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Announcements
◼ HW09 due tonight

◼ HW10 due next Weds

◼ Projects:

❑ I still owe you grades on Project 01 – working on it!

❑ Project 02 out now (HW10, #2: tech appx!)

◼ Project 02 Schedule:

❑ Wed Nov 17: Draft Technical Appendix with HW 10.

❑ Wed Nov 24 (or earlier): Full IDMRAD paper first draft.

❑ Wed Dec 1: Peer reviews due.

❑ Fri Dec 10 (or earlier): Full IDMRAD paper final draft!
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Plan for rest of semester

◼ M Nov 8 – intro to MLM’s, continued

◼ W Nov 10 – residuals for MLM’s

◼ M Nov 15 – estimation and model selection

◼ W Nov 17 – shrinkage, crash course on Bayes

◼ M Nov 22 – catch-up, or multilevel glm’s

◼ W Nov 24 – Thanksgiving break!

◼ M Nov 29 – ?? Maybe spline smoothing 

◼ W Dec 1 – ?? Maybe spline smoothing
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Outline

◼ The London Schools Data (again!)

❑ A nice random-intercepts, random-slopes model

◼ Residuals in MLM’s

❑ Marginal residuals

❑ Conditional residuals

❑ Random effects residuals

◼ Cholesky Residuals

◼ The Orthodont Data



The London Schools Data

◼ Student (1..1978)

❑ Gender (0=Female, 1=Male), per student

❑ VR = verbal reasoning level (High/Med/Low)

❑ LRT = London Reading test (at beginning of year)

❑ Y = end-of-year test

◼ School (1..38)

❑ School.gender  (All.Boy, All.Girl, Mixed)

❑ School.denom (Other,CofE,RomCath,State)
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London Schools Data

◼ The dotted line is the 
pooled regression 
(ignoring schools)

◼ The solid lines are 
unpooled regressions 
(separate for each 
school)

◼ The solid lines look like 
a random sample of 
lines, with “mean” the 
solid line!
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Unpooled

Pooled



The London Schools Data

◼ This suggests a model like

or, as a variance components model

◼ As an R model this would be

Y ~ 1 + LRT + (1 + LRT|school)
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The London Schools Data

> display(lmer.1 

+ <- lmer(Y ~ 1 + LRT + 

+ (1 + LRT|school),data=school.frame))

coef.est coef.se

(Intercept) 0.01     0.05   

LRT         0.05     0.00   

Error terms:

Groups Name  Std.Dev. Corr 

school (Int) 0.23          

LRT   0.01     0.56 

Residual     0.79          

---

number of obs: 1978, 

groups: school, 38

AIC = 4764.4, DIC = 4722.4

deviance = 4737.4 
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Residuals

◼ In ordinary linear regression the residuals are 
easy to think about:

❑ E[yi] = Xi¯

❑ ri = yi – E[yi]

◼ Multi-level models pose a couple of challenges



1011/10/2021

Residuals in Multi-Level Models

◼ Where are they?
❑ Level 1? Level 2? Some combination?

◼ What are they?  The ®’s are random draws, so 
does the following make sense?
❑ E[yij] = ®0j + ®1j LRTij ??

❑ rij = yij - E[yij] ??

Level 1

Level 2



◼ The variance components version of the model

could be re-expressed in matrix form as 

i.e. 

Laird & Ware (1982, Biometrics)

Residuals in Multi-Level Models
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◼ Given the Laird-Ware form                                   , 
can formulate 3 different kinds of residuals:

❑ Marginal residuals:            

❑ Conditional residuals:

❑ Random effects: 

◼ In practice, estimate    with    , the MLE, and 
estimate      with

❑ Although there is only one    per group, there are as 
many              ’s as there are observations.

◼ Nobre & Singer (2007, Biometrical Journal)

Residuals in Multi-Level Models
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◼ Marginal residuals:
❑ Should be mean 0, but may show grouping structure

❑ May not be homoskedastic!  Will be correlated1!

❑ Good for checking fixed effects, just like linear regr.

◼ Conditional residuals:
❑ Should be mean zero with no grouping structure

❑ Should be homoskedastic!

