi — iPDi = Yi — i (B)
Q Response residuals: resid(glm.1l, type=“response”)

N o Xib
T'resp,i — yz/nz — Pi — yz/nz — 1L eXiP
o Pearson residuals: resid(glm.1, type=“pearson”)
Fpearson.i = y;MiA(B) _ _ Yi—niP;
’ SE(9i) V/mipi (1—p;)

= Note that the Pearson residuals can be written in vector form as
I'pearson — D(B)_l/Q[y - M(IB)]

10/18/2021 “Deviance” residuals are on the next page... 14



‘ Logistic Regression Goodness of Fit

m Pearson Chi-squared statistic

(=) = Yi — NiPi 2 =
_P X — 2 (3 — 2 (ol — )
0 = (%) - L (vEEs) - Db
= (Residual) Deviance statistic
D(X) = —2[(3)—log L(“saturated model")] 2[log L( “saturated model”) — ¢(53)]

N n; Ui yi Y; ni—yi N .
= 2 10 L4 gt 1_ i _10 7 ﬁ;m ]-_16 i —Y;
= 2 _log Hi\;yf% (ni —y:)™ ¥ — log H;’il(n%ﬁ@)y (n; — nzﬁz)n_y]

N

Yi g — Y; - N ~

= 2 E y; log (5) + (nz - yz) log ( ) ; Y = Nip; = Mz‘(ﬁ)
i=1 v

ng — Y

N
Yi i —Yi
= Z Tﬁevmnceji, T'deviance,i = Sgn(rraw,i)\/yi 10g (ﬁ_) + (n’-! - yz) log (n _ 10)
e i i

1

= Both are = x;_,_; when the model is correct (small is good)
o D(X) a little better than P(X); need n.>5 or so for either to be trustworthy

O Igeviance,; t€Nds to follow normal distribution better than other residuals

10/18/2021 15



‘ Logistic Regression Hat Matrix
m For logistic regression, define
H = D(B)"2X (X" D(3)X)" X" D(B)"/?
m This mostly works like a hat matrix

0 Sadly Hy =# {j, but no matrix can satisfy this since
logistic regression doesn’t produce a linear fit?!

o But H still acts like a projection matrix:

Hrpearson = DY2X(XTDX)'XTDY2[D712(y — 1u(B))]
— (stuff)XT(y— () = (stuff)e'(B) =0
H" = H (symmetric)
H? = H (idempotent)
HD'?X = D'?X

1This projection property actually does work in the guts
10/18/2021 of weighted least squares, but we will skip this for now. 16



‘ Leverage and “standardized” resids

= h; = (it" diag element of H) is again a measure of
leverage
Q Z,filhm =p+1, 0<hyu<1
a h,>2(p+1)/nis a common rule of thumb for “high leverage”

= Again use (1-h;) to correct for under-estimated
standard errors:

T :
pearson;

0 Standardized Pearson Residuals: s,cqrson,i =
resid(glm.1, type="pearson")/sqrt(l - hatvalules(object)))
D DEVia nce ReSiduaIS: T(lemance,i — Sgn(T'Taw,?})\/yi log (g_z) + (TL1 - .g?) 1Og (nz:?z

T —Yq

)

resid(glm.1, type="deviance") or just resid(glm.1)

Tde’uia’n,ce,i

0 Standardized Deviance Residuals: Sdeviance,i = ~A—7, —
rstandard(glm.1)

10/18/2021 17



‘ Cook’s Distance

m For ordinary regression, Cook’s Distance was

D, — T'standardized,i _ h@i . yi'_'@i . h@i
L p+1 L—hii  (p+1)5 (1= hi)?
= We can imitate this for logistic regression
Dz’ _ Spearson,i hm L Y; — mﬁz h“

p+1  1—hy  (p+1)Vnpi(l—pi) (1—ha)
= Again, D, gives us a measure of both

o “outlierness” (how largeisy,—np,?)

o “leverage” (how largeis h;?)

10/18/2021
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‘ Interpreting casewise diagnostic plots

for logistic regr%ssion
yilog (1) + (ni — ) log (=t

Traw,i = Yi —

0

Residuals \
1 2
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|Std. deviance residl
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Sdeviance,i — sgn(r'ru,w,i)

AN

L

/\/ﬁ
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Raw residual plot nearly useless

o Except for detecting extreme under-
or over-prediction

o Binned raw residuals somewhat useful

Normal QQ plot useful

0 nearly normal when model

S deviance,i

holds

Scale-location plot mostly useless

a Since Var(y;) =np,(1-p;) depends on
location, always expect patterns here

Plot of h;, D, S,cqr50, QUite useful

0 Less useful for Bernoulli logistic
regression than for Binomial

10/18/2021
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‘ Alternative residuals for glm’s

m Insight: If a continuous r.v. X has CDF
Fy(x) = P[X < x]
thenY = Fy(X) ~ Unif (0,1), a uniform distribution (ex!)
m Approach (“parametric bootstrap”):

0 Fit the logistic regression model

2 Simulate many batches (say, 250) of new data from the
fitted model

0 Use the simulated data to estimate Fr(r) for the
residuals r;,i =1, ...,n

0 If the fitted model was “correct”. then the transformed
residuals will be uniformly distributed

See “DHARMa overview.pdf”

10/18/2021 for some additional detail 20



‘ Example: the wells data...

> library (DHARMa)

> data <- read.table("wells.dat", header=T)

> summary(glm.all <- glm(switch ~

+ data=data, family=binomial))

Est
(Int) -0.16
arsenic 0.47
dist -0.01
assoc -0.12
educ 0.04

O O O O ©o

SE

.10
.04
.00
.08
.01

> par (mfrow=c(2,2))

> plot(glm.all)

> dev.new()

> simdata <- simulateResiduals(glm.all)

> plot (simdata)

z Pr(>|z]|)
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.00
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‘ A strategy for checking residuals of

glm’s

B Fit mymodel <- glm(y ~ x1 + x2 + ...,
data=mydata, family=binomial) as usual

m Check the residuals vs leverage plot (lower right)
from plot (mymodel) for high leverage or
influential observations

m Use residual plot from DHARMa to check
o Residuals Unif(0,1) (suggests model is good fit)?

o Skewed left or right? Overdispersed? Underdispersed?
0 Outlying residuals?

10/18/2021 22



‘Summary

= An example where AIC (and BIC) are not
comparable across “model families”

= MLE’s and diagnostics for logistic regression
o Finding MLE’s by Newton’s Method
0 Predicted values
0 Residuals
a Goodness of Fit, Deviance Residuals
o Hat Matrix, Standardized Residuals, Cook’s Distance

m Interpreting R’s casewise diagnostic plots
m Alternative residuals: DHARMa
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