
110/26/2021

36-617: Applied Linear 
Regression 

Generalized Linear Models

Brian Junker

132E Baker Hall

brian@stat.cmu.edu



Announcements
◼ Midsemester grades - UPDATE

❑ Mostly A’s (90+), some B’s (80+), lots of room for changes before the 
end of the semester.

❑ Numerical score & letter grade in canvas gradebook under “Total”.  If 
you are not getting info you want from canvas, please bug me.

◼ Midsemester evaluation – see “0 – midsemeter course 
evaluation” folder in files area on Canvas
❑ Happy that you like the teaching and how accessible Lorenzo and I are for 

questions etc!

❑ You all seem very overworked!

◼ Let’s talk about getting you through the next two weeks
❑ I will also adjust my hw’s for the rest of the semester too
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Outline
◼ Linear Regression, Logistic Regression

◼ Generalized Linear Models (GLM)

◼ Quick Taste of Ordered Logistic Regression

◼ Poisson Regression

❑ Exposure and Offsets

❑ Overdispersion

❑ Zero-inflation

◼ Quick Taste of Ordered Logistic Regression

❑ Many ways to model multinomial data

❑ Example
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Linear Regression, Logistic Regression
◼ The linear regression model is:

❑ Each yi ² (-1, 1) has some mean µi = E[yi]
❑ Each µi has some linear structure
❑ There is a statistical distribution N( *, ¾2) that describes unmodeled variation 

around µi = E[yi]

◼ The logistic regression model is:

❑ Each y ² {0, 1} has some mean pi = E[yi]
❑ Each µi = g(pi) has some linear structure [ g(p) = log p/(1-p) ! ]
❑ There is a statistical distribution Binomial(ni, *) that describes unmodeled variation 

around pi = E[yi]
❑ (if ni = 1 for all i, this is the Bernoulli(pi) logistic regression model)
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◼ The generalized linear model (glm) is:

❑ Each yi has some mean ¹i = E[yi]
❑ Each µi = g(¹i) has some linear structure [g(¹) is the “link function”]
❑ There is a statistical distribution f(yi|¹i, …)  that describes unmodeled variation 

around ¹i = E[yi]
❑ There may be other parameters “…” in f(yi|¹i, …) but the “main” parameter is

¹i = g-1(µi) = g-1(Xi¯)

◼ For ordinary linear regression
❑ f(yi|¹i, …) = N(¹i,¾

2)    [¹i = E[yi]]
❑ g(¹) = ¹ [the “identity link function”]

◼ For logistic regression
❑ f(yi|pi) = Binomial(ni, pi) or Bernoulli(pi)          [pi = E[yi]]
❑ g(p) = log p/(1-p) [the “logit link function”]

Generalized Linear Models



Two Other Common GLM’s
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◼
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Poisson Regression
◼ Poisson Regression Model

❑ yi ² {0, 1, 2, 3, …}

❑ f(yi|¸i) = Poiss(¸i) [¸i = E[yi]]

❑ µi = log(¸i) = Xi ¯

◼ We will fit this model to data, and then look at 
some modifications of the model involving
❑ offsets

❑ overdispersion

❑ zero-inflation

(the same kinds of modifications can be helpful 
with logistic regression and other GLM’s…)
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Poisson Regression – The Data

◼ Data from an experiment on the effectiveness of 
an "integrated pest management system" in 
apartment buildings in a particular city

roachdata <- read.csv ("roachdata.csv")

str(roachdata)

'data.frame':   262 obs. of  6 variables:

$ X        : int  1 2 3 4 5 6 7 8       [observation number]

$ y        : int  153 127 7 7 0 0       [# of roaches trapped after expmt]

$ roach1   : num  308 331.25 1.67       [# of roaches before experiment]

$ treatment: int  1 1 1 1 1 1 1 1       [pest mgmt tx in this apt bldg?]

$ senior   : int  0 0 0 0 0 0 0 0       [apts restricted to sr citzns?]

