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Announcements
◼ Homework & Quizzes

❑ HW08 due tonight

❑ HW09 out; due next Weds

◼ Projects:

❑ I am grading Project 01

❑ Project 02 out soon (last project for the class)

◼ Reading (Sheather):

❑ Please read all of 10.1 for this week (but not 10.2)

❑ Monday’s quiz will be on this.
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Outline

◼ Introduction, Terminology, Multi-level Models

◼ London Schools Data

❑ Plotting clusters (groups, clumps, …)

◼ Minnesota Radon Data

◼ The Random-Intercept Model

◼ Different ways to write the model: 

❑ Mixed Effects, Variance Components, Multilevel Model

◼ Modeling the intercept as a function of a group-
level covariate
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Introduction
◼ Most common: linear regression and generalized 

linear regression (logistic regression) models

◼ Next most common: hierarchical and multilevel 
models (hierarchical linear models are a special 
case!)

◼ Situations…

❑ Clustered sampling

❑ Grouped experimental trials

◼ multicenter clinical trials in medicine

◼ group-randomized trials in education

❑ Growth curves and random coefficient models



A Note on Terminology
All of the following refer to approximately the same 
class of models:

◼ These models emphasize connections with linear 
regression and generalized least squares (GLS):

❑ Mixed Models

❑ Mixed Effects Models

❑ Variance Components Models

◼ These models emphasize the data generation 
process ( & they are almost Bayesian):

❑ Multilevel Models

❑ Hierarchical Linear Models
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Multilevel Models…

◼ Useful when information comes to us in clumps of 
observations that are more like each other within a 
clump than between clumps
❑ Classrooms within schools or schools within a city

❑ States or geographic areas within a nation

❑ Election precincts within a larger election

❑ Answers given by the same student on a test

◼ Useful when a different linear regression should be fitted 
within each clump, but there is not enough information 
to separately estimate all clumps
❑ Deducing state opinions from a national opinion survey

❑ Fitting separate regressions to rank schools in London – some 
schools are represented by only 1 or 2 students!
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More on Multilevel Models…
◼ Traditional linear regression can either

❑ Ignore the clumps completely and fit a single model to all 
the data

❑ Treat each clump completely separately but fail to share 
information across clumps when some clumps “need help”

❑ Both of these are examples of “Fixed Effects”

◼ Multilevel models allow 
❑ treating clumps separately, and
❑ sharing information across clumps to make better 

estimates
❑ These are examples of “Random Effects”

◼ Most MLM’s have both fixed and random effects –
“Mixed Effects” models



Example: The London Schools Data

Goldstein et al. (1993) present an analysis of 
examination results from inner London schools. 
They use hierarchical or multilevel models to study 
the between-school variation, and calculate school-
level residuals in an attempt to differentiate 
between “good” and “bad” schools.

The variables are described on the next slide
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Example: The London Schools Data
Y                     = end-of-year exam scores for each pupil (1..1978)

school            = school each pupil is in (1..38)

LRT                 = London reading test score

VR.1               = 1 for highest verbal-reasoning pupils, else 0

VR.2               = 1 for medium  verbal-reasoning pupils, else 0

Gender          : 0 = female, 1 = male (I think!)

School.gender.1 = 1 for all-girl schools

School.gender.2 = 1 for all-boy schools

School.denom.1  = 1 for Roman Catholic  schools, 0 else

School.denom.2  = 1 for Church of England schools, 0 else

◼ The LRT and VR assessments are made at the beginning of the year.

◼ Goldstein’s goal was to rank the schools in some way
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Thinking About London Schools…
◼ Consider the three models; Are any of them useful for ranking?

mean.lm <- lm(Y ~ school - 1, data=school.frame)

adj.1.lm <- lm(Y ~ school + LRT - 1, data=school.frame)

adj.2.lm <- lm(Y ~ school*LRT – 1 - LRT, data=school.frame)

◼ Easy to compare with F-test, but how can we understand what they 
say?
anova(mean.lm,adj.1.lm,adj.2.lm)

Analysis of Variance Table

Model 1: Y ~ school - 1

Model 2: Y ~ school + LRT - 1

Model 3: Y ~ school * LRT – 1 - LRT

Res.Df    RSS Df Sum of Sq        F    Pr(>F)    

1   1940 1801.8                                    

2   1939 1218.9  1    582.91 940.8659 < 2.2e-16 ***

3   1906 1180.9 33     38.03   1.8602  0.002189 ** 
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How could we rank London Schools?

◼ We can illustrate, with ggplot facet graphs, how 
these (and similar models) are representing the 
relationship between

❑ Y (end of year score)

❑ LRT (beginning of year score)

in the data

◼ ggplot facet graphs are very useful for this!

