
6Diagnosing Problems in
Linear and Generalized

Linear Models

R egression diagnostics are methods for determining whether a fitted regres-
sion model adequately represents the data. We use the term regression

broadly in this chapter to include methods for both linear and generalized lin-
ear models, and many of the methods described here are also appropriate for
other regression models. Because most of the methods for diagnosing prob-
lems in linear models extend naturally to generalized linear models, we deal
at greater length with linear-model diagnostics, briefly introducing the exten-
sions to GLMs.

Linear models fit by least squares make strong and sometimes unrealis-
tic assumptions about the structure of the data. When these assumptions are
violated, least-squares estimates can behave badly and may even completely
misrepresent the data. Regression diagnostics can reveal such problems and
often point the way toward solutions.

Section 6.1 describes various kinds of residuals in linear models, and
Section 6.2 introduces basic scatterplots of residuals, along with related plots
that are used to assess the fit of a model to data. The remaining sections
are specialized to particular problems, describing methods for diagnosis and
at least touching on possible remedies. Section 6.3 introduces methods for
detecting unusual data, including outliers, high-leverage points, and influen-
tial observations. Section 6.4 returns to the topic of transformations of the
response and predictors (discussed previously in Section 3.4) to correct prob-
lems such as nonnormally distributed errors and nonlinearity. Section 6.5
deals with nonconstant error variance. Section 6.6 describes the extension of
diagnostic methods to GLMs such as logistic and Poisson regression. Finally,
diagnosing collinearity in regression models is the subject of Section 6.7.

All the methods discussed in this chapter either are available in standard R
functions or are implemented in the car package. A few functions that were
once in earlier versions of the car package are now a standard part of R.
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286 Chapter 6 Diagnosing Problems in Linear and Generalized Linear Models

One goal of the car package is to make diagnostics for linear models and
GLMs readily available in R. It is our experience that diagnostic methods are
much more likely to be used when they are convenient. For example, added-
variable plots (described in Section 6.3.3) are constructed by regressing a par-
ticular regressor and the response on all the other regressors, computing the
residuals from these auxiliary regressions, and plotting one set of residuals
against the other. This is not hard to do in R, although the steps are some-
what more complicated when there are factors, interactions, or polynomial or
regression spline terms in the model. The avPlots function in the car pack-
age constructs all the added-variable plots for a linear model or GLM and
adds enhancements such as a least-squares line and point identification.

6.1 Residuals

Residuals of one sort or another are the basis of most diagnostic methods. Sup-
pose that we specify and fit a linear model assuming constant error variance
σ 2. The ordinary residuals are given by the differences between the responses
and the fitted values:

ei = yi − ŷi, i = 1, . . . , n (6.1)

In OLS regression, the residual sum of squares is equal to
∑

e2
i . If the regres-

sion model includes an intercept, then
∑

ei = 0. The ordinary residuals are
uncorrelated with the fitted values or indeed any linear combination of the
regressors, and so patterns in the plots of ordinary residuals versus linear com-
binations of the regressors can occur only if one or more assumptions of the
model are inappropriate.

If the regression model is correct, then the ordinary residuals are random
variables with mean 0 and with variance given by

Var( ei)= σ 2( 1− hi) (6.2)

The quantity hi is called a leverage or hat-value. In linear models with fixed
predictors, hi is a nonrandom value constrained to be between 0 and 1, depend-
ing on the location of the predictors for a particular observation relative to the
other observations.1 Large values of hi correspond to observations with rela-
tively unusual xi values, whereas a small hi value corresponds to observations
close to the center of the regressor space (see Section 6.3.2).

Ordinary residuals for observations with large hi have smaller variances.
To correct for the nonconstant variance of the residuals, we can divide them
by an estimate of their standard deviation. Letting σ̂ 2 represent the estimate
of σ 2, the standardized residuals are

eSi = ei

σ̂
√

1− hi
(6.3)

1In a model with an intercept, the minimum hat-value is 1/n.
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While the eSi have constant variance, they are no longer uncorrelated with the
fitted values or linear combinations of the regressors, so using standardized
residuals in plots is not an obvious improvement.

Studentized residuals are given by

eTi = ei

σ̂ (−i)
√

1− hi
(6.4)

where σ̂ 2
(−i) is the estimate of σ 2 computed from the regression without the ith

observation. Like the standardized residuals, the Studentized residuals have
constant variance. In addition, if the original errors are normally distributed,
then eTi follows a t distribution with n − k − 2 df and can be used to test for
outliers (see Section 6.3). One can show that

σ̂ 2
(−i) =

σ̂ 2( n− k − 1− e2
Si)

n− k − 2
(6.5)

and so computing the Studentized residuals doesn’t really require refitting the
regression without the ith observation.

If the model is fit by WLS regression with known positive weights wi, then
the ordinary residuals are replaced by the Pearson residuals:

ePi = √wiei (6.6)

In WLS estimation, the residual sum of squares is
∑

e2
Pi. If we construe OLS

regression to have implicit weights of wi = 1 for all i, then Equation 6.1
is simply a special case of Equation 6.6, and we will generally use the term
Pearson residuals to cover both of these cases. The standardized and Studen-
tized residuals are unaffected by weights because the weights cancel out in the
numerator and denominator of their formulas.

The generic R function residuals can compute various kinds of resid-
uals. The default for a linear model is to return the ordinary residuals even if
weights are present. Setting the argument type="pearson" (with a low-
ercase p) returns the Pearson residuals, which produces correctly weighted
residuals if weights are present and ordinary residuals if there are no weights.
Pearson residuals are the default when residuals is used with a GLM. The
functions rstandard and rstudent return the standardized and Studen-
tized residuals, respectively. The function hatvalues returns the hat-values.

6.2 Basic Diagnostic Plots

The car package includes a number of functions that produce plots of resid-
uals and related quantities. The variety of plots reflects the fact that no one
diagnostic graph is appropriate for all purposes.
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6.2.1 PLOTTING RESIDUALS

Plots of residuals versus fitted values and versus each of the predictors in
turn are the most basic diagnostic graphs. If a linear model is correctly speci-
fied, then the Pearson residuals are independent of the fitted values and the pre-
dictors, and these graphs should be null plots, with no systematic features—in
the sense that the conditional distribution of the residuals (on the vertical axis
of the graph) should not change with the fitted values or with a predictor (on
the horizontal axis). The presence of systematic features generally implies a
failure of one or more assumptions of the model. Of interest in these plots are
nonlinear trends, trends in variation across the graph, and isolated points.

Plotting residuals against fitted values and predictors is useful for revealing
problems but less useful for determining the exact nature of the problem. Con-
sequently, we will employ other diagnostic graphs to suggest improvements to
a model.

Consider, for example, a modification of the model used in Section 4.2.2
for the Canadian occupational-prestige data:

> prestige.mod.2 <- lm(prestige ˜ education + income + type,
+ data=Prestige)

In Section 3.4.7, we had suggested replacing income by its logarithm, and we
followed that advice in Section 4.2.2. Here, we naively use income without
transformation, in part to demonstrate what happens when a predictor needs
transformation.2

The standard residual plots for this model are given by the residu-
alPlots function in the car package:

> residualPlots(prestige.mod.2)

Test stat Pr(>|t|)
education -0.684 0.496
income -2.886 0.005
type NA NA
Tukey test -2.610 0.009

This command produces scatterplots of the Pearson residuals versus each of
the predictors and versus the fitted values (Figure 6.1).

The most common diagnostic graph in linear regression is the plot of resid-
uals versus the fitted values, shown at the bottom right of Figure 6.1. The plot
has a curved general trend, suggesting that the model we fit is not adequate
to describe the data. The plot of residuals versus education at the top left,
however, resembles a null plot, in which no particular pattern is apparent. A
null plot is consistent with an adequate model, but as is the case here, one null
plot is insufficient to provide evidence of an adequate model, and indeed one
nonnull plot is enough to suggest that the specified model does not match the
data. The plot of residuals versus income at the top right is also curved, as

2Our experience in statistical consulting suggests that this kind of naivete is common.
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Figure 6.1 Basic residual plots for the regression of prestige on
education, income, and type in the Prestige data set.

might have been anticipated in light of the results in Section 3.4.7. The resid-
ual plot for a factor such as type, at the bottom left, is a set of boxplots of
the residuals at the various levels of the factor. In a null plot, the boxes should
all have about the same center and spread, as is more or less the case here.

To help examine these residual plots, a lack-of-fit test is computed for each
numeric predictor, and a curve is added to the graph. The lack-of-fit test for
education, for example, is the t test for the regressor (education)2

added to the model, for which the corresponding p value rounds to .50, indi-
cating no lack-of-fit of this type. For income, the lack-of-fit test has the p
value .005, clearly confirming the nonlinear pattern visible in the graph. The
lines shown on the plot are the fitted quadratic regressions of the Pearson
residuals on the numeric predictors.

For the plot of residuals versus fitted values, the test—called Tukey’s test for
nonadditivity (Tukey, 1949)—is obtained by adding the squares of the fitted
values to the model and refitting. The significance level for Tukey’s test is
obtained by comparing the statistic with the standard-normal distribution. The
test confirms the visible impression of curvature in the residual plot, further
reinforcing the conclusion that the fitted model is not adequate.

The residualPlots function shares many arguments with other
graphics functions in the car package; see ?residualPlots for details.
In residualPlots, all arguments other than the first are optional. The
argument id.n could be set to a positive number to identify automatically
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the id.n most unusual cases, which by default are the cases with the largest
(absolute) residuals (see Section 3.5). There are additional arguments to con-
trol the layout of the plots and the type of residual plotted. For example, setting
type="rstudent" would plot Studentized residuals rather than Pearson
residuals. Setting smooth=TRUE, quadratic=FALSE would display a
lowess smooth rather than a quadratic curve on each plot, although the test
statistics always correspond to the fitting quadratics.