$ exposure2: num  0.8 0.6 1 1 1.14      [avg # of trap-days per apt for y]
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Poisson Regression – Fitting the Model

> glm.0 <- glm (y ~ roach1 + treatment + senior,        
family=poisson)

> summary(glm.0)

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  3.136e+00  2.124e-02  147.64   <2e-16 ***

roach1       6.444e-03  8.832e-05   72.97   <2e-16 ***

treatment   -5.124e-01  2.465e-02  -20.79   <2e-16 ***

senior      -3.760e-01  3.355e-02  -11.21   <2e-16 ***
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Poisson Regression – Interpreting the 
Coefficients
◼ Intercept = 3.14: exp(3.14) = 23.10 is the average  # of roaches 

trapped after the experiment, in an apt bldg with no roaches before
the experiment (roach1=0), no treatment (treatment=0) and not a 
seniors' building (senior=0).

❑ In this case there are about 60 buildings with no roaches at the start of 
the experiment, so this is probably a meaningful description

◼ roach1 = 0.00644: exp(0.00644) = 1.006 is the factor increase in 
average roaches caught after the experiment, per roach caught before
the experiment (does this make sense?).

◼ treatment = -0.512: exp(-0.512) = 0.60 is the factor reduction in 
average roaches caught after the experiment, due to treatment

◼ senior = -0.38: exp(-0.38) = 0.68 is the factor reduction in the 
average roaches caught after the experiment, due to being a senior 
bldg
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◼ We have not made use of exposure2 = average 
number of trap-days 
❑ If twice as many traps, expect to catch 2x roaches

❑ If 3 times as many days, expect to catch 3x roaches

◼ To accommodate this multiplicative effect, we 
can try

where ui = exposure2.

Poisson Regression - Exposure
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Poisson Regression – Exposure

◼ Taking logs, the “linear regression” form is

This is like including log(ui) in the model, and basically 
forcing its coefficient to be exactly 1.

◼ In R we accomplish this with the “offset” argument

◼ This makes interpretation of the coefficients easier

❑ coefficients measure deviations from expected counts under the 
various numbers of trap-days

❑ This “unconfounds” exposure from treatment, bldg type, etc.
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Poisson Regression – Exposure and 
Offsets
> glm.1 <- glm (y ~ roach1 + treatment + 

senior, family=poisson, 
offset=log(exposure2))

> round(cbind(glm.0=coef(glm.0), 
glm.1=coef(glm.1)),4) 

glm0       glm1                                                

(Intercept)   3.1360     3.0892

roach1        0.0064     0.0070

treatment    -0.5124    -0.5167

senior       -0.3760    -0.3799



Why didn’t log(exposure2) matter 
much?
> hist(exposure2)

> table(round(exposure2,2))

0.2  0.4 0.46 0.57  0.6 0.69 

1    1    1    1    5    2 

0.77  0.8 0.86 0.91    1 1.03 

3   37    8    2  156    3 

1.14 1.29 1.43 1.49 1.57 1.71 

19    4    7    2    2    2 

1.86 2.29 2.43 4.29 

1    3    1    1 
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Poisson Regression – Looking at 
Residuals
par(mfrow=c(2,2))

plot(glm.1)
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R’s residual plots for glm()’s
◼ The std residual plots tend to be useful as long as the 

individual 𝑦𝑖’s are (theoretically) approximately normal.
❑ Binary logistic regression – never really useful

❑ Binomial logistic regression: As long as 𝐸 𝑦𝑖 = 𝑛𝑖𝑝𝑖 ≥ 5 and 
𝐸 𝑛𝑖 − 𝑦𝑖 = 𝑛𝑖 1 − 𝑝𝑖 ≥ 5 (CLT!)

❑ Poisson regression: As long as 𝐸 𝑦𝑖 = 𝜆𝑖 ≥ 10 (CLT!)

◼ In the “residuals vs fitted” plot the “fitted values” (x-axis) are 

𝑋𝑖 መ𝛽’s, not ෝ𝑦𝑖’s

❑ For the plot on the prev slide, the lowest 𝑥-value is 𝑋𝑖 መ𝛽 = 1; E y =
መ𝜆 = 𝑒1 = 2.718 < 10, so we should proceed with caution

❑ Most of the data has 𝑋𝑖 መ𝛽 ≥ 2 or 3, so 𝜆𝑖 = 𝑒
𝑋𝑖 𝛽 is 7 or 20 or more, so 

most of the data in the plots can be used to assess model fit

❑ This doesn’t get rid of issues like over-predicting observed values of 
𝑦𝑖 = 0 in the data (the curved lower boundary in the residual plot)…
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Poisson Regression – Looking at 
Residuals
par(mfrow=c(3,1))

xvar <- predict(glm.1)

yvar <- resid(glm.1)

binnedplot(xvar,yvar)

xvar <- roach1

binnedplot(xvar,yvar,xlab
="Number of Roaches at 
Start of Experiment")

xvar <- log(exposure2)

binnedplot(xvar,yvar,xlab
="Number of Trap-Days 
Used in Data 
Collection")
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What can we learn from the binned 
residual plots?
◼ when     is low – we are likely “over-

predicting” low values of y.