❑ Code in 
20 - ggplot-for-grouped-clustered-data-london.r
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London Schools: Ignore LRT and only 
look at mean(y) in each school

We would rank

schools by mean(y)

in this case. This

ignores the status

of students at the 

beginning of the

school year.

g <- ggplot(school.frame,

aes(x=LRT,y=Y)) + 

facet_wrap( ~ school,

as.table=F) +

geom_point(pch=1)

coef <- lm(Y ~ school - 1, 

data = school.frame)$coef

slo <- int <- rep(NA,J)

for (j in 1:38) {

int[j] <- coef[j] 

slo[j] <- 0}

par <- ddply(school.frame, 

"school", summarize,

int <- int[school[1]],

slo <- slo[school[1]])

names(par) <-

c("school","int","slo")

g + geom_abline(data=par, 

aes(intercept=int,slope=slo), 

color="blue")

(This code requires library(ggplot2) and library(plyr))
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London Schools: Ignore Schools and fit a 
single linear regression Y ~ LRT 

We really don’t have 

anything to rank

schools with here…

Everyone has the

same slope and the

same intercept.

g <- ggplot(school.frame,

aes(x=LRT,y=Y)) + 

facet_wrap( ~ school,

as.table=F) +

geom_point(pch=1)

coef <- lm(Y ~ LRT, 

data = school.frame)$coef 

slo <- int <- rep(NA,J)

for (j in 1:38) {

int[j] <- coef[1]

slo[j] <- coef[2]}

par <- ddply(school.frame, 

"school", summarize,

int <- int[school[1]],

slo <- slo[school[1]])

names(par) <-

c("school","int","slo")

g + geom_abline(data=par, 

aes(intercept=int,slope=slo)

, color="blue")

(This code requires library(ggplot2) and library(plyr))
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London Schools: Use same slope on LRT 
for all schools, different intercepts

We could

rank schools based 

on their intercepts.

However, the model

clearly fits some 

schools better than

others!

g <- ggplot(school.frame,

aes(x=LRT,y=Y)) + 

facet_wrap( ~ school,

as.table=F) +

geom_point(pch=1)

coef <- lm(

Y ~ school+LRT-1, 

data = school.frame)$coef

slo <- int <- rep(NA,J)

for (j in 1:38) {

int[j] <- coef[j] 

slo[j] <- coef[39]}

par <- ddply(school.frame, 

"school", summarize,

int <- int[school[1]],

slo <- slo[school[1]])

names(par) <-

c("school","int","slo")

g + geom_abline(data=par, 

aes(intercept=int,slope=slo)

, color="blue")

(This code requires library(ggplot2) and library(plyr))
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London Schools: Different slope and 
intercept for each school Now, we let slopes

and intercepts vary

from school to school,

to get the best fit.  We

would still like to rank

based on intercepts.

However some schools

have crazy regressions

or cannot be fitted (too

small a sample in that 

school!)

This is a problem with

fixed effects models,

and it is something

MLM’s are good at 

fixing!

g <- ggplot(school.frame,

aes(x=LRT,y=Y)) + 

facet_wrap( ~ school,

as.table=F) +

geom_point(pch=1)

coef <- lm(

Y ~ school*LRT-1-LRT, 

data = school.frame)$coef

slo <- int <- rep(NA,J)

for (j in 1:38) {

int[j] <- coef[j] 

slo[j] <- coef[j+38]}

par <- ddply(school.frame, 

"school", summarize,

int <- int[school[1]],

slo <- slo[school[1]])

names(par) <-

c("school","int","slo")

g + geom_abline(data=par, 

aes(intercept=int,slope=slo), 

color="blue")

(This code requires library(ggplot2) and library(plyr))
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Example: Radon Levels in Minnesota

◼ Each individual unit in the data set is a house

Individual-level (house-level) variables:

❑ radon, log(radon) 

❑ floor = 0 if measurement was made in basement; 
= 1 if measurement on first floor

◼ Houses are grouped into counties

Group-level (county-level) variables:

❑ county.name & county number

❑ uranium & log(uranium) – measurement of uranium in the soil in 
each county

◼ We want to predict radon levels from the other variables
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Many ways to view this data

For example…

1. Pooled regression: examine radon as a function of 
uranium [ignoring county]

2. Unpooled, means (intercepts) only: look at radon 
levels within each county [ignoring uranium]

3. Hierarchical “simple” regression: Take model #2 and 
build a second regression predicting mean level of 
radon in each county from uranium levels in that 
county.