If you want only the plot of residuals against fitted values, you can use

> residualPlots(prestige.mod.2, ˜ 1, fitted=TRUE)

whereas the plot against education only can be obtained with

> residualPlots(prestige.mod.2, ˜ education, fitted=FALSE)

The second argument to residualPlots—and to other functions in the
car package that can produce graphs with several panels—is a one-sided for-
mula that specifies the predictors against which to plot residuals. The for-
mula ˜ . is the default, to plot against all the available predictors; ˜ 1 plots
against none of the predictors, and in the current context produces a plot
against fitted values only; ˜ . - income plots against all predictors but
income. Because the fitted values are not part of the formula that defined
the model, there is a separate fitted argument, which is set to TRUE (the
default) to include a plot of residuals against fitted values and FALSE to
exclude it.

We could of course draw residual plots using plot or scatterplot, but
we would have to be careful if there are missing data. In the current example,
the value of type is missing for a few of the cases, and so the regression was
computed using only the complete cases. Consequently, the vector of residuals
is shorter than the vector of values for, say, income. We can circumvent this
problem by setting option(na.action=na.exclude) (as explained in
Section 4.8.5). Then the residual vector will include a value for each observa-
tion in the original data set, equal to NA for observations with missing values
on one or more variables in the model.

6.2.2 MARGINAL MODEL PLOTS

A variation on the basic residual plot is the marginal model plot, proposed
by Cook and Weisberg (1997):

> marginalModelPlots(prestige.mod.2)

These plots (shown in Figure 6.2) all have the response variable, in this case
prestige, on the vertical axis, while the horizontal axis is given in turn by
each of the numeric predictors in the model and the fitted values. The plots of
the response versus individual predictors display the conditional distribution
of the response given each predictor, ignoring the other predictors; these are
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Figure 6.2 Marginal-model plots for the regression of prestige on edu-
cation, income, and type in the Prestige data set.

marginal plots in the sense that they show the marginal relationship between
the response and each predictor. The plot versus fitted values is a little differ-
ent in that it displays the conditional distribution of the response given the fit
of the model.

We can estimate a regression function for each of the marginal plots by
fitting a smoother to the points in the plot. The marginalModelPlots
function uses a lowess smooth, as shown by the solid line on the plot.

Now imagine a second graph that replaces the vertical axis with the fitted
values from the model. If the model is appropriate for the data, then, under
fairly mild conditions, the smooth fit to this second plot should also estimate
the conditional expectation of the response given the predictor on the hori-
zontal axis. The second smooth is also drawn on the marginal model plot, as a
dashed line. If the model fits the data well, then the two smooths should match
on each of the marginal model plots; if any pair of smooths fails to match, then
we have evidence that the model does not fit the data well.

An interesting feature of the marginal model plots in Figure 6.2 is that even
though the model that we fit to the Prestige data specifies linear partial
relationships between prestige and each of education and income, it
is able to reproduce nonlinear marginal relationships for these two predictors.
Indeed, the model, as represented by the dashed lines, does a fairly good job of
matching the marginal relationships represented by the solid lines, although
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the systematic failures discovered in the residual plots are discernable here as
well.

Marginal model plots can be used with any fitting or modeling method that
produces fitted values, and so they can be applied to some problems where the
definition of residuals is unclear. In particular, marginal model plots general-
ize nicely to GLMs.

The marginalModelPlots function has an SD argument, which if set
to TRUE adds estimated standard deviation lines to the graph. The plots can
therefore be used to check both the regression function, as illustrated here,
and the assumptions about variance. Other arguments to the marginal-
ModelPlots function are similar to those for residualPlots.

6.2.3 ADDED-VARIABLE PLOTS

The marginal model plots of the previous section display the marginal
relationships—both directly observed and implied by the model—between
the response and each regressor ignoring the other regressors in the model.
In contrast, added-variable plots, also called partial-regression plots, display
the partial relationship between the response and a regressor, adjusted for all
the other regressors.

Suppose that we have a regression problem with response y and regressors
x1, . . . , xk .3 To draw the added-variable plot for one of the regressors—say the
first, x1—we must conduct the following two auxiliary regressions:

1. Regress y on all the regressors excluding x1. The residuals from this
regression are the part of y that is not explained by all the regressors
except x1.

2. Regress x1 on the other regressors and again obtain the residuals. These
residuals represent the part of x1 that is not explained by the other
regressors; put another way, the residuals are the part of x1 that remains
when we condition on the other regressors.

The added-variable plot for x1 is simply a scatterplot with the residuals from
Step 1 on the vertical axis and the residuals from Step 2 on the horizontal axis.

The avPlots function in the car package works both for linear mod-
els and GLMs. It has arguments for controlling which plots are drawn, point
labeling, and plot layout, and these arguments are the same as for the resid-
ualPlots function (described in Section 6.2.1).

Added-variable plots for the Canadian occupational-prestige regression (in
Figure 6.3) are produced by the following command:

> avPlots(prestige.mod.2, id.n=2, id.cex=0.6)

3Although it is not usually of interest, when there is an intercept in the model, it is also possi-
ble to construct an added-variable plot for the constant regressor, x0, which is equal to 1 for every
observation.
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Added−Variable Plots

Figure 6.3 Added-variable plots for the regression of prestige on edu-
cation, income, and type in the Prestige data set.

The argument id.n=2 will result in identifying up to four points in each
graph, the two that are farthest from the mean on the horizontal axis and the
two with the largest absolute residuals from the fitted line. Because the case
labels in the Prestige data set are very long, we used id.cex=0.6 to
reduce the printed labels to 60% of their default size.

The added-variable plot has several interesting and useful properties:

• The least-squares line on the added-variable plot for the regressor xj has
slope bj, equal to the partial slope for xj in the full regression. Thus,
for example, the slope in the added-variable plot for education is
b1 = 3.67, and the slope in the added-variable plot for income is
b2 = 0.00101. (The income slope is small because the unit of income—
$1 of annual income—is small.)

• The residuals from the least-squares line in the added-variable plot are
the same as the residuals ei from the regression of the response on all
of the regressors.

• Because the positions on the horizontal axis of the added-variable plot
show values of xj conditional on the other regressors, points far to the
left or right represent observations for which the value of xj is unusual
given the values of the other regressors. Likewise, the variation of the
variable on the horizontal axis is the conditional variation of xj, and the
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added-variable plot therefore allows us to visualize the precision of the
estimation of bj.

• For factors, an added-variable plot is produced for each of the contrasts
that are used to define the factor, and thus, if we change the way the
contrasts are coded for a factor, the corresponding added-variable plots
will change as well.

The added-variable plot allows us to visualize the effect of each regressor
after adjusting for all the other regressors in the model. In Figure 6.3, the plot
for income has a positive slope, but the slope appears to be influenced by
two high-income occupations (physicians and general managers), which pull
down the regression line at the right. There don’t seem to be any particularly
noteworthy points in the added-variable plots for the other regressors.

Although added-variable plots are useful for studying the impact of obser-
vations on regression coefficients (see Section 6.3.3), they can prove mislead-
ing when diagnosing other sorts of problems, such as nonlinearity. A further
disadvantage of the added-variable plot is that the variables on both axes are
sets of residuals, and so neither the response nor the regressors are displayed
directly.

Sall (1990) and Cook and Weisberg (1991) generalize added-variable plots
to terms with more than 1 df , such as a factor or polynomial regressors. Fol-
lowing Sall, we call these graphs leverage plots. For terms with 1 df , the
leverage plots are very similar to added-variable plots, except that the slope in
the plot is always equal to 1, not to the corresponding regression coefficient.
Although leverage plots can be misleading in certain circumstances,4 they can
be useful for locating groups of cases that are jointly high-leverage or influ-
ential. Leverage, influence, and related ideas are explored in the next section.
There is a leveragePlots function in the car package, which works only
for linear models.

6.3 Unusual Data

Unusual data can wreak havoc with least-squares estimates but may prove
interesting in their own right. Unusual data in regression include outliers,
high-leverage points, and influential observations.

6.3.1 OUTLIERS AND STUDENTIZED RESIDUALS

Regression outliers are y values that are unusual conditional on the values
of the predictors. An illuminating way to search for outliers is via the mean-
shift outlier model:

yi = α + β1xi1 + · · · + βkxik + γ di + εi

4For example, if a particular observation causes one dummy-regressor coefficient to get larger and
another smaller, these changes can cancel each other out in the leverage plot for the corresponding
factor, even though a different pattern of results for the factor would be produced by removing the
observation.
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where di is a dummy regressor coded 1 for observation i and 0 for all other
observations. If γ �= 0, then the conditional expectation of the ith observation
has the same dependence on x1, . . . , xk as the other observations, but its inter-
cept is shifted from α to α + γ . The t statistic for testing the null hypothesis
H0: γ = 0 against a two-sided alternative has n − k − 2 df if the errors are
normally distributed and is the appropriate test for a single mean-shift out-
lier at observation i. Remarkably, this t statistic turns out to be identical to
the ith Studentized residual, eTi (Equation 6.4, p. 287), and so we can get the
test statistics for the n different null hypotheses, H0i: case i is not a mean-shift
outlier, i = 1, . . . , n, at minimal computational cost.

Our attention is generally drawn to the largest absolute Studentized resid-
ual, and this presents a problem: Even if the Studentized residuals were inde-
pendent, which they are not, there would be an issue of simultaneous infer-
ence entailed by picking the largest of n test statistics. The dependence of the
Studentized residuals complicates the issue. We can deal with this problem
(a) by a Bonferroni adjustment of the p value for the largest absolute Stu-
dentized residual, multiplying the usual two-tail p by the sample size, n, or
(b) by constructing a quantile-comparison plot of the Studentized residuals
with a confidence envelope that takes their dependence into account.

We reconsider Duncan’s occupational-prestige data (introduced in
Section 1.2), regressing prestige on occupational income and educa-
tion levels:

> mod.duncan <- lm(prestige ˜ income + education, data=Duncan)

The generic qqPlot function in the car package has a method for linear
models, plotting Studentized residuals against the corresponding quantiles of
t( n−k−2). By default, qqPlot generates a 95% pointwise confidence enve-
lope for the Studentized residuals, using a parametric version of the bootstrap,
as suggested by Atkinson (1985):5

> qqPlot(mod.duncan, id.n=3)

[1] "minister" "reporter" "contractor"

The resulting plot is shown in Figure 6.4. Setting the argument id.n=3, the
qqPlot function returns the names of the three observations with the largest
absolute Studentized residuals (see Section 3.5 on point identification); in this
case, only one observation, minister, strays slightly outside of the con-
fidence envelope. If you repeat this command, your plot may look a little
different from ours because the envelope is computed by simulation. The dis-
tribution of the Studentized residuals looks heavy-tailed compared to the ref-
erence t distribution: Perhaps a method of robust regression would be more
appropriate for these data.6

5Bootstrap methods in R are described in the online appendix to the book.
6R functions for robust and resistant regression are described in Section 4.3.7 and in the online
appendix to the text.



