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‘ Announcements

= Midsemester grades - UPDATE

0 Mostly A’s (90+), some B’s (80+), lots of room for changes before the
end of the semester.

0 Numerical score & letter grade in canvas gradebook under “Total”. If
you are not getting info you want from canvas, please bug me.
= Midsemester evaluation — see “0O — midsemeter course
evaluation” folder in files area on Canvas

o Happy that you like the teaching and how accessible Lorenzo and | are for
guestions etc!

o You all seem very overworked!

m Let’s talk about getting you through the next two weeks

o | will also adjust my hw’s for the rest of the semester too
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‘ Outline

= Linear Regression, Logistic Regression
= Generalized Linear Models (GLM)
= Quick Taste of Ordered Logistic Regression

= Poisson Regression
0 Exposure and Offsets
o Overdispersion
0 Zero-inflation

= Quick Taste of Ordered Logistic Regression
o Many ways to model multinomial data

o Example
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Linear Regression, Logistic Regression

m The linear regression model is:

Vi tndep N(@i,az),izl,...,n

0 = X8 = PoXio+ - GBpXip

o Eachy, e (-00, o0) has some mean 6; = E[y]
o Each 6; has some linear structure

o There is a statistical distribution N( *, 02) that describes unmodeled variation
around 6, = E[y/]

m The logistic regression model is:

indep . . .
yi ~  Binomial(ng,p;), i=1,...,n

= Xif = BoXio+ - LpXip

6; = log

o Eachye€{0, 1} has some mean p, = E[y]
o Each 6, = g(p,) has some linear structure [ g(p) = log p/(1-p) ! ]

o There is a statistical distribution Binomial(n,, *) that describes unmodeled variation
around p; = E[y]

o (if n;= 1 for all i, this is the Bernoulli(p;) logistic regression model)
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‘ Generalized Linear Models

m The generalized linear model (gim) is:

U
U

U

indep

vi ~  flyilpi,...), i=1,...,n
0, = g(w) = X = B/Xa+- - BrXik

Each y, has some mean y; = E[y|]
Each 0. = g(u,) has some linear structure [g(u) is the “link function”]

There is a statistical distribution f(y,| ,, ...) that describes unmodeled variation
around u, = E[y/]

There may be other parameters “..” in f(y,| u,, ...) but the “main” parameter is
w; =g(0;) =g*(X8)

m For ordinary linear regression

a
a

f(yil,Ufz'; ) = N(,U,i,0'2) [,uz' = E[yi]]
g(u) = 1 [the “identity link function”]

m For logistic reqgression
o fly;|p;) = Binomial(n, p;) or Bernoulli(p)) [p: = E[yi]]

a

g(p) = log p/(1-p) [the “logit link function”]
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‘ Two Other Common GLM’s

m Poisson Regression Model
av,€e{0,1,2,3, ..}
a fly;| A;) = Poiss(A) [A,= E[y]]]
o 6. =log(\) =X
= Multinomial Logit Model
a y; e{l, 2, ..., K}
a f(y; | miq, ..., Tig): Vi ~ Multinom(m;q, ..., Tig)
o We need to invent some logits for these m;;’s...

0 This leads to many different “multinomial reqression”
models...
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Poisson Regression

m Poisson Regression Model
ave{0,1,2,3,..}
. f(yi|>\i) = Poiss(A)) [A,= Ely,]]
o 0. =log(\)=Xp
= We will fit this model to data, and then look at
some modifications of the model involving
0 offsets
o overdispersion
0 zero-inflation

(the same kinds of modifications can be helpful
with logistic regression and other GLM’s...)
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Poisson Regression — The Data

= Data from an experiment on the effectiveness of
an "integrated pest management system" in
apartment buildings in a particular city

roachdata <- read.csv ("roachdata.csv")

str (roachdata)

'data.frame': 262 obs. of 6 variables:

S X :int 1 2 345 6 7 8 [observation number]

S v : int 153 127 7 7 0 0 [# of roaches trapped after expmt]
$ roachl : num 308 331.25 1.67 [# of roaches before experiment]

$ treatment: int 1 1 1 1 1 1 1 1 [pest mgmt tx in this apt bldg?]

$ senior :int 0 0O O 0O 0O 0 O0O0 [apts restricted to sr citzns?]