◼ The variables roach1, exposure2 both seem to have 
long right tails

❑ boxCox() from library(car) suggests logarithms for both 
variables

❑ We are already using log(exposure2) as an offset

❑ roach1 has some zeros, so perhaps experiment with 
log(roach1+1)

◼ More to do here, but we turn to fit of Poisson Dist.
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Let’s see what mmplot tells us…

> library(marginalmodelplots)

> glm.2 <- glm (y ~ log(roach1) + 

+ treatment + senior, family=poisson,

+ offset=log(exposure2))

> mmplot(glm.1)

> mmplot(glm.2)

◼ Clearly log(roach1+1) cleaned 
up the mmplot.  

◼ We would see similar 
improvement in the binned 
residual plots 
❑ especially plotting against fitted 

values or against log(roach1+1)
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Check distribution of the residuals…
> ## Raw residuals

> plot(glm.2,which=2,main="model glm.2")

> ## DHARMa residuals

> library(DHARMa)

> d.resids.glm.2 <-

+ simulateResiduals(glm.2,plot=F)

> plot(d.resids.glm.2, xlab = 

+ "glm.2 predictions (rank transformed)")

◼ The S-shape in qq plots suggests 
overdispersion

❑ Easier to see in DHARMa plot

◼ The resid vs fitted plot suggests 
variance assumption violated

❑ Solid quantile regressions do not 
line up with dashed guidelines

◼ Many high and low outliers 
consistent with overdispersion
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Poisson Regression: Testing Overdispersion

◼ If yi» Poisson(¸i) then the Pearson residual

is approximately normal, so that

should follow a Â2 distribution on n – p – 1 df
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Poisson Regression – Testing Lack of Fit
> E.y. <-

predict(glm.2,type="response")

> z <- (y - E.y.)/sqrt(E.y.)

> test.statistic <- sum(z^2)

> n <- length(y)

> pp1 <- length(coef(glm.2))

> pchisq(test.statistic,n-
pp1,lower.tail=F)

[1] 0

> test.statistic

[1] 17635.29        # this is *huge*!

> n-pp1

[1] 258

>  test.statistic/(n-pp1)

[1] 68.35382  

We found that the residuals are 

extremely overdispersed: the 

variability of the z’s is about 68

times what it should be!
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Poisson Regression - Overdispersion

◼ We can adjust our inferences for overdispersion by 
adjusting the standard errors of the coefficients:

round(coef(summary(glm.2))[,1:2],2)

##                 Estimate Std. Error

## (Intercept)         1.67       0.04

## log(roach1 + 1)     0.60       0.01

## treatment          -0.60       0.03

## senior             -0.32       0.03

round(coef(summary(glm.2))[,1:2] %*% 

diag(c(1,sqrt(test.statistic/(n-p-1)))),2)

##                     [,1]       [,2]

## (Intercept)         1.67       0.32

## log(roach1 + 1)     0.60       0.07

## treatment          -0.60       0.21

## senior             -0.32       0.28

After adjusting, 

“everything except

“senior” housing 

status retain 

signif. coefficients…
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Poisson Regression - Overdispersion

◼ We can also get R to estimate the overdispersed 
poisson regression model directly.