296 Chapter 6 Diagnosing Problems in Linear and Generalized Linear Models

−2 −1 0 1 2

−2
−1

0
1

2
3

t Quantiles
S

tu
de

nt
iz

ed
 R

es
id

ua
ls

(m
od

.d
un

ca
n)

●

●
● ●

●

●
●●●

●
●●●●●●●

●●
●●

●●●●
●●●

●●●●
●●●

●●●●
●●

●

●
●

●minister

reporter

contractor

Figure 6.4 Quantile-comparison plot of Studentized residuals from Dun-
can’s occupational-prestige regression, showing the pointwise 95% simu-
lated confidence envelope.

The outlierTest function in the car package locates the largest
Studentized residual in absolute value and computes the Bonferroni-corrected
t test:

> outlierTest(mod.duncan)

No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:

rstudent unadjusted p-value Bonferonni p
minister 3.135 0.003177 0.1430

The Bonferroni-adjusted p value is not statistically significant, and so it isn’t
surprising that the largest Studentized residual in a sample of size n = 45 is
as large as 3.135.

6.3.2 LEVERAGE: HAT-VALUES

Observations that are relatively far from the center of the regressor space,
taking account of the correlational pattern among the regressors, have poten-
tially greater influence on the least-squares regression coefficients; such points
are said to have high leverage. The most common measures of leverage are
the hi, or hat-values.7 The hi are bounded between 0 and 1 (in models with
an intercept, they are bounded between 1/n and 1), and their sum,

∑
hi, is

always equal to the number of coefficients in the model, including the inter-
cept. Problems in which there are a few very large hi can be troublesome: In
particular, large-sample normality of some linear combinations of the regres-
sors is likely to fail, and high-leverage observations may exert undue influence
on the results (see below).

7* The name hat-values comes from the relationship between the observed vector of responses and
the fitted values. The vector of fitted values is given by ŷ = Xb = X( X′X)−1X′y = Hy, where
H = {hij} = X( X′X)−1X′, called the hat-matrix, projects y into the subspace spanned by the columns
of the model matrix X. Because H = H′H, the hat-values hi are simply the diagonal entries of the
hat-matrix.
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Figure 6.5 Index plots of diagnostic statistics for Duncan’s occupational-
prestige regression.

The hatvalues function works for both linear models and GLMs. One
way of examining the hat-values and other individual-observation diagnostic
statistics is to construct index plots, graphing the statistics against the corre-
sponding observation indices.

For example, the following command uses the car function influen-
ceIndexPlot to produce Figure 6.5, which includes index plots of Studen-
tized residuals, the corresponding Bonferroni p values for outlier testing, the
hat-values, and Cook’s distances (discussed in the next section) for Duncan’s
occupational-prestige regression:

> influenceIndexPlot(mod.duncan, id.n=3)

The occupations railroad engineer (RR.engineer), conductor, and min-
ister stand out from the rest in the plot of hat-values, indicating that their
regressor values are unusual relative to the other occupations. In the plot of
p values for the outlier tests, cases for which the Bonferroni bound is bigger
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than 1 are set equal to 1, and here only one case (minister) has a Bonfer-
roni p value much less than 1.

6.3.3 INFLUENCE MEASURES

An observation that is both outlying and has high leverage exerts influence
on the regression coefficients, in the sense that if the observation is removed,
the coefficients change considerably. As usual, let b be the estimated value of
the coefficient vector β, and as new notation, define b(−i) to be the estimate
of β but now computed without the ith case.8 Then the difference b(−i) − b
directly measures the influence of the ith observation on the estimate of β. If
this difference is small, then the influence of observation i is small, whereas
if the difference is large, then its influence is large.

COOK’S DISTANCE

It is convenient to summarize the size of the difference b(−i)−b by a single
number, and this can be done in several ways. The most common summary
measure of influence is Cook’s distance (Cook, 1977), Di, which is just a
weighted sum of squares of the differences between the individual elements of
the coefficient vectors.9 Interestingly, Cook’s distance can be computed from
diagnostic statistics that we have already encountered:

Di = e2
Si

k + 1
× hi

1− hi

where e2
Si is the squared standardized residual (Equation 6.3, p. 286) and hi is

the hat-value for observation i. The first factor may be thought of as a measure
of outlyingness and the second as a measure of leverage. Observations for
which Di is large are potentially influential cases. If any noteworthy Di are
apparent, then it is prudent to remove the corresponding cases temporarily
from the data, refit the regression, and see how the results change. Because an
influential observation can affect the fit of the model at other observations, it
is best to remove observations one at a time, refitting the model at each step
and reexamining the resulting Cook’s distances.

The generic function cooks.distance has methods for linear models
and GLMs. Cook’s distances are also plotted, along with Studentized residuals
and hat-values, by the influenceIndexPlot function, as illustrated for
Duncan’s regression in Figure 6.5. The occupation minister is the most
influential according to Cook’s distance, and we therefore see what happens
when we delete this case and refit the model:
8If vector notation is unfamiliar, simply think of b as the collection of estimated regression coeffi-
cients, b0, b1, . . . , bk .
9* In matrix notation,

Di =
(
b(−i) − b

)′
X′X

(
b(−i) − b

)
( k + 1) σ̂ 2

.
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Figure 6.6 Plot of hat-values, Studentized residuals, and Cook’s distances
for Duncan’s occupational-prestige regression. The size of the circles is pro-
portional to Cook’s Di.

> mod.duncan.2 <- update(mod.duncan,
+ subset= rownames(Duncan) != "minister")
> compareCoefs(mod.duncan, mod.duncan.2)

Call:
1:lm(formula = prestige ˜ income + education, data = Duncan)
2:lm(formula = prestige ˜ income + education, data = Duncan,

subset = rownames(Duncan) != "minister")
Est. 1 SE 1 Est. 2 SE 2

(Intercept) -6.0647 4.2719 -6.6275 3.8875
income 0.5987 0.1197 0.7316 0.1167
education 0.5458 0.0983 0.4330 0.0963

The compareCoefs function displays the estimates from one or more fitted
models in a compact table. Removing minister increases the coefficient
for income by about 20% and decreases the coefficient for education by
about the same amount. Standard errors are much less affected. In other prob-
lems, removing an observation can change significant results to insignificant
ones, and vice-versa.

The influencePlot function in the car package provides an alternative
to index plots of diagnostic statistics:

> influencePlot(mod.duncan, id.n=3)

StudRes Hat CookD
minister 3.135 0.17306 0.7526
reporter -2.397 0.05439 0.3146
conductor -1.704 0.19454 0.4729
contractor 2.044 0.04326 0.2419
RR.engineer 0.809 0.26909 0.2845

This command produces a bubble-plot, shown in Figure 6.6, which combines
the display of Studentized residuals, hat-values, and Cook’s distances, with the
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Figure 6.7 Added-variable plots for Duncan’s occupational-prestige
regression.

areas of the circles proportional to Cook’s Di.10 As usual the id.n argument
is used to label points. In this case, the id.n points with the largest hat-
values, Cook’s distances, or absolute Studentized residuals will be flagged, so
more than id.n points in all may be labeled.

We invite the reader to continue the analysis by examining the influence
diagnostics for Duncan’s regression after the observation minister has been
removed.

ADDED-VARIABLE PLOTS AS INFLUENCE DIAGNOSTICS

Added-variable plots (Section 6.2.3) are a useful diagnostic for finding
potentially jointly influential points, which will correspond to sets of points
that are out of line with the rest of the data and are at the extreme left or right
of the horizontal axis. Figure 6.7, for example, shows the added-variable plots
for income and education in Duncan’s regression:

> avPlots(mod.duncan, id.n=3)

The observations minister, conductor, and RR.engineer (railroad
engineer) have high leverage on both coefficients. The cases minister and
conductor also work together to decrease the income slope and increase
the education slope; RR.engineer, on the other hand, is more in
line with the rest of the data. Removing both minister and conductor
changes the regression coefficients dramatically—much more so than deleting
minister alone:

> mod.duncan.3 <- update(mod.duncan,
+ subset = !(rownames(Duncan) %in% c("minister", "conductor")))
> compareCoefs(mod.duncan, mod.duncan.2, mod.duncan.3, se=FALSE)

10In Chapter 8, we describe how to write a similar function as a preliminary example of programming
in R.
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Call:
1:lm(formula = prestige ˜ income + education, data = Duncan)
2:lm(formula = prestige ˜ income + education, data = Duncan,

subset = rownames(Duncan) != "minister")
3:lm(formula = prestige ˜ income + education, data = Duncan,

subset = !(rownames(Duncan) %in% c("minister", "conductor")))
Est. 1 Est. 2 Est. 3

(Intercept) -6.065 -6.628 -6.409
income 0.599 0.732 0.867
education 0.546 0.433 0.332

INFLUENCE SEPARATELY FOR EACH COEFFICIENT

Rather than summarizing influence by looking at all coefficients simultane-
ously, we could create k + 1 measures of influence by looking at individual
differences:

dfbetaij = b(−i)j − bj for j = 0, . . . , k

where bj is the coefficient computed using all the data and b(−i)j is the same
coefficient computed with case i omitted. As with Di, computation of dfbetaij

can be accomplished efficiently without having to refit the model. The dfbetaij

are expressed in the metric (units of measurement) of the coefficient bj. A
standardized version, dfbetasij, divides dfbetaij by an estimate of the standard
error of bj computed with observation i removed.