4. Unpooled regression: examining radon ~ floor within 
each county
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Totally pooled (#1) vs totally unpooled(#2) 
log(radon) intercept-only models



Looking at the coefficients from 
fitting separate (unpooled) models
> cties <- as.factor(county)

> contrasts(cties) <- contr.sum(85)

> summary(lm.0 <- lm(y ~ 1))

Est SE     t value Pr(>|t|)    

(Intercept)  1.22    0.03   43.51   <2e-16 ***

> summary(lm.unpooled.contrast.from.grand.mean

+   <- lm(y ~ cties))

Est SE    t value Pr(>|t|)    

(Intercept)  1.34   0.04  32.01  < 2e-16 ***

cties1      -0.68   0.40  -1.72 0.09 .  

cties2      -0.51   0.12  -4.36 1.49e-05 ***

cties3      -0.30   0.46  -0.65 0.52    

cties4      -0.20   0.30  -0.67 0.50

cties5      -0.09   0.39  -0.23 0.82    

cties6       0.17   0.46   0.37 0.71

cties7       0.57   0.21   2.63 0.01 ** 

cties8       0.29   0.40   0.72 0.47

cties9      -0.41   0.25  -1.63 0.10

cties10     -0.14   0.32  -0.43 0.67    

cties11      0.06   0.36   0.16 0.87

cties12      0.39   0.40   0.98 0.33

cties13     -0.30   0.32  -0.94 0.35

cties14      0.44   0.21   2.04 0.04 *  

cties15     -0.37   0.40  -0.92 0.36

cties16     -0.68   0.56  -1.21 0.23 

.           .      .      .    .

.           .      .      .    .

.           .      .      .    .

cties68     -0.25   0.28  -0.90 0.37    

cties69     -0.10   0.40  -0.26 0.80    

cties70     -0.58   0.08  -6.82 1.80e-11 ***

cties71      0.03   0.16   0.20 0.84

cties72      0.24   0.25   0.93 0.35

cties73      0.45   0.56   0.80 0.42

cties74     -0.36   0.40  -0.90 0.37    

cties75      0.14   0.46   0.31 0.76    

cties76      0.48   0.40   1.22 0.22

cties77      0.38   0.30   1.25 0.21

cties78     -0.35   0.36  -0.97 0.33

cties79     -0.91   0.40  -2.29 0.02 *  

cties80     -0.09   0.12  -0.75 0.45

cties81      0.89   0.46   1.94 0.05 .  

cties82      0.89   0.79   1.12 0.26

cties83      0.11   0.22   0.51 0.61

cties84      0.25   0.22   1.11 0.27    
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Problems with totally-pooled vs totally-
unpooled
◼ Totally-pooled: It looks like there is some pattern 

to the county means, so this “over-smooths” 
(forces all the counties to be the same)

◼ Totally-unpooled: Although the counties have 
some variation in means, there may not be very 
much!

cties <- as.factor(county)

contrasts(cties) <- contr.sum(85)

lm.unpooled.contrast.from.grand.mean <- lm(y ~ cties)

anova(lm.unpooled.contrast.from.grand.mean)

#            Df Sum Sq Mean Sq F value    Pr(>F)    

# cties      84 136.89 1.62960  2.5567 1.736e-11 ***

# Residuals 834 531.57 0.63738 

length(unique(county))

# [1] 85

sum(coef(summary(lm.unpooled.con-

trast.from.grand.mean))[,4]<0.05)

# [1] 15

15/85

# [1] 0.1764706

Having different means

is better than totally-

pooled model…

,…but very few county

means are different

from overall mean!



◼ The coefficients are

nearly normally

distributed!

◼ Suggests that we 

modify our usual

regression model…

2111/3/2021

Some Equations…

> hist(coef(lm.unpooled.contrast.from.grand.mean)[-1],

+      main="Unpooled Contrasts from Grand Mean")
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A compromise between totally-pooled 
and totally-unpooled

◼ The 85 county means look rather “normal”, so 
why not model them that way?

◼ Sometimes called a  
“random intercept” 
model

Histogram of aj.coefs

aj.coefs
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Fitting the random-intercept model

cties <- as.factor(county)

contrasts(cties) <- contr.sum(85)

lm.unpooled.contrast.from.grand.mean <-

lm(y ~ cties)

summary(lm.unpooled.contrast.from.grand.mean)

# Coefficients:

#               Est     SE      t Pr(>|t|)    

# (Intercept)  1.34   0.04  32.01  < 2e-16 ***

# cties1      -0.68   0.40  -1.72 0.085374 .  

# cties2      -0.51   0.11  -4.36 1.49e-05 ***

# cties3      -0.30   0.46  -0.65 0.518720 

# […]

# Residual std err: 0.7984 on 834 df

library(lme4)

lmer.intercept.only <-

lmer( y ~ 1 + ( 1 | county.name ) )

summary(lmer.intercept.only)