> glm.2 <- glm (y ~ log(roach1+1) + treatment + senior, 

+ family=quasipoisson, offset=log(exposure2))

> summary(glm.2)

## Coefficients:

##                 Estimate Std. Error t value Pr(>|t|)

## (Intercept)      1.67145    0.31765   5.262 3.00e-07 ***

## log(roach1 + 1)  0.59875    0.06873   8.711 3.68e-16 ***

## treatment       -0.60347    0.20849  -2.894  0.00412 **

## senior          -0.31629    0.27715  -1.141  0.25484

## ---

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

## 

## (Dispersion parameter for quasipoisson family taken to be 68.35973)

Overdispersion is often 

an indicator that one or 

more important 

predictors is missing 

from the model!
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Poisson Regression – Zero Inflation
◼ If we explore the data a little more we find that there 

may be too many zeros for the Poisson model to fit well:
> plot(E.y., y)

> plot(log(E.y.+1), log(y+1), xlim=c(0,6))

There are too many y=0 values for nonzero E[y]’s!

Note: y=0 iff log(y+1)=0



Aside: DHARMa also has tests for 
overdispersion and zero-inflation
## from library(DHARMa):

> par(mfrow=c(2,1))

> testDispersion(glm.2)

##

## ratioObsSim = 8.3961, p-value < 2.2e-16

## alternative hypothesis: two.sided

> testZeroInflation(glm.2)

## ratioObsSim = 20.632, p-value < 2.2e-16

## alternative hypothesis: two.sided

◼ The histogram is distribution 
under H0: glm.2 correct

◼ The red line indicates value from 
the data

◼ P-value = area to right of red line

◼ Clearly our data is overdispersed
and zero-inflated
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Poisson Regression – Zero Inflation
◼ In cases like this it can also be useful to 

separately model 

❑ What distinguishes zero-cockroach buildings from 
others; and 

❑ what drives cockroach counts in the buildings that 
have them

◼ We will try to combine a logistic regression 
analysis and a Poisson regression analysis to try 
to answer these questions

❑ This is a crude approximation to the “right” model, 
which distinguishes “real” zeros from “sampling zeros”
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Crude “Model” for Zero Inflation
> some.cockroaches <-

ifelse(y>0, 1, 0)

> zero.fit <-
glm(some.cockroaches ~ 
log(roach1+1) + treatment + 
senior + exposure2, 
family=binomial)

> display(zero.fit)

##                 est       se

## (Intercept)   -0.02     0.61

## log(roach1+1)  0.75     0.11

## treatment     -0.85     0.33

## senior        -0.69     0.33

## exposure2     -0.06     0.50

> glm.3 <- glm (y ~ log(roach1+1) + 
treatment + senior, 
family=poisson,

offset=log(exposure2),
subset = (y>0))

> display(glm.3)

##                   est       se

## (Intercept)      2.33     0.04  

## log(roach1+1)    0.47     0.01  

## treatment       -0.60     0.03  

## senior          -0.24     0.03 

Everything is a significant predictor,

except for # of trap-days

It is somewhat weird to eliminate all 

the y=0 cases from data for a Poisson

model – this is a real weakness of this

approach.  Better would be to include

some y’s that are “zero by chance” 

according to the zero.fit model.
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Poisson Regression – Zero Inflation

◼ A building with no roaches at the start of the experiment  
(roach1=0) in the treatment group (treatment=1) that is 
a seniors‘ building (senior=1) with 1.5 trap-days 
(exposure2=1.5) has probability

invlogit(-0.02 + (0)*(0.75) + (-0.85)*(1) + 

(-0.69)*(1) + (1.5)*(-0.06)) = 0.16

of having roaches at the end of the experiment

◼ Given that the building does have roaches at the end, the 
expected number of roaches is

exp(log(1.5) + 2.33 + (0)*(0.47) + 

(1)*(-0.60) + (1)*(-0.24)) = 6.65



Modeling multinomial data
◼
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A Cumulative Logit Model

◼
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A Baseline Category Logit Model

◼

3210/26/2021
vglm from library(VGAM) offers both of these models and more… see 

“multinomial regression R_examples.pdf” in this week’s folder...

unordered categories



Let’s try on a small data set with 
ordered categories…
◼ Data from 1991 General Social Survey1

◼ Constructing the data set:
> party <- factor(rep(c("Rep","Dem"), c(407, 428)), 

+                levels=c("Rep","Dem"))  

> rpi <- c(30, 46, 148, 84, 99) # cell counts; sum(rpi)=407

> dpi <- c(80, 81, 171, 41, 55) # cell counts; sum(dpi)=428

> ideology <- c("Very Liberal","Slightly Liberal","Moderate",

+ "Slightly Conservative","Very Conservative")

> pol.ideology <- factor(c(rep(ideology, rpi), 

+                          rep(ideology, dpi)), levels = ideology)

> dat <- data.frame(party, pol.ideology)

> table(dat) # check that “dat” matches the table above…

3310/26/2021
1Source: Agresti, A. (1996). An Introduction 

to Categorical Data Analysis. NY: Wiley.