The dfbeta function in R takes a linear-model or GLM object as its
argument and returns all values of dfbetaij; similarly dfbetas computes the
dfbetasij, as in the following example for Duncan’s regression:

> dfbs.duncan <- dfbetas(mod.duncan)
> head(dfbs.duncan) # first few rows

(Intercept) income education
accountant -0.0225344 6.662e-04 0.0359439
pilot -0.0254350 5.088e-02 -0.0081183
architect -0.0091867 6.484e-03 0.0056193
author -0.0000472 -6.018e-05 0.0001398
chemist -0.0658168 1.700e-02 0.0867771
minister 0.1449367 -1.221e+00 1.2630190

We could examine each column of the dfbetas matrix separately (e.g., via
an index plot), but because we are not really interested here in influence on
the regression intercept and because there are just two slope coefficients, we
instead plot influence on the income coefficient against influence on the
education coefficient (Figure 6.8 ):

> plot(dfbs.duncan[ , c("income", "education")]) # for b1 and b2
> identify(dfbs.duncan[ , "income"], dfbs.duncan[ , "education"],
+ rownames(Duncan))

[1] "minister" "conductor" "RR.engineer"
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Figure 6.8 dfbetasij values for the income and education coefficients
in Duncan’s occupational-prestige regression. Three points were identified
interactively.

The negative relationship between the dfbetasij values for the two regressors
reflects the positive correlation of the regressors themselves. Two pairs of val-
ues stand out: Consistent with our earlier remarks, observations minister
and conductormake the income coefficient smaller and the education
coefficient larger. We also identified the occupation RR.engineer in the
plot.

6.4 Transformations After Fitting a Regression Model

Suspected outliers and possibly cases with high leverage should be studied
individually to decide whether or not they should be included in an analy-
sis. Influential cases can cause changes in the conclusions of an analysis and
also require special treatment. Other systematic features in residual plots—
for example, curvature or apparent nonconstant variance—require action on
the part of the analyst to modify the structure of the model to match the data
more closely. Apparently distinct problems can also interact: For example, if
the errors have a skewed distribution, then apparent outliers may be produced
in the direction of the skew. Transforming the response to make the errors
less skewed can solve this problem. Similarly, properly modeling a nonlinear
relationship may bring apparently outlying observations in line with the rest
of the data.

Transformations were introduced in Section 3.4 in the context of examining
data and with the understanding that regression modeling is often easier and
more effective when the predictors behave as if they were normal random
variables. Transformations can also be used after fitting a model, to improve a
model that does not adequately represent the data. The methodology in these
two contexts is very similar.
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6.4.1 TRANSFORMING THE RESPONSE

NONNORMAL ERRORS

Departures from the assumption of normally distributed errors are probably
the most difficult problem to diagnose. The only data available for studying the
error distribution are the residuals. Even for an otherwise correctly specified
model, the residuals can have substantially different variances, can be strongly
correlated, and tend to behave more like a normal sample than do the original
errors, a property that has been called supernormality (Gnanadesikan, 1977).

A quantile-comparison plot of Studentized residuals against the t distribu-
tion (as described in Section 6.3.1) is useful in drawing our attention to the
tail behavior of the residuals, possibly revealing heavy-tailed or skewed dis-
tributions. A nonparametric density estimate, however, does a better job of
conveying a general sense of the shape of the residual distribution.

In Section 5.5, we fit a Poisson regression to Ornstein’s data on interlock-
ing directorates among Canadian corporations, regressing the number of inter-
locks maintained by each firm on the firm’s assets, nation of control, and sector
of operation. Because number of interlocks is a count, the Poisson model is a
natural starting point, but the original source used a least-squares regression
similar to the following:

> mod.ornstein <- lm(interlocks + 1 ˜ log(assets) + nation + sector,
+ data=Ornstein)

We put interlocks + 1 on the left-hand side of the model formula
because there are some 0 values in interlocks and we will shortly con-
sider power transformations of the response variable.

Quantile-comparison and density plots of the Studentized residuals for
Ornstein’s regression are produced by the following R commands (Figure 6.9):

> par(mfrow=c(1,2))
> qqPlot(mod.ornstein, id.n=0)
> plot(density(rstudent(mod.ornstein)))

Both tails of the distribution of Studentized residuals are heavier than they
should be, but the upper tail is even heavier than the lower one, and conse-
quently, the distribution is positively skewed. A positive skew in the distribu-
tion of the residuals can often be corrected by transforming y down the ladder
of powers. The next section describes a systematic method for selecting a nor-
malizing transformation of y.

BOX-COX TRANSFORMATIONS

The goal of fitting a model that exhibits linearity, constant variance, and
normality can in principle require three different response transformations,
but experience suggests that one transformation is often effective for all of
these tasks. The most common method for selecting a transformation of the
response in regression was introduced by Box and Cox (1964). If the response
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Figure 6.9 Quantile-comparison plot and nonparametric density estimate
for the distribution of the Studentized residuals from Ornstein’s interlocking-
directorate regression.

y is a strictly positive variable, then the Box-Cox power transformations (intro-
duced in Section 3.4.2), implemented in the bcPower function in the car
package, are often effective:

TBC( y, λ)= y(λ) =
⎧⎨
⎩

yλ − 1

λ
when λ �= 0

loge y when λ = 0
(6.7)

If y is not strictly positive, then the Yeo-Johnson family, computed by the
yjPower function, can be used in place of the Box-Cox family; alterna-
tively, we can add a start to y to make all the values positive (as explained in
Section 3.4.2).

Box and Cox proposed selecting the value of λ by analogy to the method
of maximum likelihood, so that the residuals from the linear regression of
TBC( y, λ) on the predictors are as close to normally distributed as possible.11

The car package provides two functions for estimating λ. The first, box-
Cox, is a slight generalization of the boxcox function in the MASS package
(Venables and Ripley, 2002).12 The second is the powerTransform func-
tion introduced in a related context in Section 3.4.7.

For Ornstein’s least-squares regression, for example,

> boxCox(mod.ornstein, lambda = seq(0, 0.6, by=0.1))

This command produces the graph of the profile log-likelihood function for λ

in Figure 6.10. The best estimate of λ is the value that maximizes the profile

11* If TBC( y, λ0) |x is normally distributed, then TBC( y, λ1) |x cannot be normally distributed for
λ1 �= λ0, and so the distribution changes for every value of λ. The method Box and Cox proposed
ignores this fact to get a maximum-likelihood-like estimate that turns out to have properties similar to
those of maximum-likelihood estimates.
12boxCox adds the argument family. If set to the default family="bcPower", then the function
is identical to the original boxcox. If set to family="yjPower", then the Yeo-Johnson power
transformations are used.



6.4 Transformations After Fitting a Regression Model 305

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−1
18

5
−1

17
5

−1
16

5
−1

15
5

λ

lo
g−

Li
ke

lih
oo

d

 95%

Figure 6.10 Profile log-likelihood for the transformation parameter λ in the
Box-Cox model applied to Ornstein’s interlocking-directorate regression.

likelihood, which in this example is λ ≈ 0.2. An approximate 95% confidence
interval for λ is the set of all λs for which the value of the profile log-likelihood
is within 1.92 of the maximum—from about 0.1 to 0.3.13 It is usual to round
the estimate of λ to a familiar value, such as −1,−1/2, 0, 1/3, 1/2, 1, or 2. In
this case, we would round to the cube-root transformation, λ = 1/3. Because
the response variable interlocks is a count, however, we might prefer the
log transformation (λ = 0) or the square-root transformation (λ = 1/2).

In the call to boxCox, we used only the linear-model object mod.-
ornstein and the optional argument lambda, setting the range of powers
to be searched to λ in [0, 0.6]. We did this to provide more detail in the plot,
and the default of lambda = seq(-2, 2, by=0.1) is usually recom-
mended for an initial profile log-likelihood plot. If the maximum-likelihood
estimate of λ turns out to lie outside this range, then the range can always be
extended, although transformations outside [− 2, 2] are rarely helpful.

The function powerTransform in the car package performs calcula-
tions that are similar to those of the boxCox function when applied to an lm
object, but it produces numeric rather than graphical output:

> summary(p1 <- powerTransform(mod.ornstein))

bcPower Transformation to Normality

Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
Y1 0.2227 0.0493 0.126 0.3193

Likelihood ratio tests about transformation parameters
LRT df pval

LR test, lambda = (0) 19.76 1 8.794e-06
LR test, lambda = (1) 243.40 1 0.000e+00

The maximum-likelihood estimate of the transformation parameter is λ̂ =
0.22, with the 95% confidence interval for λ running from 0.13 to 0.32—quite

13The value 1.92 is 1
2 χ2

.95( 1)= 1
2 1.962.
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a sharp estimate that even excludes the cube-root transformation, λ = 1/3.
The significance levels for the tests that λ = 0 and for λ = 1 are very small,
suggesting that neither of these transformations is appropriate for the data.

The result returned by powerTransform, which we stored in p1, can be
used to add the transformed values to the data frame:

> Ornstein1 <- transform(Ornstein,
+ y1=bcPower(interlocks + 1, coef(p1)),
+ y1round=bcPower(interlocks + 1, coef(p1, round=TRUE)))
> mod.ornstein.trans <- update(mod.ornstein, y1round ˜ .,
+ data=Ornstein1)

This command saves the transformed values with λ rounded to the convenient
value in the confidence interval that is closest to the point estimate. If none of
the convenient values are in the interval, then no rounding is done.

CONSTRUCTED-VARIABLE PLOT FOR
THE BOX-COX TRANSFORMATION

Atkinson (1985) suggests an approximate score test and diagnostic plot for
the Box-Cox transformation of y, based on the constructed variable

gi = yi

[
loge

(
yi

ỹ

)
− 1

]

where ỹ is the geometric mean of y; that is,

ỹ = ( y1 × y2 × · · · × yn)1/n= exp

(
1

n

∑
loge yi

)

The constructed variable is added as a regressor, and the t statistic for this
variable is the approximate score statistic for the transformation. Although
the score test isn’t terribly interesting in light of the ready availability of
likelihood ratio tests for the transformation parameter, an added-variable plot
for the constructed variable in the auxiliary regression—called a constructed-
variable plot—shows leverage and influence on the decision to transform y.

