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‘ Announcements

m Project 01: 1 am grading them this week!

m Project 02 will come out in a week or two.
0 The schedule may be a bit compressed compared to project 01

= Quiz on Sheather Chapter 9 today!
= HWO08 Due Wednesday this week

= HWO09 Due *Next* Wednesday

= On Wednesday | will begin talking about hierarchical mixed
effects models (a.k.a. multilevel models [MLM], hierarchical
linear models [HLM], linear mixed effects regression [LMER],
etc...)
0 Please start Sheather 10.1 (not 10.2) for Wednesday’s lecture.

m There is a brief description of 36-663 (Hierarch. Models) in
the weekQ9 folder.

11/1/2021



‘ Outline

= Review ML -> OLS
= What happens to the theory when ¢ ~ N (0, Y)
m Estimating .

m Applications:
2 WLS — unequal sample sizes
a Time series correlation: AR(1), etc.
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‘ Review: ML/LS Estimates

y=XB+e e~ N(0,0°])

= B=(XTX)1 X Ty
s j=XA=XXTX)"'XTy=Hy
m The “residual SD” is the square root of
62 = Lo (g — XiB)? = 5 (y — XB)T(y — XB)

m Basic distribution properties on the next slide...
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Review: 3, H, { & ¢é for ML/LS

Y ~N(u,X) = AY ~ N(Ap, ALAT)
N(XB,0%I), B = (XTX)'XxTy

y o~
= E[f] = p, Var(p) = (X"X)7 !0’
B~ NBX'X)"'?
H = XX'x)'x*
= E[§j] = E[Hy] = XpB, Var(j) = Var(Hy) = Ho?
g ~ N(XB,Ho?)
Ele] = E[(I-H)y] = 0,

Var(¢) = Var((I—H)y) = (I — H)o?
¢ ~ N(0,(I — H)o?)
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‘ Generalized Least Squares

= Suppose instead of y = X8 +¢, e ~ N(0,0°1),
we havey = X8 +¢€, e ~ N(0,X)

m Theny ~ N(XS,X), which by our earlier
definition (week 4!) means that

N2y — XB8) ~ N(0,1)

= More precisely, we will let £ = 6?W, where W is
symmetric & positive definite, so there exists a
lower-triangular matrix S such that! SS4 — W

and hence
S~y — XB) ~ N(0,0%I)

11/1/2021 1This is called a “Cholesky decomposition”.



‘ Generalized Least Squares, cont’d...
m Since S~ 1(y — XB) ~ N(0,02%I), we know

Sy ~ N(S1XB, %)
N— N’
y* X*B

m So y=XpB+e e~ N(0,Y) is equivalent to
y* = X*B+¢€*, € ~ N(0,0°%])
with solution
B* _ (X*TX*)—lX*Ty*
= (XT(STHI(sTHX) X (sTH (ST
_ (XTW_lX)_lXTW_ly
m5* = argmingRSS*, RSS* = (y* — X*8)" (y* — X*p) =
(y — XB)"W~H(y — Xp), and 6 = RSS" /(n — df)

(where we use the facts that(A™1)T = (A7)~ and (AB)™! = (B~ 1)(4™ 1)
11/1/2021 so that (S—I)T(S—l) — (ST)—I(S—I) — (SST)_l — E_l)



‘ 6%, H*, y* & é* under GLS
Undery = XB+¢, e~ N(0,X), with X = o?W

y ~ N(XB,%), ie y* ~ N(X*B,0%I)
(y* — S_ly, X* — S—IX)

B* ~ N(B,o* (X X)) = N(B,AXTWX)™

H* _ S_lX(XTW_lX)_lXT(S_l)T

=

@* — X*/B* ~ N(X*/B,O'2H*) Not exactly what we
| want, if we want to
predict y and not y*

¢ = y' =4 ~ NO,o?’(I—-H"))

11/1/2021 8




‘ To predict y from GLS estimates...