$ exposure2: num 0.8 0.6 1 1 1.14 [avg # of trap-days per apt for y]
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‘ Poisson Regression — Fitting the Model

> glm.0 <- glm (y ~ roachl + treatment + senior,
Family=poisson)

> summary (glm.Q0)

Coefficients:
Estimate Std. Error z wvalue Pr(>|z])
(Intercept) 3.130e4+00 2.124e-02 147.064 <2e-16 ***

roachl 6.444e-03 8.832e-05 72.97 <2e-16 ***
treatment -5.124e-01 2.465e-02 -20.79 <Ze-16 **x*
senior -3.760e-01 3.355e-02 -11.21 <Ze-16 ***
Ai = ElY]]
logA; = 3.14 4 0.0064(roachl) — 0.5(treatment) — 0.38(senior)
Ai = exp(3.14 + 0.0064(roachl) — 0.5(treatment) — 0.38(senior))

= exp(3.14) exp(0.0064(roachl)) exp(—0.5(treatment)) exp(—0.38(senior))
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Poisson Regression — Interpreting the
Coefficients

= Intercept = 3.14. exp(3.14) = 23.10 is the average # of roaches
trapped gfter the experiment, in an apt bldg with no roaches before
the experiment (roach1=0), no treatment (treatment=0) and not a
seniors' building (senior=0).
0 In this case there are about 60 buildings with no roaches at the start of
the experiment, so this is probably a meaningful description

m roachl =0.00644: exp(0.00644)=1.006 is the factor increase in
average roaches caught after the experiment, per roach caught before
the experiment (does this make sense?).

m treatment =-0.512: exp(-0.512)=0.60 is the factor reduction in
average roaches caught after the experiment, due to treatment

= senior =-0.38: exp(-0.38) = 0.68 is the factor reduction in the
average roaches caught after the experiment, due to being a senior

bldg
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Poisson Regression - Exposure

= We have not made use of exposure2 = average
number of trap-days

o If twice as many traps, expect to catch 2x roaches
o If 3 times as many days, expect to catch 3x roaches

m To accommodate this multiplicative effect, we
can try
_ Xip
A = u;e

where u, = exposure2.

10/26/2021
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Poisson Regression — Exposure

= Taking logs, the “linear regression” form is
log(\;) = log(u;) + X,

This is like including log(u;) in the model, and basically
forcing its coefficient to be exactly 1.

= In R we accomplish this with the “offset” argument
= This makes interpretation of the coefficients easier

0 coefficients measure deviations from expected counts under the
various numbers of trap-days

0 This “unconfounds” exposure from treatment, bldg type, etc.
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‘ Poisson Regression — Exposure and
Offsets

> glm.1l <= glm (y ~ roachl + treatment +

senior, family=poilsson,
offset log (exposure2))

> round (cbind (glm.0O=coef (glm.0),
glm.l=coef (glm.1)),4)

glmO glml
(Intercept) 3.1360 3.0892
roachl 0.0064 0.0070
treatment -0.5124 -0.5167

senior -0.37060 -0.3799
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‘ Why didn’t log(exposure2) matter
much?

> hist (exposure?)

> table (round (exposure2, 2)) Histogram of exposure2
0.2 0.4 0.46 0.57 0.6 0.69 3 -
1 1 1 1 5 2
0.77 0.8 0.86 0.91 1 1.03
3 37 3 2 156 3
1.14 1.29 1.43 1.49 1.57 1.71 ¢ g.
19 4 7 2 2 2
1.86 2.29 2.43 4.29 o |
1 3 1 1

0 1 2 3

exposure2
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Poisson Regression — Looking at

Residuals

par(mfrow=c(2,2))
plot(gim.1)

Residuals
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‘ R’s residual plots for glm()’s

s The std residual plots tend to be useful as long as the
individual y;’s are (theoretically) approximately normal.
o Binary logistic regression — never really useful
0 Binomial logistic regression: As long as E|y;] = n;p; = 5 and
Eln;—y;] =n;(1—p;)) =5 (CLTY)
0 Poisson regression: As long as E|y;] = A4; = 10 (CLT!)
= In the “residuals vs fitted” plot the “fitted values” (x-axis) are
X; B’s, not §i’s
o For the plot on the prev slide, the lowest x-value is X; 8 = 1; E[y] =
1 =el=2718 < 10, so we should proceed with caution

o Most of the datahas X; f = 2 0r3,s01; = e*1Pis70r 20 or more, SO
most of the data in the plots can be used to assess model fit

o This doesn’t get rid of issues like over-predicting observed values of
y; = 0in the data (the curved lower boundary in the residual plot)...