The boxCoxVariable function in the car package facilitates the com-
putation of the constructed variable. Thus, for Ornstein’s regression:

> mod.ornstein.cv <- update(mod.ornstein,
+ . ˜ . + boxCoxVariable(interlocks + 1))
> summary(
+ mod.ornstein.cv)$coef["boxCoxVariable(interlocks + 1)", ,
+ drop=FALSE]

Estimate Std. Error t value
boxCoxVariable(interlocks + 1) 0.6161 0.02421 25.45

Pr(>|t|)
boxCoxVariable(interlocks + 1) 3.176e-69

> avPlots(mod.ornstein.cv, "boxCoxVariable(interlocks + 1)")
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Figure 6.11 Constructed-variable plot for the Box-Cox transformation of y
in Ornstein’s interlocking-directorate regression.

We are only interested in the t test and added-variable plot for the constructed
variable, so we printed only the row of the coefficient table for that variable.
The argument drop=FALSE told R to print the result as a matrix, keeping the
labels, rather than as a vector (see Section 2.3.4). The constructed-variable
plot is obtained using avPlots, with the second argument specifying the
constructed variable. The resulting constructed-variable plot is shown in
Figure 6.11. The t statistic for the constructed variable demonstrates that there
is very strong evidence of the need to transform y, agreeing with the preferred
likelihood ratio test. The constructed-variable plot suggests that this evidence
is spread through the data rather than being dependent on a small fraction of
the observations.

INVERSE RESPONSE PLOTS

An alternative—or, better, a complement—to the Box-Cox method for trans-
forming the response is the inverse response plot, proposed by Cook and Weis-
berg (1994). While this method produces a transformation toward linearity
rather than normality, the results are often similar in cases where the Box-Cox
method can be applied. The inverse response plot provides both a numeric
estimate and a useful graphical summary; moreover, the inverse response plot
can be used even if transformations outside a power family are needed.

The inverse response plot is a special case of the inverse transformation
plots introduced in Section 3.4.6. In the current context, we plot the response
on the horizontal axis and the fitted values on the vertical axis. To illustrate,
we introduce an example that is of historical interest, because it was first used
by Box and Cox (1964). Box and Cox’s data are from an industrial experiment
to study the strength of wool yarn under various conditions. Three predictors
were varied in the experiment: len, the length of each sample of yarn in
millimeters; amp, the amplitude of the loading cycle in minutes; and load,
the amount of weight used in grams. The response, cycles, was the number
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Figure 6.12 Inverse response plot for an additive-regression model fit to
Box and Cox’s Wool data.

of cycles until the sample failed. Data were collected using a 3×3×3 design,
with each of the predictors at three levels. We fit a linear model with main
effects only:

> (wool.mod <- lm(cycles ˜ len + amp + load, data=Wool))

Call:
lm(formula = cycles ˜ len + amp + load, data = Wool)

Coefficients:
(Intercept) len amp load

4521.4 13.2 -535.8 -62.2

The inverse response plot for the model is drawn by the following command
(and appears in Figure 6.12):

> inverseResponsePlot(wool.mod, id.n=4)

lambda RSS
1 -0.06052 503066
2 -1.00000 3457493
3 0.00000 518855
4 1.00000 3995722

Four lines are shown on the inverse response plot, each of which is from the
nonlinear regression of ŷ on TBC( y, λ), for λ = −1, 0, 1 and for the value
of λ that best fits the points in the plot. A linearizing transformation of the
response would correspond to a value of λ that matches the data well. In the
example, the linearizing transformation producing the smallest residual sum
of squares, λ = −0.06, is essentially the log-transform. As can be seen on
the graph, the optimal transformation and log-transform produce essentially
the same fitted line, while the other default choices are quite a bit worse. The
printed output from the function gives the residual sums of squares for the four
fitted lines.
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As an alternative approach, the Box-Cox method can be used to find a
normalizing transformation, as in the original analysis of these data by Box
and Cox (1964):

> summary(powerTransform(wool.mod))

bcPower Transformation to Normality

Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
Y1 -0.0592 0.0611 -0.1789 0.0606

Likelihood ratio tests about transformation parameters
LRT df pval

LR test, lambda = (0) 0.9213 1 0.3371
LR test, lambda = (1) 84.0757 1 0.0000

Both methods therefore suggest that the log-transform is appropriate here.
The reader is invited to explore these data further. Without transformation,
inclusion of higher-order terms in the predictors is required, but in the log-
transformed scale, there is a very simple model that closely matches the data.

One advantage of the inverse response plot is that we can visualize the
leverage and influence of individual observations on the choice of a trans-
formation; separated points tend to be influential. In Figure 6.12, we marked
the four points with the largest residuals from the line for λ = 1. All these
points are very well fit by the log-transformed curve and are in the same pat-
tern as the rest of the data; there are no observations that appear to be overly
influential in determining the transformation.

For the Ornstein data described earlier in this section, the inverse
response plot (not shown) is not successful in selecting a transformation of
the response. For these data, the problem is lack of normality, and the inverse
response plots transform for linearity, not directly for normality.

6.4.2 PREDICTOR TRANSFORMATIONS

In some instances, predictor transformations resolve problems with a fitted
model. Often, these transformations can, and should, be done before fitting
models to the data (as outlined in Section 3.4). Even well-behaved predic-
tors, however, aren’t necessarily linearly related to the response, and graphi-
cal diagnostic methods are available that can help select a transformation after
fitting a model. Moreover, some kinds of nonlinearity can’t be fixed by trans-
forming a predictor, and other strategies, such as polynomial regression or
regression splines, may be entertained.

COMPONENT-PLUS-RESIDUAL AND CERES PLOTS

Component-plus-residual plots, also called partial-residual plots, are a sim-
ple graphical device that can be effective in detecting the need to transform a
predictor, say xj, to a new variable T( xj), for some transformation T . The plot
has xij on the horizontal axis and the partial residuals, ePartial,ij = ei+ bjxij, on
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Figure 6.13 Component-plus-residual plots of order=2 for the Canadian
occupational-prestige regression.

the vertical axis. Cook (1993) shows that if the regressions of xj on the other
xs are approximately linear, then the regression function in the component-
plus-residual plot provides a visualization of T . Alternatively, if the regres-
sions of xj on the other xs resemble polynomials, then a modification of the
component-plus-residual plot due to Mallows (1986) can be used.

The crPlots function in the car package constructs component-plus-
residual plots for linear models and GLMs. By way of example, we return to
the Canadian occupational-prestige regression (from Section 6.2.1). A scat-
terplot matrix of the three predictors, education, income, and women
(Figure 3.13, p. 126), suggests that the predictors are not all linearly related
to each other, but no more complicated than quadratic regressions should pro-
vide reasonable approximations. Consequently, we draw the component-plus-
residual plots specifying order=2, permitting quadratic relationships among
the predictors:

> prestige.mod.3 <- update(prestige.mod.2, ˜ . - type + women)
> crPlots(prestige.mod.3, order=2)

The component-plus-residual plots for the three predictors appear in
Figure 6.13. The broken line on each panel is the partial fit, bjxj, assuming
linearity in the partial relationship between y and xj. The solid line is a lowess
smooth, and it should suggest a transformation if one is appropriate, for
example, via the bulging rule (see Section 3.4.6). Alternatively, the smooth
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might suggest a quadratic or cubic partial regression or, in more complex
cases, the use of a regression spline.

For the Canadian occupational-prestige regression, the component-plus-
residual plot for income is the most clearly curved, and transforming this
variable first and refitting the model is therefore appropriate. In contrast, the
component-plus-residual plot for education is only slightly nonlinear, and
the partial relationship is not simple (in the sense of Section 3.4.6). Finally, the
component-plus-residual plot for women looks mildly quadratic (although the
lack-of-fit test computed by the residualPlots command does not sug-
gest a significant quadratic effect), with prestige first declining and then
rising as women increases.

Trial-and-error experimentation moving income down the ladder of pow-
ers and roots suggests that a log transformation of this predictor produces a
reasonable fit to the data:

> prestige.mod.4 <- update(prestige.mod.3,
+ . ˜ . + log2(income) - income)

which is the model we fit in Section 4.2.2. The component-plus-residual plot
for women in the revised model (not shown) is broadly similar to the plot
for women in Figure 6.13 (and the lack-of-fit test computed in residu-
alPlots has a p value of .025) and suggests a quadratic regression:

> prestige.mod.5 <- update(prestige.mod.4,
+ . ˜ . - women + poly(women, 2))
> summary(prestige.mod.5)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -110.60 13.9817 -7.910 4.160e-12
education 3.77 0.3475 10.850 1.985e-18
log2(income) 9.36 1.2992 7.204 1.262e-10
poly(women, 2)1 15.09 9.3357 1.616 1.093e-01
poly(women, 2)2 15.87 6.9704 2.277 2.499e-02

The quadratic term for women is statistically significant but not overwhelm-
ingly so.

If the regressions among the predictors are strongly nonlinear and not well
described by polynomials, then the component-plus-residual plots may not be
effective in recovering nonlinear partial relationships between the response
and the predictors. For this situation, Cook (1993) provides another general-
ization of component-plus-residual plots, called CERES plots (for Combining
conditional Expectations and RESiduals). CERES plots use nonparametric-
regression smoothers rather than polynomial regressions to adjust for nonlin-
ear relationships among the predictors. The ceresPlots function in the car
package implements Cook’s approach.

Experience suggests that nonlinear relationships among the predictors cre-
ate problems for component-plus-residual plots only when these relationships
are very strong. In such cases, a component-plus-residual plot can appear non-
linear even when the true partial regression is linear—a phenomenon termed
leakage. For the Canadian occupational-prestige regression, higher-order
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component-plus-residual plots (in Figure 6.13) and CERES plots are nearly
identical to the standard component-plus-residual plots, as the reader
may verify.

THE BOX-TIDWELL METHOD FOR CHOOSING
PREDICTOR TRANSFORMATIONS

As in transforming the response, transformations of the predictors in regres-
sion can be estimated by maximum likelihood. This possibility was suggested
by Box and Tidwell (1962), who introduced the model for strictly positive
predictors,

y = β0 + β1TBC( x1, γ1)+ · · · + βkTBC( xk , γk)+ε

where TBC( xj, γj) is a Box-Cox power transformation (Equation 6.7, p. 304)
and the errors εi are assumed to be independent and normally distributed with
common variance σ 2. Of course, we do not necessarily want to transform all
the predictors, and in some contexts—such as when dummy regressors are
present in the model—it does not even make sense to do so.