m Ratherthan ¢§* = X*B* , we could usey = XB*
= Using the results from the previous slide, we get

A

Elj] = E[XB] = XE[B*]=Xp
Var(j) = Var(Xp*) = XVar(p") X7
= XXTWIxX)"1XT = ¢2SH*ST
So, after some calculation,
§ ~ N(XB,02SH*ST)
= y—19 ~ N(0,0°S(I — H*)S™)

>
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‘ Aside: A recommendation...

m Base casewise diaghostic plots on
y*, " = X*B* and é* = y* — * from the model
y* =X*B+ €, e~ N(0,0°])
(where y* = Sy & X* = S71X)

= For prediction, better off using
y,y = XB* and é = y — ¢ from the original
model
y=XpB+¢ e~ N(0,X)
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Estimating JJ ...

O FOI’yi:XiB‘FG@', ’i:l,...,n,

€1 01 012 O1n
2
€2 021 g9 J02n
>, = Var _ — . .
2
- En . On1  On2 On

where af = Var (¢;) and o;; = Cov (€, €5)

= Want to estimate n(n+1)/2 parameters with n
observations... need constraints... Applications!

11/1/2021
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‘ Application: Weighted Least Squares
(WLS

In many situations we know X is diagonal, and we know the
structure of 2, up to a constant multiple ... For example:

o The y/s are averages of n, observations each, so that Var(y,) = 6%/n;
or...

o Var(y) is proportional to the k*" predictor: Var(y,) = 6 x,; ; or...
o Etc..

= |n cases like this,

[ Var (y1) 0 0 wi 0 -+ 0
0 Var (y2) -~ 0 0 wy --- 0
X = . . _ . =o’ | . o . = o’W
0 0 -+ Var(yn) 0 0 - w,

where w; = 1/n, or w=x,, etc., and we have just 1 parameter
to estimate!
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'WLS Examplel

Following are data from an experiment to study the interaction of certain kinds of
elementary particles on collision with proton targets. The experiment was designed to
test certain theories about the nature of the strong interaction. The cross-section
(crossx) variable is believed to be linearly related to the inverse of the energy
(energy - has already been inverted). At each level of the momentum, a very large
number of observations were taken so that it was possible to accurately estimate the
standard deviation of the response (sd).

momentum energy crossx sd

1 4 0.345 367 17
2 6 0.287 311 9
3 8 0.251 295 9
4 10 0.225 268 7
5 12 0.207 253 7
6 15 0.186 239 6
7 20 0.1lel 220 6
8 30 0.132 213 6
9 75 0.084 193 5
10 150 0.060 192 5

11/1/2021 1From http://www.biostat.jhsph.edu/~iruczins/teaching/jf/ch5.pdf 13



‘ Fitting the WLS model

> strongx <-
+ read.table(stdin (), header=T)

Call:

Im(formula = crossx ~ energy, data = strongx,
weights = sd”* (-2))

0: momentum energy crossx sd
11 4 0.345 367 17 Weighted Residuals:
2: 2 6 0.287 311 9 Min 10 Median 30 Max
3: 3 8 0.251 295 9 -2.3230 -0.8842 0.0000 1.3900 2.3353
4. 4 10 0.225 268 7
5: 5 12 0.207 253 7 Coefficients:
6: 6 15 0.186 239 & Estimate Std. Error t value Pr(>|t])
7. 7 20 0. 161 590 c (Intercept) 148.473 8.079 18.38 7.91e-08

’ ) energy 530.835 47.550 11.16 3.71e-06
8: 8 30 0.132 213 © .
9: 9 75 0.084 193 5
10: 10 150 0.060 192 5 Residual standard error:on 8 degrees of
17 - freedom

) Multiple R-squared: 0.9397, k\\\\
> summary(wls.l <- lm(crossx ~ Adjusted R-squared: 0.9321 :
+ energy;,—data=strongx, Estimate of
+(weights=sd” (-2))) F-statistic: 124.6 on 1 and 8 DF, the residual
\ p-value: 3.71le-06 SD. &
We give Im() the diagonal elements of W-1,
without the unknown residual variance c?
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Comparing with OLS...