10/26/2021 16



Poisson Regression — Looking at

Residuals

par (mfrow=c(3,1))

xvar <- predict(glm.1)
yvar <- resid(glm.1)
binnedplot (xvar, yvar)

roachl

binnedplot (xvar, yvar, xlab
="Number of Roaches at
Start of Experiment")

xXxvar <-

xvar <- log(exposure?2)

binnedplot (xvar, yvar, xlab
="Number of Trap-Days
Used 1n Data
Collection")

Average residual Average residual

Average residual

Binned residual plot

Number of Trap-Days Used in Data Collection

20 25 3.0 35 4.0 45
Expected Values

Binned residual plot

L]

)

L)

T

0 50 100 150 200 250

Number of Roaches at Start of Experiment
Binned residual plot
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
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‘ What can we learn from the binned

residual plots?

sy, —U; < 0Owhen y is low —we are likely “over-
predicting” low values of .

m The variables roachl, exposure2 both seem to have
long right tails
0 boxCox() from library(car) suggests logarithms for both
variables
0 We are already using log(exposure2) as an offset
0 roachl has some zeros, so perhaps experiment with
log(roach1+1)

= More to do here, but we turn to fit of Poisson Dist.
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Let’s see what mmplot tells us...

--2 Fitted -~ Fitted

¥
0 50 150 250 350

library(marginalmodelplots) e Joo

glm.2 <- glm (y ~ log(roachl) +

0 50 150 250 350

treatment + senior, family=poisson,

offset=1log (exposure?))

mmplot (glm.1)
mmplot (glm.2)

vV VvV + 4+ V V

0 50 150 250 350

m Clearly log(roach1+1) cleaned Y i

up the mmplot.

¥
0 50 150 250 350

m We would see similar e

0 50 150 250 350

improvement in the binned
residual plots

o especially plotting against fitted
values or against log(roach1+1)

0 000

0 50 150 250 350

0.0 0.2 0.4 0.6 08 1.0
senior
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Check distribution of the residuals...

>
>

+ VvV 4+ V V V

## Raw residuals
plot (glm.2,which=2,main="model glm.2")

## DHARMa residuals
library (DHARMa)

d.resids.glm.2 <-
simulateResiduals (glm.2,plot=F)

plot(d.resids.glm.2, xlab =
"glm.2 predictions (rank transformed)")

The S-shape in qq plots suggests
overdispersion

o Easier to see in DHARMa plot

The resid vs fitted plot suggests
variance assumption violated

o Solid quantile regressions do not
line up with dashed guidelines

Many high and low outliers
consistent with overdispersion

Observed

10

08

06

04

02

00

Std. Pearson resid.

model gim.2
Normal Q-Q

7 KStest:p=0

80

40

20

Theoretical Quantiles
almlv ~ loalroach1 + 1) + treatment + senior)

DHARMa residual diagnostics

QQ plot residuals

Deviation significgnt
a

2
Dispersi ﬂtes‘g p=0
Deviation sigmificant

n significant

00 02 04 06 08 10

Expected

Standardized residual

0.00

00 02 04 06 08 10

glm 2 predictions (rank transformed)
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Poisson Regression: Testing Overdispersion

= If y, ~ Poisson(A,) then the Pearson residual

Yi — Ai

Vi

is approximately normal, so that

n
2
27
i=1

should follow a 2 distributiononn—p -1 df

Zq —
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Poisson Regression — Testing Lack of Fit

> E.y. <- > test.statistic
predict(glm.2,type="response")

>z <- (y - E.y.)/sqrt(E.y.) [1] 17635.29 # this is *huge™!

> n-ppl
> test.statistic <- sum(z"2)

[1] 258
> n <- length(y)

> ppl <- length(coef(glm.2)) > test.statistic/(n-pp1)

[1] 68.35382
> pchisg(test.statistic,n- _
ppl,lower.tail=F) We found that the residuals are

extremely overdispersed: the
variability of the z's is about 68
times what it should be!