The Box-Tidwell regression model is a nonlinear model, which in principle
can be fit by nonlinear least-squares.14 Box and Tidwell describe an approx-
imate computational approach, implemented in the boxTidwell function
in the car package. We apply this function to the Canadian occupational-
prestige regression, estimating power transformation parameters for income
and education15 but specifying a quadratic partial regression for women:

> boxTidwell(prestige ˜ income + education,
+ other.x = ˜ poly(women, 2), data=Prestige)

Score Statistic p-value MLE of lambda
income -5.301 0.0000 -0.0378
education 2.406 0.0161 2.1928

iterations = 12

The one-sided formula for the argument other.x indicates the terms in the
model that are not to be transformed—here the quadratic in women. The score
tests for the power transformations of income and education suggest that
both predictors need to be transformed; the maximum-likelihood estimates of
the transformation parameters are γ̂1 = −0.04 for income (effectively, the
log transformation of income) and γ̂2 = 2.2 for education (effectively,
the square of education).

Constructed variables for the Box-Tidwell transformations of the predictors
are given by xj loge xj. These can be easily computed and added to the regres-
sion model to produce approximate score tests and constructed-variable plots.

14Nonlinear least squares is taken up in the online appendix to this Companion.
15The component-plus-residual plot for education in the preceding section reveals that the curva-
ture of the partial relationship of prestige to education, which is in any event small, appears
to change direction—that is, though monotone is not simple—and so a power transformation is not
altogether appropriate here.
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Figure 6.14 Constructed-variable plots for the Box-Tidwell transforma-
tion of income and education in the Canadian occupational-prestige
regression.

Indeed, these constructed variables are the basis for Box and Tidwell’s com-
putational approach to fitting the model and yield the score statistics printed
by the boxTidwell function.

To obtain constructed-variable plots (Figure 6.14) for income and edu-
cation in the Canadian occupational-prestige regression:16

> mod.prestige.cv <- lm(prestige ˜ income + education
+ + poly(women, 2)
+ + I(income * log(income)) + I(education * log(education)),
+ data=Prestige)
> summary(
+ mod.prestige.cv)$coef["I(income * log(income))", ,
+ drop=FALSE]

Estimate Std. Error t value Pr(>|t|)
I(income * log(income)) -0.00243 0.0004584 -5.301 7.459e-07

> summary(
+ mod.prestige.cv)$coef["I(education * log(education))", ,
+ drop=FALSE]

Estimate Std. Error t value
I(education * log(education)) 5.298 2.202 2.406

Pr(>|t|)
I(education * log(education)) 0.01808

The identity function I() was used to protect the multiplication operator (*),
which would otherwise be interpreted specially within a model formula, inap-
propriately generating main effects and an interaction (see Section 4.8).

The constructed-variable plot for income reveals some high-leverage
points in determining the transformation of this predictor, but even when these
points are removed, there is still substantial evidence for the transformation in
the rest of the data.
16The observant reader will notice that the t values for the constructed-value regression are the same
as the score statistics reported by boxTidwell but that there are small differences in the p values.
These differences occur because boxTidwell uses the standard-normal distribution for the score
test, while the standard summary for a linear model uses the t distribution.
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Figure 6.15 Plot of Pearson residuals against fitted values for Ornstein’s
interlocking-directorate regression.

6.5 Nonconstant Error Variance

One of the assumptions of the standard linear model is that the error variance
is fully known apart from an unknown constant, σ 2. It is, however, possible
that the error variance depends on one or more of the predictors, on the mag-
nitude of the response, or systematically on some other variable.

To detect nonconstant variance as a function of a variable z, we would
like to plot the Pearson residuals, or perhaps their absolute values, versus z.
Nonconstant variance would be diagnosed if the variability of the residuals in
the graph increased from left to right, decreased from left or right, or displayed
another systematic pattern, such as large variation in the middle of the range
of z and smaller variation at the edges.

In multiple regression, there are many potential plotting directions.
Because obtaining a two-dimensional graph entails projecting the predictors
from many dimensions onto one horizontal axis, however, we can never be
sure if a plot showing nonconstant spread really reflects nonconstant error
variance or some other problem, such as unmodeled nonlinearity (see Cook,
1998, sec. 1.2.1).

For Ornstein’s interlocking-directorate regression, for example, we can
obtain a plot of residuals against fitted values from the residualPlots
function in the car package (introduced in Section 6.2.1), producing
Figure 6.15:

> residualPlots(mod.ornstein, ˜ 1, fitted=TRUE, id.n=0,
+ quadratic=FALSE, tests=FALSE)

The obvious fan-shaped array of points in this plot indicates that residual
variance appears to increase as a function of the fitted values—that is, with
the estimated magnitude of the response. In Section 5.5, we modeled these
data using Poisson regression, for which the variance does increase with the
mean, and so reproducing that pattern here is unsurprising. A less desirable
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Figure 6.16 Spread-level plot of Studentized residuals against fitted values,
for Ornstein’s interlocking-directorate regression.

alternative to a regression model that is specifically designed for count data is
to try to stabilize the error variance in Ornstein’s least-squares regression by
transforming the response, as described in the next section.

6.5.1 SPREAD-LEVEL PLOTS

Another diagnostic for nonconstant error variance uses an adaptation of the
spread-level plots (Tukey, 1977; introduced in Section 3.4.5), graphing the log
of the absolute Studentized residuals against the log of the fitted values. This
approach also produces a suggested spread-stabilizing power transformation
of y. The spreadLevelPlot function in the car package has a method for
linear models:

> spreadLevelPlot(mod.ornstein)

Suggested power transformation: 0.554

Warning message:
In spreadLevelPlot.lm(mod.ornstein) :

16 negative fitted values removed

The linear-regression model fit to Ornstein’s data doesn’t constrain the fit-
ted values to be positive, even though the response variable interlocks
+ 1 is positive. The spreadLevelPlot function removes negative fitted
values, as indicated in the warning message, before computing logs. The
spread-level plot, shown in Figure 6.16, has an obvious tilt to it. The sug-
gested transformation, λ = 0.55, is not quite as strong as the normalizing
transformation estimated by the Box-Cox method, λ̂ = 0.22 (Section 6.4.1).
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6.5.2 SCORE TESTS FOR NONCONSTANT
ERROR VARIANCE

Breusch and Pagan (1979) and Cook and Weisberg (1983) suggest a score
test for nonconstant error variance in a linear model. The idea is that either
the variance is constant or it depends on the mean,

Var( εi)= σ 2g[E( y|x) ]

or on a linear combination of regressors z1, . . . , zp,

Var( εi)= σ 2g( γ1zi1 + · · · + γpzip)

In typical applications, the zs are the same as the regressors in the linear model
(i.e., the xs), but other choices of zs are possible. For example, in an industrial
experiment, variability might differ among the factories that produce a prod-
uct, and a set of dummy regressors for factory would be candidates for the
zs.

The ncvTest function in the car package implements this score test. We
apply ncvTest to test for the dependence of spread on level (the default) in
Ornstein’s regression and for a more general dependence of spread on the pre-
dictors in the regression, given in a one-sided formula as the optional second
argument to ncvTest:

> ncvTest(mod.ornstein)

Non-constant Variance Score Test
Variance formula: ˜ fitted.values
Chisquare = 205.9 Df = 1 p = 1.070e-46

> ncvTest(mod.ornstein,˜log(assets)+nation+sector, data=Ornstein)

Non-constant Variance Score Test
Variance formula: ˜ log(assets) + nation + sector
Chisquare = 290.9 Df = 13 p = 1.953e-54

Both tests are highly statistically significant, and the difference between the
two suggests that the relationship of spread to level does not entirely account
for the pattern of nonconstant error variance in these data. It was necessary
to supply the data argument in the second command because the ncvTest
function does not assume that the predictors of the error variance are included
in the linear-model object.

6.5.3 OTHER APPROACHES TO NONCONSTANT
ERROR VARIANCE

We have suggested transformation as a strategy for stabilizing error vari-
ance, but other approaches are available. In particular, if the error variance is
proportional to a variable z, then we can fit the model using WLS, with the
weights given by 1/z. In Ornstein’s regression, for example, we might take
the error variance to increase with the log(assets) of the firm, in which
case the correct weights would be the inverses of these values:
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> mod.ornstein.wts <- update(mod.ornstein, weights = 1/log(assets))

Still another approach is to rely on the unbiasedness of the least-squares
regression coefficients, even when the error variance is misspecified, and then
to use a sandwich estimate of the coefficient variances (see Section 4.3.6)
to correct the standard errors of the estimated coefficients. These correc-
tions may also be used in the linearHypothesis, deltaMethod, and
Anova functions in the car package.

6.6 Diagnostics for Generalized Linear Models

Most of the diagnostics of the preceding sections extend straightforwardly
to GLMs. These extensions typically take advantage of the computation of
maximum-likelihood estimates for GLMs by IRLS (see Section 5.12), which
in effect approximates the true log-likelihood by a WLS problem. At the con-
vergence of the IWLS algorithm, diagnostics are formed as if the WLS prob-
lem were the problem of interest, and so the exact diagnostics for the WLS
fit are approximate diagnostics for the original GLM. Seminal work on the
extension of linear least-squares diagnostics to GLMs was done by Pregibon
(1981), Landwehr et al. (1980), Wang (1985, 1987), and Williams (1987).

The following functions, some in standard R and some in the car package,
have methods for GLMs: rstudent, hatvalues, cooks.distance,
dfbeta, dfbetas, outlierTest, avPlots, residualPlots,
marginalModelPlots, crPlots, and ceresPlots. We will illustrate
the use of these functions selectively, rather than exhaustively repeating all the
topics covered for linear models in the previous sections of the chapter.