❑ Good for checking normality of  ², outliers

◼ Random effects:
❑ Will generally not be mean-zero

❑ May not be be homoskedastic!

❑ Good for checking normality of         , outliers

Residuals in Multi-Level Models
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1We’ll look at uncorrelated “Cholesky residuals’” in a few slides.



Residuals in the London Schools Data

> str(fixef(lmer.1))

> beta0 <- fixef(lmer.1)[1]

> beta1 <- fixef(lmer.1)[2]

> str(ranef(lmer.1))

> eta <- ranef(lmer.1)$school

> attach(school.frame)

> X <- cbind(1,LRT)

> blocks <- lapply(split(X,school),

+   function(x){matrix(x,ncol=2)})

> J <- length(blocks)

> n <- dim(school.frame)[1]

> Z <- matrix(0,nrow=n,ncol=J*2)

> row <- 1

> for (j in 1:J) {

+   col <- 2*j

+   nj <- dim(blocks[[j]])[1]

+   Z[row:(row+nj-1),c(col-1,col)] <-

+       blocks[[j]]

+   row <- row + nj

+ }

> beta <- rbind(beta0,beta1) 

> # so beta is a column vector

> eta <- c(t(eta))           

> # so eta is a column vector

> resid.marg <- Y - X%*%beta

> resid.cond <- Y - X%*%beta - Z%*%eta

> resid.reff <- Z%*%eta

1411/10/2021
The file “residual-functions.r” provides these residuals automatically. 



Residuals in the London Schools Data

◼ Marginal residuals

look pretty good…

◼ Conditional residuals

look pretty good

◼ Rand Effect residuals

look weird…
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Residuals in the London Schools Data

◼ Marginal residuals

plotted by school

◼ No noticeable patterns

◼ Nice set of residuals
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Residuals in the London Schools Data

1711/10/2021

◼ Conditional residuals

plotted by school

◼ No noticeable patterns

◼ Nice set of residuals



Residuals in the London Schools Data
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◼ Rand Effect residuals

plotted by school

◼ The scale of these 
residuals is smaller!

◼ A few schools show 
noticable deviation 
from zero
❑ We do not expect mean-zero, 

but the BLUP estimates should 
cluster around a mean



Uncorrelated Residuals

◼ Correlation in the marginal residuals
can suggest nonlinearity that isn’t really there.

◼ “Cholesky residuals” are marginal residuals, 
transformed to remove the correlation:

◼ We use the function getME() to get components 
of the fitted lmer model to construct S, S, and 
then construct the Cholesky residuals…
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Cholesky Residuals for the London 
Schools data…
> rel.var.eta <- crossprod(getME(lmer.1,"Lambdat"))

> Zt <- getME(lmer.1,"Zt")

> var.epsilon <- sigma(lmer.1)^2

> var.eta <- var.epsilon*(t(Zt) %*% rel.var.eta %*% Zt)

> sI <- var.epsilon * 

Diagonal(length(getME(lmer.1,"y")))

> var.y <- var.eta + sI

> S <- chol(var.y)

> resid.chol <- (solve(t(S))%*%resid.marg)@x

>

> fitted.marg <- X%*%beta

>

> image(var.y,main="Sigma for Raw Marginal Residuals")

> image(round(as.matrix(solve(t(S))%*%var.y%*%solve(S)),

+              4), main="Sigma for Cholesky Residuals")

>

> par(mfrow=c(2,2))

> plot(fitted.marg,resid.marg)

> abline(h=0)

> lines(loess.smooth(fitted.marg,resid.marg),col="red")

> plot(fitted.marg,resid.chol)

> abline(h=0)

> lines(loess.smooth(fitted.marg,resid.chol),col="red")

◼ Not much difference, 
since correlations are 
small, in this case…

2011/10/2021
The file “residual-functions.r” provides Cholesky residuals too… 



Marginal vs Cholesky Residuals for 
London Schools Data…
Marginal Residuals Cholesky Residuals

2111/10/2021
Very little difference here, since the correlations in the marginal 

residuals were small to start with…



Standardized Residuals
◼ We have mostly been looking at raw residuals

◼ Cholesky Residuals are standardized, so they can 
be used for outlier detection…

◼ If you wanted a simpler set of standardized 
residuals for outlier detection, you could 

❑ Divide the marginal residuals by the square root of the 
diagonal elements of S = Var(y)

❑ Quick and dirty: divide by their sample SD!