# Random effects:

#  Groups      Name             Var    SD

#  county.name (Intercept)    0.096 0.310

#  Residual                   0.637 0.798 

# Numb. of obs: 919, grps: county.name, 85

# 

# Fixed effects:

#             Estimate     SE   t value

# (Intercept)     1.31   0.05     26.84

Unpooled fixed effects (equation 1 only)Multilevel model (both equations 1 and 2)
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Random-intercept model: Where are the 
intercepts?
> summary(lmer.intercept.only)

Random effects:

Groups      Name        Variance Std.Dev

county.name (Intercept) 0.095813 0.30954 

Residual                0.636621 0.79789 

Numb. of obs: 919, grps: county.name, 85

Fixed effects:

Estimate Std. Error t value

(Intercept)  1.31257    0.04891   26.84

> fixef(lmer.intercept.only)

(Intercept) 

1.312574 

> ranef(lmer.intercept.only)

$county.name

(Intercept)

AITKIN               -0.245071104

ANOKA                -0.425038053

BECKER               -0.082191868

BELTRAMI             -0.088030506

BENTON               -0.022598796

BIG STONE             0.062346490

BLUE EARTH            0.404629013

[….]

> summary(lm.unpooled.con-
trast.from.grand.mean)

Call:

lm(formula = y ~ cties)

Coefficients:

Estimate Std. Error t value 
Pr(>|t|)    

(Intercept)  1.343638   0.041980  32.006

cties1      -0.683231   0.396682  -1.722

cties2      -0.510388   0.117180  -4.356

cties3      -0.295300   0.457408  -0.646

cties4      -0.202652   0.301120  -0.673

cties5      -0.091202   0.396682  -0.230

cties6       0.169372   0.457408   0.370

cties7       0.565589   0.214984   2.631

[…]

Fixed effects – estimates

of regression coefficients
Random effects –

draws from N(0,t2)
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Different ways to write the random-
intercepts model
◼ Multi-level Model (emphasize regression)

◼ Variance Components Model (substitute for aj)

◼ Hierarchical Model (emphasize distributions)
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Multi-level Model 
(a.k.a. Hierarchical Linear Model)

◼ Emphasize Regression Structure

◼ Easy to use intuitions from lm() at each “level” of 
the model, to build and evaluate models



◼
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Variance Components Model

Intra-class 

correlation (ICC)

reliability
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Hierarchical Bayes Model
◼ Emphasize Distribution Structure

◼ Emphasize Bayesian point of view

◼ Emphasize two-stage (multistage) sampling
Mean radon across MN

County-level differences

from grand mean

individual house levels
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Back to the Radon Example:
Plot county means vs log(uranium)…

aj.coefs <- NULL

for (cty in 
sort(unique(county))) {

aj.coefs <- c(aj.coefs,

coef(lm(y ~ 1, 
subset=(county==cty))))

}

summary(higher.regression <-
lm(aj.coefs ~ u))

plot(aj.coefs ~ u,

xlab="log.uranium, per 
county", ylab="Intercept 
(mean) for log.radon, per 
county")

abline(higher.regression)
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◼ Instead of

we could try to fit

Suggests ways to elaborate the 
hierarchical linear model…

Uj = log(uraniumj)



Fitting this model to the radon 
data…
> summary(lmer.intercepts.depend.on.log.ur-

anium)

Linear mixed model fit by REML ['lmerMod']

Formula: y ~ 1 + log.uranium + 

(1 | county.name) 

REML criterion at convergence: 2219.794 

Random effects:

Groups      Name        Variance Std.Dev.

county.name (Intercept) 0.01406  0.1186  

Residual                0.64037  0.8002  

Number of obs: 919, groups: county.name, 85

Fixed effects:

Estimate Std. Error t value

(Intercept)  1.33305    0.03397   39.24

log.uranium  0.71912    0.08777    8.19

Correlation of Fixed Effects:

(Intr)

log.uranium 0.197 

> fixef(lmer.intercepts.depend.on.log.ur-

anium)

(Intercept) log.uranium 

1.3330508   0.7191188 

> ranef(lmer.intercepts.depend.on.log.ur-

anium)

$county.name

(Intercept)

AITKIN               -0.0142971713

ANOKA                 0.0583741025

BECKER               -0.0125490841

BELTRAMI              0.0312484900

BENTON                0.0017869830

BIG STONE            -0.0060780289

BLUE EARTH            0.0895241245

BROWN                 0.0078003746

CARLTON              -0.0293551573

CARVER               -0.0230826914

CASS                  0.0499879229

CHIPPEWA              0.0161734868

CHISAGO               0.0272838175

CLAY                  0.0475401692

[…]
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b0

b1

t2 = Var(hj)

s2 = Var(ei) Estimates of 
the hj’s
themselves
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