6.6.1 RESIDUALS AND RESIDUAL PLOTS

One of the major philosophical, though not necessarily practical, differ-
ences between linear-model diagnostics and GLM diagnostics is in the def-
inition of residuals. In linear models, the ordinary residual is the difference
ŷ−y, which is meant to mimic the statistical error ε = E( y|η)−y. Apart from
Gaussian or normal linear models, there is no additive error in the definition
of a GLM, and so the idea of a residual has a much less firm footing.

Residuals for GLMs are generally defined in analogy to linear models. Here
are the various types of GLM residuals that are available in R:

• Response residuals are simply the differences between the observed
response and its estimated expected value: yi − μ̂i. These differences
correspond to the ordinary residuals in the linear model. Apart from the
Gaussian or normal case, the response residuals are not used in diag-
nostics, however, because they ignore the nonconstant variance that is
part of a GLM.
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• Pearson residuals are casewise components of the Pearson goodness-
of-fit statistic for the model:

ePi = yi − μ̂i√
V̂ar( yi|x) /φ̂

Formulas for Var( y|x) are given in the last column of Table 5.2 (p. 231).
This definition of ePi corresponds exactly to the Pearson residuals
defined in Equation 6.6 (p. 287) for WLS regression. These are a basic
set of residuals for use with a GLM because of their direct analogy to
linear models. For a model named m1, the command residuals(m1,
type="pearson") returns the Pearson residuals.

• Standardized Pearson residuals correct for conditional response varia-
tion and for the leverage of the observations:

ePSi = yi − μ̂i√
V̂ar( yi|x) ( 1− hi)

To compute the ePSi, we need to define the hat-values hi for GLMs. The
hi are taken from the final iteration of the IWLS procedure for fitting
the model and have the usual interpretation, except that, unlike in a
linear model, the hat-values in a GLM depend on y as well as on the
configuration of the xs.

• Deviance residuals, eDi, are the square roots of the casewise compo-
nents of the residual deviance, attaching the sign of yi − μ̂i. In the lin-
ear model, the deviance residuals reduce to the Pearson residuals. The
deviance residuals are often the preferred form of residual for
GLMs, and are returned by the command residuals(m1, type=
"deviance").

• Standardized deviance residuals are

eDSi = eDi√
φ̂( 1− hi)

• The ith Studentized residual in linear models is the scaled difference
between the response and the fitted value computed without case i.
Because of the special structure of the linear model, these differences
can be computed without actually refitting the model by removing case
i, but this is not the case for GLMs. While computing n regressions
to get the Studentized residuals is not impossible, it is not a desirable
option when the sample size is large. An approximation proposed by
Williams (1987) is therefore used instead:

eTi = sign( yi − μ̂i)
√

( 1− hi) e2
DSi + hie2

PSi

The approximate Studentized residuals are computed when the func-
tion rstudent is applied to a GLM. A Bonferroni outlier test using
the standard-normal distribution may be based on the largest absolute
Studentized residual.
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As an example, we return to the Canadian women’s labor-force participa-
tion data, described in Section 5.7. We define a binary rather than a polyto-
mous response, with categories working or not working outside the home, and
fit a logistic-regression model to the data:

> mod.working <- glm(partic != "not.work" ˜ hincome + children,
+ family=binomial, data=Womenlf)
> summary(mod.working)

Call:
glm(formula = partic != "not.work" ˜ hincome + children,

family = binomial, data = Womenlf)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.677 -0.865 -0.777 0.929 1.997

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3358 0.3838 3.48 0.0005
hincome -0.0423 0.0198 -2.14 0.0324
childrenpresent -1.5756 0.2923 -5.39 7e-08

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 356.15 on 262 degrees of freedom
Residual deviance: 319.73 on 260 degrees of freedom
AIC: 325.7

Number of Fisher Scoring iterations: 4

The expression partic != "not.work" creates a logical vector, which
serves as the binary-response variable in the model.

The residualPlots function provides the basic plots of residuals ver-
sus the predictors and versus the linear predictor:

> residualPlots(mod.working, layout=c(1, 3))

Test stat Pr(>|t|)
hincome 1.226 0.268
children NA NA

We used the layout argument to reformat the graph to have one row and
three columns. The function plots Pearson residuals versus each of the pre-
dictors in turn. Instead of plotting residuals against fitted values, however,
residualPlots plots residuals against the estimated linear predictor, η̂( x).
Each panel in the graph by default includes a smooth fit rather than a quadratic
fit; a lack-of-fit test is provided only for the numeric predictor hincome and
not for the factor children or for the estimated linear predictor.

In binary regression, the plots of Pearson residuals or deviance residuals are
strongly patterned—particularly the plot against the linear predictor, where
the residuals can take on only two values, depending on whether the response
is equal to 0 or 1. In the plot versus hincome, we have a little more variety in
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Figure 6.17 Residual plots for the binary logistic regression fit to the
Canadian women’s labor-force participation data.

the possible residuals: children can take on two values, and so the residu-
als can take on four values for each value of hincome. Even in this extreme
case, however, a correct model requires that the conditional mean function
in any residual plot be constant as we move across the plot. The fitted smooth
helps us learn about the conditional mean function, and neither of the smooths
shown is especially curved. The lack-of-fit test for hincome has a large
significance level, confirming our view that this plot does not indicate lack of
fit. The residuals for children are shown as a boxplot because children
is a factor. The boxplots for children are difficult to interpret because of
the discreteness in the distribution of the residuals.

6.6.2 INFLUENCE MEASURES

An approximation to Cook’s distance for GLMs is

Di = e2
PSi

k + 1
× hi

1− hi

These values are returned by the cooks.distance function. Approximate
values of dfbetaij and dfbetasij may be obtained directly from the final iteration
of the IWLS procedure.

Figure 6.18 shows index plots of Cook’s distances and hat-values, produced
by the following command:

> influenceIndexPlot(mod.working, vars=c("Cook", "hat"), id.n=3)

Setting vars=c("Cook", "hat") limited the graphs to these two diag-
nostics. Cases 76 and 77 have the largest Cook distances, although even these
are quite small. We remove both Cases 76 and 77 as a check:

> compareCoefs(mod.working, update(mod.working, subset=-c(76, 77)))

Call:
1:glm(formula = partic != "not.work" ˜ hincome + children,

family = binomial, data = Womenlf)
2:glm(formula = partic != "not.work" ˜ hincome + children,

family = binomial, data = Womenlf, subset = -c(76, 77))
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Figure 6.18 Index plots of diagnostic statistics for the logistic regression fit
to the Canadian women’s labor-force participation data.

Est. 1 SE 1 Est. 2 SE 2
(Intercept) 1.3358 0.3838 1.6090 0.4052
hincome -0.0423 0.0198 -0.0603 0.0212
childrenpresent -1.5756 0.2923 -1.6476 0.2978

The reader can verify that removing just one of the two observations does not
alter the results much, but removing both observations changes the coefficient
of husband’s income by more than 40%, about one standard error. Apparently,
the two cases mask each other, and removing them both is required to produce
a meaningful change in the coefficient for hincome. Cases 76 and 77 are
women working outside the home even though both have children and high-
income husbands.

6.6.3 GRAPHICAL METHODS: ADDED-VARIABLE AND
COMPONENT-PLUS-RESIDUAL PLOTS

We are aware of two extensions of added-variable plots to GLMs. Suppose
that the focal regressor is xj. Wang (1985) proceeds by refitting the model
with xj removed, extracting the working residuals from this fit. Then xj is
regressed on the other xs by WLS, using the weights from the last IWLS
step and obtaining residuals. Finally, the two sets of residuals are plotted
against each other. The Arc regression software developed by Cook and Weis-
berg (1999) employs a similar procedure, except that weights are not used in
the least-squares regression of xj on the other xs. The avPlots function in



322 Chapter 6 Diagnosing Problems in Linear and Generalized Linear Models

0 50000 100000 150000

−1
0

1
2

3

assets
C

om
po

ne
nt

+R
es

id
ua

l(i
nt

er
lo

ck
s)

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●

●

●

●

●

●

●●●

●
●

●

Figure 6.19 Component-plus-residual plot for assets in the Poisson
regression fit to Ornstein’s interlocking-directorate data.

the car package implements both approaches, with Wang’s procedure as the
default. Added-variable plots for binary-regression models can be uninforma-
tive because of the extreme discreteness of the response variable.

Component-plus-residual and CERES plots also extend straightforwardly
to GLMs. Nonparametric smoothing of the resulting scatterplots can be impor-
tant for interpretation, especially in models for binary responses, where the
discreteness of the response makes the plots difficult to examine. Similar, if
less striking, effects can occur for binomial and Poisson data.

For an illustrative component-plus-residual plot, we reconsider Ornstein’s
interlocking-directorate Poisson regression (from Section 5.5), but now we fit
a model that uses assets as a predictor rather than the log of assets:

> mod.ornstein.pois <- glm(interlocks ˜ assets + nation + sector,
+ family=poisson, data=Ornstein)
> crPlots(mod.ornstein.pois, "assets")

The component-plus-residual plot for assets is shown in Figure 6.19. This
plot is difficult to interpret because of the extreme positive skew in assets,
but it appears as if the assets slope is a good deal steeper at the left than
at the right. The bulging rule, therefore, points toward transforming assets
down the ladder of powers, and indeed the log-rule in Section 3.4.1 suggests
replacing assets by its logarithm before fitting the regression in the first
place (which, of course, is what we did originally):

> mod.ornstein.pois.2 <- update(mod.ornstein.pois,
+ . ˜ log2(assets) + nation + sector)
> crPlots(mod.ornstein.pois.2, "log2(assets)")

The linearity of the follow-up component-plus-residual plot in Figure 6.20
confirms that the log-transform is a much better scale for assets.