[1] 0

10/26/2021 22



Poisson Regression - Overdispersion

= We can adjust our inferences for overdispersion by
adjusting the standard errors of the coefficients:

round (coef (summary (glm.2)) [,1:2],2)

#4 Estimate Std. Error
## (Intercept) 1.67 0.04
## log(roachl + 1) 0.60 0.01
## treatment -0.60 0.03

## senior o
round (coef (summary (glm.2)) [,1:2] %$*% \ After adjusting,

diag(c(1,sgrt (test.statistic/ (n-p-1)))),2) everything except
## [,1] [,2] “senior” housing
## (Intercept) 1.67 0.32 status retain
## log(roachl + 1) 0.60 0.07 /Signif. coefficients...
## treatment -0.60 0.21
## senior -0.32 0.28

10/26/2021 23



Poisson Regression - Overdispersion

= We can also get R to estimate the overdispersed
poisson regression model directly.

> glm.2 <-_g ~ log(roachl+l) + treatment + senior,

offset=log (exposurel)) Overdispersion is often
> summar M- an indicator that one or
more important
predictors is missing

## Coefficients: from the model!
#4# Estimate Std. Error t wvalue Pr(>|t])

## (Intercept) 1.67145 0.31765 5.262 3.00e-07 *x*xx*

## log(roachl + 1) 0.59875 0.06873 8.711 3.68e-16 ***

## treatment -0.60347 0.20849 -2.894 0.00412 =**

## senior -0.31629 0.27715 -1.141 0.25484

## ——-

## Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 >’ 0.05 . 0.1 Y " 1
ik

## (Dispersion parameter for quasipoisson family taken to b& 68.35973)
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Poisson Regression — Zero Inflation

= If we explore the data a little more we find that there

may be too many zeros for the Poisson model to fit well:

> plot(E.y., y)
> plot(log(E.y.+1), log(y+1), xlim=c(0,6))

logly + 1)

0 100 200 300

400

OOOOOO

o] O O EEETD @D M0 @O0

T T - | T T

0 1 2 3 4 5 6
log(Ey +1)

10/26/2021
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There are too many y=0 values for nonzero E[y]’s!
Note: y=0 iff log(y+1)=0
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‘ Aside: DHARMa also has tests for
overdispersion and zero-inflation

# # from l ibrary ( DHARMa ) : DHARMa nonparametric dispersion test via sd of
iduals fitted vs. si latad
> par (mfrow=c(2,1)) r itted vs

> testDispersion (glm.2)

##
## ratioObsSim = 8.3961, p-value < 2.2e-16
## alternative hypothesis: two.sided

15

Frequency
1

> testZeroInflation (glm.2) ° | I I |
## ratioObsSim = 20.632, p-value < 2.2e-16 10 20 30 40
## alternative hypothesis: two.sided Simulated values, red line = fitted model. p-value (two.sided) =0

DHARMa zero-inflation test via comparison to
expected zeros with simulation under HO = fitted
model

m  The histogram is distribution
under HO: glm.2 correct

80

40

Frequency

m The red line indicates value from
the data -

m P-value = area to right of red line

20

T T T T 1
0 20 40 60 80

Simulated values, red line = fitted model. p-value (two.sided) =0

= Clearly our data is overdispersed
and zero-inflated

10/26/2021 26



Poisson Regression — Zero Inflation

m In cases like this it can also be useful to
separately model

0 What distinguishes zero-cockroach buildings from
others; and

o what drives cockroach counts in the buildings that
have them
= We will try to combine a logistic regression
analysis and a Poisson regression analysis to try
to answer these questions

o This is a crude approximation to the “right” model,
which distinguishes “real” zeros from “sampling zeros”
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‘ Crude “Model” for Zero Inflation

> some.cockroaches <-
ifelse(y>0, 1, 0)

> zero.fit <-
glm(some.cockroaches ~
log(roachl+1l) + treatment +
senior + exposure?2,
family=binomial)

> display(zero.fit)

## est se
## (Intercept) -0.02 0.61
## log(roachl+l) 0.75 0.11
## treatment -0.85 0.33
#4# 0

ik

senior -0.69
exposure?2 0.06 0.50

Everything is a significant predictor,
except for # of trap-days

> glm.3 <- glm (y ~ log(roachl+l) +
treatment + senior,
family=poisson,

offse ogtexposure?),
0))

> display(glm.3)

## est se
## (Intercept) 2.33 0.04
## log(roachl+1) 0.47 0.01
## treatment -0.60 0.03
## senior -0.24 0.03

It is somewhat weird to eliminate all
the y=0 cases from data for a Poisson
model — this is a real weakness of this
approach. Better would be to include
some y’s that are “zero by chance”
according to the zero.fit model.

