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Announcements…

◼ Project 01 rough drafts due tonight

◼ I will assign peer reviews sometime after midnight

◼ This week:

❑ This week: More on GLMs

❑ And a new hw assignment, HW07

◼ Next week: 

❑ Some basic ideas about causal inference

❑ Reading will be from causal inference.pdf from 
Gelman and Hill, not Sheather
◼ Chapters 9 (especially) & 10 (skim)

◼ You don’t have to read in detail but definitely “get the ideas” 
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Outline

◼ An example where AIC (and BIC) are not 
comparable across “model families”

◼ MLE’s and diagnostics for logistic regression

❑ Finding MLE’s by Newton’s Method 

❑ Predicted values

❑ Residuals

❑ Goodness of Fit, Deviance Residuals

❑ Hat Matrix, Standardized Residuals, Cook’s Distance

◼ Interpreting R’s casewise diagnostic plots

◼ Alternative residuals: DHARMa
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An example of non-comparability of 
AIC/BIC
◼ Logistic regression model says

◼ Suppose we have i=1..N binomial outcomes with ni trials per 
outcome and yi successes per outcome.   We can write the 
likelihood as 
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◼ The log-likelihoods are

so
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Example…
> data <- read.table("MissAmericato2008.txt",header=T)

> # arranged so that each row represents yi = # of top 10
> # finalists from each state in the US, in ni = 9 years
> glm.1 <- glm(cbind(Top10,9-Top10) ~ . - abbreviation,
+               data=data, family=binomial)

> newdata <- data[1,]

> for (r in 1:dim(data)[1]) {

+     row <- data[r,]

+     row$Top10 <- 1

+     reps <- data$Top10[r]

+     if (reps>0) for (j in 1:reps) {

+         newdata <- rbind(newdata,row)

+     }

+     row$Top10 <- 0

+     if(reps<9) for (j in 1:(9-reps)) {

+         newdata <- rbind(newdata,row)

+     }

+ }

> newdata <- newdata[-1,]

> # arranged so that each state is represented by 10 rows, 
> # with a 1 or 0 indicating “top 10 finalist” or not, from that
> # state, in each of 10 years.
> glm.2 <- glm(Top10 ~ . - abbreviation, data=newdata,

+              family=binomial)

> round(cbind(coef(summary(glm.1)),coef(summary(glm.2))),2)
> #                          --------- glm.1 ------- --------- glm.2 --------

Est      SE       z        p    Est       SE       z        p

(Intercept)         -7.52  2.53 -2.97 0.00 -7.52  2.53 -2.97  0.00

LogPopulation 0.60  0.18  3.36  0.00  0.60  0.18  3.36  0.00

LogContestants 1.37  0.41  3.32  0.00  1.37  0.41  3.32  0.00

LogTotalArea -0.36  0.14 -2.64  0.01 -0.36  0.14 -2.64  0.01

Latitude              -0.06  0.03 -2.15  0.03 -0.06  0.03 -2.15  0.03

Longitude            0.01  0.01   0.67  0.51  0.01  0.01  0.67  0.51

> round(data.frame(AIC=c(glm.1=AIC(glm.1),glm.2=AIC(glm.2)),
+ BIC=c(glm.1=BIC(glm.1),glm.2=BIC(glm.2))),2)

AIC       BIC

glm.1 144.57 156.16

glm.2 420.83 446.24

◼ glm.1 fit the data as a binomial logistic regr.

◼ glm.2 fit the data as a Bernoulli logistic regr.

◼ The fit to the data is the same, estimated betas, 
SE’s, etc. all the same; AIC & BIC “should” reflect 
this

◼ AIC & BIC show different values for glm.1 & 
glm.2, because “normalizing constants” different
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MLE’s & Diagnostics for Binomial 
Logistic Regression…
◼ Let

◼ For Bernoulli, ni=1, mi=pi, and yi = 0, 1

◼ For Binomial, ni>1,  mi=nipi and yi=0,1,…,ni
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For Binomial logistic regression
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To Maximize, set the gradient         
to zero and solve for    .
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Checking the maximum…
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Finding MLE’s by Newton’s method

1110/18/2021



Summary (so far…)
◼ The log-likelihood for Binomial1 logistic regression is 

(proportional to)

◼ We can find the MLE’s      by solving

by iteration2

◼ given3 by the square roots of the diagonal 
elements of  
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1Same for Bernoulli, but with N=n and ni=1
2With more work, can convert this to a weighted least squares calculation
3By std MLE theory (CLT for MLE’s) 