❑ If there are severe outliers, the sample SD will be 
inflated and this won’t work well 

(unless you omit outliers from the SD calculation)
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Residuals: Practical Advice

◼ Looking at some residuals is better than looking at 
none.

❑ In many MLM’s, marginal and conditional residuals can be 
used roughly as you would with ordinary linear regression

❑ It is worthwhile to plot residuals again the group/cluster 
indicators

❑ To identify and fix problems, plot residuals against other 
variables (within and/or across clusters), try 
transformations, etc…

◼ residuals(lmer.1) gives you the conditional 
residuals!



Example: Scheafer’s Orthodont Data 
(Potthoff & Roy, 1964)…
Investigators followed the growth of 27 children (16 
males and 11 females). At ages 8, 10, 12 and 14, they 
measured the distance (in mm) between two points 
that are easily identified on x-ray exposures of the side 
of the head.  A possible growth curve model is

2411/10/2021
i = observation number

j = child number; j[i] = child of ith observation 



Example: Sheafer’s Orthodontics 
Data…
> data(Orthodont,package="nlme")

> str(Orthodont)

Classes ‘nfnGroupedData’, 

‘nfGroupedData’, ‘groupedData’ and 

'data.frame':    

108 obs. of  4 variables:

$ distance: num  26 25 29 31 21.5 ...

$ age     : num  8 10 12 14 8 10 ...

$ Subject : Ord.factor w/ 27 levels 

"M16"<"M05"<"M02"<..: 15 15 15 15 3 ...

$ Sex     : Factor w/ 2 levels 

"Male","Female": 1 1 1 1 1 1 1 1 ...

> ## Fit a growth curve model... 

> orth.1 <- lmer(distance ~ age + 

+ (age | Subject), data=Orthodont)

>

> ## could have got same model as

> ##

> ## orth.1 <- lmer(distance ~ 1 + age +

> ## + (1 + age | Subject), ...)

> summary(orth.1)

Linear mixed model fit by REML ['lmerMod’]

Formula: distance ~ age + (age | Subject)

Data: Orthodont

REML criterion at convergence: 442.6

Scaled residuals:

Min      1Q  Median      3Q     Max

-3.2231 -0.4938  0.0073  0.4722  3.9160

Random effects:

Groups   Name        Variance Std.Dev. Corr

Subject  (Intercept)  5.41509  2.3270

age                    0.05127  0.2264 -0.61

Residual               1.71620  1.3100

Number of obs: 108, groups:  Subject, 27

Fixed effects:

Estimate Std. Error t value

(Intercept) 16.76111    0.77525  21.620

age          0.66019    0.07125   9.265

Correlation of Fixed Effects:

(Intr)

age -0.848
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Orthodont Data: Fitted Growth 
Curves…
◼ The model is

◼ Green curve (mlm betas) 
is the overall regression 
line

◼ Red curves (mlm alphas) 
are each individual 
child’s regression line
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Orthodont: Marginal Residuals
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Orthodont: Conditional and Random 
Effects Residuals
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Conclusions

◼ In General…

❑ Marginal and conditional 
residuals seem quite 
useful

❑ Random effects residuals 
depend much on 
structure of Zh, may not 
be so useful

❑ Standardized or Cholesky 
residuals useful for outlier 
detection (maybe also for 
finding nonlinear xforms!)

◼ For the London data

❑ Our model so far seems ok

❑ But we have not yet 
considered the other 
covariates in the data set!

◼ For the Orthodont data

❑ Marginal residuals suggest 
unmodelled male/female 
differences 

❑ Conditional residuals seem 
well-behaved
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Summary

◼ The London Schools Data (again!)

❑ A nice random-intercepts, random-slopes model

◼ Residuals in MLM’s

❑ Marginal residuals

❑ Conditional residuals

❑ Random effects residuals

◼ Cholesky Residuals

◼ The Orthodont Data