This forces R to put the 

levels in the order we 

want, instead of 

alphabetical order



Fitting the model…
> library(MASS)

> summary(pom <- polr(pol.ideology ~ party, data=dat))

Call:

polr(formula = pol.ideology ~ party, data = dat)

Coefficients:

Value Std. Error t value

partyDem -0.9745     0.1292  -7.545

Intercepts:

Value    Std. Error t value 

Very Liberal|Slightly Liberal            -2.4690   0.1318   -18.7363

Slightly Liberal|Moderate                -1.4745   0.1090   -13.5314

Moderate|Slightly Conservative            0.2371   0.0942     2.5165

Slightly Conservative|Very Conservative   1.0695   0.1039    10.2923

Residual Deviance: 2474.985 

AIC: 2484.985 

3410/26/2021

5 categories, 4 boundaries



Predictions…
> predict(pom,newdata = data.frame(party="Dem"),type="probs")

Very Liberal      Slightly Liberal              Moderate 

0.1832505             0.1942837             0.3930552 

Slightly Conservative     Very Conservative 

0.1147559             0.1146547

> predict(pom,newdata = data.frame(party="Rep"),type="probs")

Very Liberal      Slightly Liberal              Moderate 

0.07806044            0.10819225            0.37275214 

Slightly Conservative     Very Conservative 

0.18550357            0.25549160 

> round(rbind(Dem=predict(pom,newdata = data.frame(party="Dem"),type="probs"),

+ Rep=predict(pom,newdata = data.frame(party="Rep"),type="probs")),2)

Very Liberal Slightly Liberal Moderate Slightly Conservative Very Conservative

Dem         0.18             0.19     0.39                  0.11              0.11

Rep         0.08             0.11     0.37                  0.19              0.26

> # compare with raw estimates...

> names(dpi) <- ideology; round(rbind(Dem=dpi/sum(dpi),Rep=rpi/sum(rpi)),2) 

Very Liberal Slightly Liberal Moderate Slightly Conservative Very Conservative

Dem         0.19             0.19     0.40                  0.10              0.13

Rep         0.07             0.11     0.36                  0.21              0.24
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Aside… What does “polr” mean?

3610/26/2021

The cumulative odds for i are proportional to the 

cumulative odds for j, uniformly in the cutoff k

▪ polr = “proportional odds logistic regression”



Is the polr model valid for this data?
◼ Compare with the “baseline category logit” model 

that has a full 8 parameters, vs. 5 from polr().
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> library(nnet)

> summary(mlm <- multinom(pol.ideology ~ party, data=dat))

Call:

multinom(formula = pol.ideology ~ party, data = dat)

Coefficients:

(Intercept)   partyDem

Slightly Liberal        0.4274512 -0.4150328

Moderate                1.5960039 -0.8363535

Slightly Conservative   1.0296159 -1.6980658

Very Conservative       1.1939108 -1.5685961

Std. Errors:

(Intercept)  partyDem

Slightly Liberal        0.2346741 0.2826974

Moderate                0.2002246 0.2417393

Slightly Conservative   0.2126919 0.2865802

Very Conservative       0.2084087 0.2722426

Residual Deviance: 2471.297 

AIC: 2487.297 

> M0 <- logLik(pom)

> M1 <- logLik(mlm)

> (G <- -2*(M0[1] – M1[1]))

[1] 3.687678

> pchisq(G,8-5,lower.tail = FALSE)

[1] 0.2972241

Polr model (M0) ok…
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Summary
◼ Linear Regression, Logistic Regression

◼ Generalized Linear Models (GLM)

◼ Quick Taste of Ordered Logistic Regression

◼ Poisson Regression

❑ Exposure and Offsets

❑ Overdispersion

❑ Zero-inflation

◼ Quick Taste of Ordered Logistic Regression

❑ Many ways to model multinomial data

❑ Example