10/26/2021

28



Poisson Regression — Zero Inflation

m A building with no roaches at the start of the experiment
(roach1=0) in the treatment group (treatment=1) that is
a seniors’ building (senior=1) with 1.5 trap-days
(exposure2=1.5) has probability

invlogit(-0.02 + (0)*(0.75) + (-0.85)*(1) +
(-0.69)*(1) + (1.5)*(-0.06)) = 0.16
of having roaches at the end of the experiment

m Given that the building does have roaches at the end, the
expected number of roaches is

exp(log(1.5) + 2.33 + (0)*(0.47) +
(1)*(-0.60) + (1)*(-0.24)) = 6.65

10/26/2021 29



‘ Modeling multinomial data

s We say y; ~ Multinom(m;q, ..., Tig ) if

0y €{1,2, .., K}

0o Ply; =kl =mny,andmyy + -+ mip =1

= Many different logits possible

i+ + Tk

= log

. e . — P[yiSk] .
o Cumulative logits: 6;;, = log Ply<k] 1
0 Baseline category logits: 0, = logigiﬂ
0 Adjacent category logits: 8, = log ngﬁi]u

Tij(k+1) T +TiK

ik
TTi(k-1)

10/26/2021
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‘ A Cumulative Logit Model

m polr from library(MASS): ge(:)(;izr:)(:k
Ply; < k] /
Qik _logl_P[yl Sk] _Ck_XiB’

k=1,..,K—1
= Not the only possible cumulative logit model

0 Has a “proportional odds” property that we will see in
a few slides
0 Heightens interpretability, costs some flexibility

2 vglm() from library(VGAM) has more flexibility

10/26/2021 31



‘ A Baseline Category Logit Model

= multinom from library(nnet): p can depend
Ply; =k /
9ik — lOgP:yi — 1: = Ck T Xiﬂk
k=1,..,K—-1

= Very general baseline category logit model

2 Can even use to build “saturated mode

I”

m Cumulative logit model often used with

ordered cateqgories

m Baseline logit model often used with

unordered cateqories

10/26/2021

vglm from library(VGAM) offers both of these models and more... see
“multinomial regression R_examples.pdf” in this week’s folder...
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‘ Let’s try on a small data set with

ordered categories...
m Data from 1991 General Social Survey?!

Folitical Ideclogy by Party Affiliation, from the 1991 General Social Survey

Very Slighthy Slightly Very

Liberal Liberal Moderate Conservative Conservative
Republican 30 46 148 84 a9
Democratic 80 &1 171 41 55

m Constructing the data set:

This forces R to put the
levels in the order we

want, instead of
]fpl <- C(30, 46, 148, 84, 99) # cell counts; Sum(rpi)=407 alphabe“cal order

party <- factor (rep(c("Rep","Dem"), c (407, 428)),

levelS:C ("Rep", "Dem") )

>

+

>

> dpi <- c(80, 81, 171, 41, 55) # cell counts; sum(dpi)=428
> ideology <- c("Very Liberal","Slightly Liberal", "Moderate",
+
>
+
>
>

"Slightly Conservative","Very Conservative")

pol.ideology <- factor(c(rep(ideology, rpi),
rep (ideology, dpi)), levels = ideology)

dat <- data.frame (party, pol.ideology)

table (dat) # check that “dat” matches the table above..

1Source: Agresti, A. (1996). An Introduction

to Categorical Data Analysis. NY: Wiley. 33
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‘ Fitting the model...