> summary(ols.l <- lm(crossx ~ energy,
data=strongx))

[..

-]

Coefficients:

(Intercept)
energy

[..

Residual standard error:

Estimate Std. Error t value Pr(>|t])
135.00 10.08 13.4 9.21e-07
019.71 47.68 13.0 1.16e-06

-]

of freedom

Multiple R-squared: 0.9548,
Adjusted R-squared: 0.9491

statistic: 168.9 on 1 and 8 DF,

F_
-value: 1.165e-06

p
>

+ 4+ VvV Vv +

with (strongx,
plot (energy,

abline (wls.1);

legend (0.275,

c("WLS fit","OLS fit","sd (radius)"
lty=c(1,2,N4),

crossx, cex=sd/4))
abline(ols.1l, lty=2)
225, legend =

pch=c (NA,NA, 1))

12.69 on 8 degrees

),

Crossx

350

300

250

200

— WLSfit
- OLSfit
o sd(radius)

T S T T T T T
0.05 0.10 015 0.20 0.25 0.30 0.35

energy

OLS seems to follow the data
better, but...

WLS weights observations with
lower variance more, in
minimizing RSS™ =
(y — XB)" W~y — XB)
=, Vwi(yi — Xi)*

11/1/2021
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‘ Application: serial correlation

= If the order in which the data came is important
then it is worth checking to see if any typical time
series models for 2 apply.

0 confoods2.txt contains weekly sales data for 52
weeks, for a canned food product (Sheather, Ch 3 & Ch
9). The goal is to understand how Price and
Promotion (0/1 dummy) affect Sales

0 Because the data come sequentially in time, and
customers’ behavior in one week is unlikely to be
independent of their behavior the next week, it is
worth considering serial correlation in the data.

11/1/2021 16



‘ Aside: Transformations

= The Box-Cox method suggests replacing Sales
with (Sales)¥/2 and replacing Price with (Price)2.

= However, this is harder to explain to consultee or
collaborator, so we also try log transformations:

PPPPP
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‘ (Review: Interpreting log transform)

e Since log(1 + x) ~ z, if we subtract the two regression relations

y1 = Bo+PBilog(x)+ e
y2 = Po+ Bilog(xr + Ax) + €2
A
Ay=1y—y1 = plog (1 + ?:E) + (error)
A
so Ay =~ [ ?aj + (error) (1)

Hence 3, is the approximate® change in y induced by a relative change Ax/xz in xz. E.g. if the
relative change is Ax/x = 0.01, then y changes by approximately 3; - (0.01).

e If we replace y with log(y), then equation (1) becomes

A A
29~ ﬂl—m + (error)
Y x
A A
29 100%  ~ Bl—w - 100% + (rescaled error)
Y x

If we set Ax/z = 0.01 again, we see that, since Az/x-100% = 1%, (1 is now approximately* the
percent change in y for a 1% change in x.

*These “approximate” statements can be made exact by taking expected values everywhere.
11/1/2021 See “log xform and percent interpretation.pdf” in the same folder as this lecture. 18




Autocorrelation of residuals...

- Residuals vs Fitted . Normal Q-Q
> summary(lm.l <- Im(log(Sales) ~ log(Price)) = - g7 )
[...] §3*% Loe L.
ES*&“%Hééy///) N
Est SE t Pr(>|t]) @ | oo g
(Intercept) 4.8029 0.1744 27.53 < 2e-16 =4 % e O
log (Price) -5.1477 0.5098 =-10.10 1.16e-13 ? Th" ’
[...]
Residual standard error: 0.4013 on 50 degrees Scale-Location _ Residua\svs\Leverage -
of freedom s o e
Multiple R-squared: 0.671, B 7] S e
Adjusted R-squared: 0.6644 £ oo %@;%{#my_a
F-statistic: 102 on 1 and 50 DF, & 4’f—ig£he

p-value: 1.159e-13

000 002 004 0068 008 010

> par (mfrow=c(2,2)) °

> plot (1m.1) M » First spike is

> r <- resid(Im.1) always 1

> cor(r[-1],r[-length(r 5 S e Next Spike

[1] 0.717101 - is lag-1
R

0.0

correlation
| * Nextis lag-2
0 a5 10 15 ° EtC.