The other diagnostics described in Section 6.4 for selecting a predictor
transformation lead to the log-transform as well. For example, the Box-Tidwell
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Figure 6.20 Component-plus-residual plot for the log of assets in the
respecified Poisson regression for Ornstein’s data.
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Figure 6.21 Constructed-variable plot for the power transformation of
assets in Ornstein’s interlocking-directorate Poisson regression.

constructed-variable plot for the power transformation of a predictor (intro-
duced in Section 6.4.2) also extends directly to GLMs, augmenting the model
with the constructed variable xj loge xj. We can use this method with Ornstein’s
Poisson regression:

> mod.ornstein.pois.cv <- update(mod.ornstein.pois,
+ . ˜ . + I(assets*log(assets)))
> avPlots(mod.ornstein.pois.cv, "I(assets * log(assets))", id.n=0)
> summary(
+ mod.ornstein.pois.cv)$coef["I(assets * log(assets))", ,
+ drop=FALSE]

Estimate Std. Error z value Pr(>|z|)
I(assets * log(assets)) -2.177e-05 1.413e-06 -15.41 1.409e-53

Only the z test statistic for the constructed variable I(assets *
log(assets)) is of interest, and it leaves little doubt about the need for
transforming assets. The constructed-variable plot in Figure 6.21 supports
the transformation.
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Figure 6.22 Component-plus-residual plot for lwg in the binary logistic
regression for Mroz’s women’s labor force participation data.

An estimate of the transformation parameter can be obtained from the coef-
ficient of assets in the original Poisson regression (2.09 × 10−5) and the
coefficient of the constructed variable (−2.18× 10−5):17

λ̃ = 1+ −2.18× 10−5

2.09× 10−5
= −0.043

that is, essentially the log transformation, λ = 0.
We conclude with a reexamination of the binary logistic-regression model

fit to Mroz’s women’s labor force participation data (introduced in Section 5.3).
One of the predictors in this model—the log of the woman’s expected wage
rate (lwg)—has an odd definition: For women in the labor force, for whom
the response lfp = "yes", lwg is the log of the actual wage rate, while for
women not in the labor force, for whom lfp = "no", lwg is the log of the
predicted wage rate from the regression of wages on the other predictors.

To obtain a component-plus-residual plot for lwg (Figure 6.22):

> mod.mroz <- glm(lfp ˜ k5 + k618 + age + wc + hc + lwg + inc,
+ family=binomial, data=Mroz)
> crPlots(mod.mroz, "lwg", pch=as.numeric(Mroz$lfp))
> legend("bottomleft",c("Estimated lwg", "Observed lwg"),
+ pch=1:2, inset=0.01)

The peculiar split in the plot reflects the binary-response variable, with the
lower cluster of points corresponding to lfp = "no" and the upper clus-
ter to lfp = "yes". It is apparent that lwg is much less variable when
lfp = "no", inducing an artifactually curvilinear relationship between
lwg and lfp: We expect fitted values (such as the values of lwg when
lfp = "no") to be more homogeneous than observed values, because fit-
ted values lack a residual component of variation.

We leave it to the reader to construct component-plus-residual or CERES
plots for the other predictors in the model.
17Essentially the same calculation is the basis of Box and Tidwell’s iterative procedure for finding
transformations in linear least-squares regression (Section 6.4.2).
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6.7 Collinearity and Variance Inflation Factors

When there are strong linear relationships among the predictors in a regres-
sion analysis, the precision of the estimated regression coefficients in linear
models declines compared with what it would have been were the predictors
uncorrelated with each other. Other important aspects of regression analysis
beyond coefficients, such as prediction, are much less affected by collinearity
(as discussed in Weisberg, 2005, sec. 10.1).

The estimated sampling variance of the jth regression coefficient may be
written as

V̂ar( bj)= σ̂ 2

( n− 1) s2
j

× 1

1− R2
j

where σ̂ 2 is the estimated error variance, s2
j is the sample variance of xj, and

1/( 1 − R2
j ), called the variance inflation factor (VIFj) for bj, is a function of

the multiple correlation Rj from the regression of xj on the other xs. The VIF
is the simplest and most direct measure of the harm produced by collinearity:
The square root of the VIF indicates how much the confidence interval for
βj is expanded relative to similar uncorrelated data, were it possible for such
data to exist. If we wish to explicate the collinear relationships among the
predictors, then we can examine the coefficients from the regression of each
predictor with a large VIF on the other predictors.

The VIF is not applicable, however, to sets of related regressors for multiple-
degree-of-freedom effects, such as polynomial regressors or contrasts con-
structed to represent a factor. Fox and Monette (1992) generalize the notion
of variance inflation by considering the relative size of the joint confidence
region for the coefficients associated with a related set of regressors. The
resulting measure is called a generalized variance inflation factor (or GVIF).18

If there are p regressors in a term, then GVIF1/2p is a one-dimensional
expression of the decrease in the precision of estimation due to collinearity—
analogous to taking the square root of the usual VIF. When p = 1, the GVIF
reduces to the usual VIF.

The vif function in the car package calculates VIFs for the terms in a
linear model. When each term has one degree of freedom, the usual VIF is
returned, otherwise the GVIF is calculated.

As a first example, consider the data on the 1980 U.S. Census undercount
in the data frame Ericksen (Ericksen et al., 1989):

18* Let R11 represent the correlation matrix among the regressors in the set in question; R22, the
correlation matrix among the other regressors in the model; and R, the correlation matrix among all
the regressors in the model. Fox and Monette show that the squared area, volume, or hyper-volume of
the joint confidence region for the coefficients in either set is expanded by the GVIF,

GVIF = det R11 det R22

det R

relative to similar data in which the two sets of regressors are uncorrelated with each other. This
measure is independent of the bases selected to span the subspaces of the two sets of regressors and
so is independent, for example, of the contrast-coding scheme employed for a factor.
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> head(Ericksen)

minority crime poverty language highschool housing
Alabama 26.1 49 18.9 0.2 43.5 7.6
Alaska 5.7 62 10.7 1.7 17.5 23.6
Arizona 18.9 81 13.2 3.2 27.6 8.1
Arkansas 16.9 38 19.0 0.2 44.5 7.0
California.R 24.3 73 10.4 5.0 26.0 11.8
Colorado 15.2 73 10.1 1.2 21.4 9.2

city conventional undercount
Alabama state 0 -0.04
Alaska state 100 3.35
Arizona state 18 2.48
Arkansas state 0 -0.74
California.R state 4 3.60
Colorado state 19 1.34

These variables describe 66 areas of the United States, including 16 major
cities, the 38 states without major cities, and the remainders of the 12 states
that contain the 16 major cities. The following variables are included:

• minority: Percentage of residents who are black or Hispanic.
• crime: Number of serious crimes per 1,000 residents.
• poverty: Percentage of residents who are poor.
• language: Percentage having difficulty speaking or writing English.
• highschool: Percentage of those 25 years of age or older who have

not finished high school.
• housing: Percentage of dwellings in small, multi-unit buildings.
• city: A factor with levels state and city.
• conventional: Percentage of households counted by personal enu-

meration (rather than by a mail-back questionnaire with follow-up).
• undercount: The estimated percent undercount (with negative values

indicating an estimated overcount).

We regress the Census undercount on the other variables:

> mod.census <- lm(undercount ˜ ., data=Ericksen)
> summary(mod.census)

Call:
lm(formula = undercount ˜ ., data = Ericksen)

Residuals:
Min 1Q Median 3Q Max

-2.8356 -0.8033 -0.0553 0.7050 4.2467

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.61141 1.72084 -0.36 0.72368
minority 0.07983 0.02261 3.53 0.00083
crime 0.03012 0.01300 2.32 0.02412
poverty -0.17837 0.08492 -2.10 0.04012
language 0.21512 0.09221 2.33 0.02320
highschool 0.06129 0.04477 1.37 0.17642
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housing -0.03496 0.02463 -1.42 0.16126
citystate -1.15998 0.77064 -1.51 0.13779
conventional 0.03699 0.00925 4.00 0.00019

Residual standard error: 1.43 on 57 degrees of freedom
Multiple R-squared: 0.708, Adjusted R-squared: 0.667
F-statistic: 17.2 on 8 and 57 DF, p-value: 1.04e-12

We included the data argument to lm, so we may use a period (.) on the
right-hand side of the model formula to represent all the variables in the data
frame with the exception of the response—here, undercount.

Checking for collinearity, we see that three coefficients—for minority,
poverty, and highschool—have VIFs exceeding 4, indicating that con-
fidence intervals for these coefficients are more than twice as wide as they
would be for uncorrelated predictors:

> vif(mod.census)

minority crime poverty language highschool
5.009 3.344 4.625 1.636 4.619

housing city conventional
1.872 3.538 1.691

To illustrate the computation of GVIFs, we return to Ornstein’s interlocking-
directorate regression, where it turns out that collinearity is relatively slight:

> vif(mod.ornstein)

GVIF Df GVIFˆ(1/(2*Df))
log(assets) 1.909 1 1.382
nation 1.443 3 1.063
sector 2.597 9 1.054

The vif function can also be applied to GLMs, such as the Poisson-
regression model fit to Ornstein’s data:19

> vif(mod.ornstein.pois.2)

GVIF Df GVIFˆ(1/(2*Df))
log2(assets) 2.617 1 1.618
nation 1.620 3 1.084
sector 3.718 9 1.076

Other, more complex, approaches to collinearity include principal-
components analysis of the predictors or standardized predictors and singular-
value decomposition of the model matrix or the mean-centered model matrix.
These, too, are simple to implement in R: See the princomp, prcomp, svd,
and eigen functions (the last two of which are discussed in Section 8.2).

19Thanks to a contribution from Henric Nilsson.
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6.8 Complementary Reading and References

• Residuals and residual plotting for linear models are discussed in
Weisberg (2005, sec. 8.1–8.2). Marginal model plots, introduced in
Section 6.2.2, are described in Weisberg (2005, sec. 8.4). Added-variable
plots are discussed in Weisberg (2005, sec. 3.1). Outliers and influence
are taken up in Weisberg (2005, chap. 9).

• Diagnostics for unusual and influential data are described in Fox (2008,
chap. 11); for nonnormality, nonconstant error variance, and nonlinear-
ity in Fox (2008, chap. 12); and for collinearity in Fox (2008, chap. 13).
A general treatment of residuals in models without additive errors,
which expands on the discussion in Section 6.6.1, is given by Cox
and Snell (1968). Diagnostics for GLMs are taken up in Fox (2008,
sec. 15.4).

• For further information on various aspects of regression diagnostics,
see Cook and Weisberg (1982, 1994, 1997, 1999), Fox (1991), Cook
(1998), and Atkinson (1985).