> library (MASS)

> summary (pom <- polr(pol.ideology ~ party, data=dat))

Call:
polr (formula = pol.ideology ~ party, data = dat)

df = 5 (four
c,'sand a p)

= ¢+ (0.9745) - 1{?: is a Dem}

Coefficients: log PIY; < k|/P[Y; > k| = ¢ —(=0.9745) - 1 is 2 Dem)
VaMdie Std. Error t value
partyDem -0.9745 0.1292 -7.545
Intercepts:
Value
i Very Liberal|Slightly Liberal -2.4690
Slightly Liberal |Moderate -1.4745
Moderate|Slightly Conservative 0.2371
_ Slightly Conservative|Very Conservative 1.0695

Residual Deviance: 2474.985
ATIC: 2484.985

5 categories, 4 boundaries

Std. Error t wvalue

0.1318
.1090
.0942
.1039

o O O

-18.7363
-13.5314
2.5165
10.2923

10/26/2021
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‘ Predictions...

> predict (pom,newdata = data.frame (party="Dem") , type="probs")

Very Liberal Slightly Liberal Moderate
0.1832505 0.1942837 0.3930552
Slightly Conservative Very Conservative
0.1147559 0.1146547

> predict (pom,newdata = data.frame (party="Rep") ,h type="probs")

Very Liberal Slightly Liberal Moderate
0.07806044 0.10819225 0.37275214
Slightly Conservative Very Conservative
0.18550357 0.25549160

> round (rbind (Dem=predict (pom,newdata = data.frame (party="Dem") , type="probs"),
+ Rep=predict (pom,newdata = data.frame (party="Rep") , type="probs")) , 2)

Very Liberal Slightly Liberal Moderate Slightly Conservative Very Conservative
Dem 0.18 0.19 0.39 0.11 0.11
Rep 0.08 0.11 0.37 0.19 0.26

> # compare with raw estimates...
> names (dpi) <- ideology; round (rbind (Dem=dpi/sum(dpi) ,Rep=rpi/sum(rpi)) ,h2)

Very Liberal Slightly Liberal Moderate Slightly Conservative Very Conservative
Dem 0.19 0.19 0.40 0.10 0.13
Rep 0.07 0.11 0.36 0.21 0.24

10/26/2021
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‘ Aside... What does “polr” mean?

The model is
log P|Y; < k|/PY; > k| =cr — Xif3

SO
PIY < K]/PIYi > k] = - %7

so for two individuals ¢ and 7,

PlY; <k|/PYi >k  _(xi—x,)p
PY; <K|/PlY; > K~ °

= Cij

” PIY: < kI/PIY: > k] = eij P[Y; < k)/PIY; > K]

that is, the odds of Y; < £ is always the same constant times the odds of Y; < £,
for every k:

The cumulative odds for i are proportional to the

This works because f
doesn’t depend on k

cumulative odds for j, uniformly in the cutoff k \

» polr = “proportional odds logistic regression”
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‘ Is the polr model valid for this data?

= Compare with the “baseline category logit” model
that has a full 8 parameters, vs. 5 from polr().

df = 8 (four ¢;’s,
& four B's)

> library(nnet)

> summary (mlm <- multinom(pol.ideology ~ Ly, —data=dat))
Call:
multinom (formula = pol.ideology party, data = dat)
log PIY; = k|X;[/PlY; =1]Xi] = cx+ Xifh
Cp + 6"61{1' is a Dem)

Coefficients:

(Intercept) partyDem
Slightly Liberal 0.4274512 -0.4150328
Moderate 1.5960039 -0.8363535
Slightly Conservative 1.0296159 -1.6980658
Very Conservative 1.1939108 -1.5685961

Std. Errors:

(Intercept) partyDem > MO <- logLik(pom)

Slightly Liberal 0.2346741 0.2826974 > M1 <- logLik(mlm)

Moderate 0.2002246 0.2417393 > (G <= -2*(MO[1] - ML[1]))

Slightly Conservative  0.2126919 0.2865802 [1] 3.687678

Very Conservative 0.2084087 0.2722426 > pchisq(G,8-5,lower.tail = FALSE)
[1] 0.2972241

i‘;zfdgjgf;‘;iance' 24Tt 297 = Polr model (MO) ok...
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‘ Summary
= Linear Regression, Logistic Regression
= Generalized Linear Models (GLM)
= Quick Taste of Ordered Logistic Regression

= Poisson Regression
0 Exposure and Offsets
o Overdispersion
0 Zero-inflation

= Quick Taste of Ordered Logistic Regression
o Many ways to model multinomial data

o Example
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