Predicted values for logistic regression
◼ Predicted or fitted values that may be useful:

❑ raw: fitted(glm.1)*glm.1$prior.weights

❑ response: fitted(glm.1) or predict(glm.1,type=“response”)

❑ link: predict(glm.1)or predict(glm.1,type=“link”)

(there is another prediction type, predict(…, type=“terms”), that is 
not very useful for us…)

◼ You can add SE’s by adding se.fit=TRUE to the 
predict() arguments…
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Logistic Regression Residuals1

◼ Residuals that correspond to fitted values:

❑ Raw residuals:          resid(glm.1,type=“response”)
*glm.1$prior.weights

❑ Response residuals: resid(glm.1,type=“response”)

❑ Pearson residuals:   resid(glm.1,type=“pearson”)

◼ Note that the Pearson residuals can be written in vector form as

1410/18/2021 1“Deviance” residuals are on the next page…



Logistic Regression Goodness of Fit
◼ Pearson Chi-squared statistic

◼ (Residual) Deviance statistic

◼ Both are                  when the model is correct (small is good)
❑ D(X) a little better than P(X); need ni>5 or so for either to be trustworthy

❑ rdeviance,i tends to follow normal distribution better than other residuals
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Logistic Regression Hat Matrix
◼ For logistic regression, define

◼ This mostly works like a hat matrix

❑ Sadly                , but no matrix can satisfy this since 
logistic regression doesn’t produce a linear fit1

❑ But H still acts like a projection matrix:
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1This projection property actually does work in the guts 

of weighted least squares, but we will skip this for now.



Leverage and “standardized” resids
◼ hii = (ith diag element of H) is again a measure of 

leverage

❑

❑ hii>2(p+1)/n is a common rule of thumb for “high leverage”

◼ Again use (1-hii) to correct for under-estimated 
standard errors:

❑ Standardized Pearson Residuals:

❑ Deviance Residuals:

❑ Standardized Deviance Residuals: 
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Cook’s Distance

◼ For ordinary regression, Cook’s Distance was

◼ We can imitate this for logistic regression

◼ Again, Di gives us a measure of both 

❑ “outlierness” (how large is yi – nipi ?)

❑ “leverage”      (how large is hii ?)
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Interpreting casewise diagnostic plots 
for logistic regression

◼ Raw residual plot nearly useless
❑ Except for detecting extreme under-

or over-prediction

❑ Binned raw residuals somewhat useful

◼ Normal QQ plot useful
❑ sdeviance,i nearly normal when model 

holds

◼ Scale-location plot mostly useless
❑ Since Var(yi) = nipi(1-pi) depends on 

location, always expect patterns here

◼ Plot of hii, Di, spearson quite useful
❑ Less useful for Bernoulli logistic 

regression than for Binomial 
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Alternative residuals for glm’s
◼

2010/18/2021

residuals will be uniformly distributed

See “DHARMa overview.pdf” 

for some additional detail



Example: the wells data…
> library(DHARMa)

> data <- read.table("wells.dat",header=T)

> summary(glm.all <- glm(switch ~ .,

+ data=data,family=binomial))

Est    SE     z Pr(>|z|)

(Int)    -0.16  0.10 -1.57     0.12

arsenic   0.47  0.04 11.23     0.00

dist     -0.01  0.00 -8.57     0.00

assoc    -0.12  0.08 -1.61     0.11

educ      0.04  0.01  4.43     0.00

> par(mfrow=c(2,2))

> plot(glm.all)

> dev.new()

> simdata <- simulateResiduals(glm.all)

> plot(simdata)
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A strategy for checking residuals of 
glm’s
◼ Fit mymodel <- glm(y ~ x1 + x2 + ..., 

data=mydata, family=binomial) as usual

◼ Check the residuals vs leverage plot (lower right) 
from plot(mymodel) for high leverage or 
influential observations

◼ Use residual plot from DHARMa to check

❑ Residuals Unif(0,1) (suggests model is good fit)?

❑ Skewed left or right? Overdispersed? Underdispersed?

❑ Outlying residuals?
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Summary

◼ An example where AIC (and BIC) are not 
comparable across “model families”

◼ MLE’s and diagnostics for logistic regression

❑ Finding MLE’s by Newton’s Method 

❑ Predicted values

❑ Residuals

❑ Goodness of Fit, Deviance Residuals

❑ Hat Matrix, Standardized Residuals, Cook’s Distance

◼ Interpreting R’s casewise diagnostic plots

◼ Alternative residuals: DHARMa
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