Lag

> acf (r)

-02

11/1/2021 19



‘ AR(1) — Autoregressive order 1
(the simplest autocorrelation model)

e Suppose ¢; = pe;_1 + v, v; ~ N(0,02). Then

o) 062 = Var (ez) = Var (106@'—1 + V@') — pzag + 03' SO Jg =

1—p?
o Cov (e, €;-1) = Cov(pe;_1 + v, €,_1) = po?
e Thus c N
oV (€, €;— e
COI’(E@',Gi_l): V(E € 1) = P% =p

\/Var (e;)Var (€;_1) (o

e Similarly, can show Cor(e;,e;_¢) = p* =%, £ =0,...,i— 1, and thus

- o? paZ - ptTlol ] 1 p p" ]
po? o p" ol p 1 p?
2= . . . = o2 . . . = o’W
pn;102 pn;202 &2 pn;l pn;Q i
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‘ Estimation Strategy 1: Plug in

estimate of p.

> rho <- 0.717101 ## estimate of rho
> Sigma <- diag(length(Sales))
> Sigma <- rho”abs (row(Sigma)-col (Sigma))
> S <- chol (Sigma)
> St inv <- solve(t(S))
> ystar <- St _inv $*% log(Sales)
> X <- model.matrix (lm.1)
> Xstar <- St inv%*% X
> summary (lm.2 <- Im(ystar ~ Xstar - 1))
[...]

Est SE t
Xstar (Intercept) 4.5844 0.2090 21.93
Xstarlog (Price) -5.7976 0.4889 -11.86

[..]
Residual standard error: on 50
degrees of freedom

> par (mfrow=c(2,2)) K\\\\
plot (1m.2)

par (mfrow=c(1l,1))

rr <- resid(lm.2)

vV V V V

acf (rr)

Estimate of
the residual
SD, o

Residuals vs Fitted Normal Q-Q
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| Estimation Strategy 2: Estimate p, B3
together using maximum likelihood

> library(nlme)
> summary(gls.l <- gls(log(Sales) ~ log(Price), correlation=corARIl (), method="ML"))

AIC BIC logLik
20.02102 27.826 -6.010511

Correlation Structure: AR(1l)

Formula: ~1 Was the parameter rho needed?

Parameter estimate(s): > logLik (Im.1)
Phi '"log Lik.' -25.2911 (df=3)
i

ML Estimate of > logLik(gls.1)
— P "log Lik.' -6.010511 (df=4)

> (chisg <-
Coefficients: + -2*(logLik(lm.1l) - logLik(gls.l)))
[1] 38.56117

Value Std.Error t-value p-value hisq (chi G 1 1=F)
> pchisg(chisqg, =1,lower.tail=
(Intercept) 4.577421 0.2161245 21.17956 0 (1] 5.30641e-10
log(Price) -5.815621 0.4882088 -11.91216 0

Standardized residuals:
Min 01 Med 03 Max
-2.3476869 -0.4815969 0.1580394 0.6130209 2.9426%%?imate of

Residual standard error: 47 the reSIduaI
SD, o

Degrees of freedom: 52 total; 50 residual
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‘Summary

= Review ML -> OLS
= What happens to the theory when ¢ ~ N (0, Y)
m Estimating .

m Applications:
2 WLS — unequal sample sizes
a Time series correlation: AR(1), etc.
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