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 Random-Effects Models for Longitudinal Data

 Nan M. Lairdl 2 and James H. Warel

 lDepartment of Biostatistics, Harvard School of Public Health, 677 Huntington Avenue,

 Boston, Massachusetts 02115, U.S.A. and 2Department of Statistics7 Harvard {Jniversity,

 Science Center 603, 1 Oxford Street, Cambridge, Massachusetts 02138, U.S.A.

 SUMMARY

 Models for the analysis of longitudinal data must recogrlize the relationship between serial
 observations on the same unit. Multivariate models with general covariance structure are often
 difficult to apply to highly unbalanced data, whereas two-stage random-effects models can be used
 easily. In two-stage models, the probability distributions for the response vectors of different
 individuals belong to a single family, but some random-effects parameters vary across individuals,
 with a distribution specified at the second stage. A general family of models is discussed, which
 includes both growth models and repeated-measures models as special cases. A unified approach to

 fitting these models, based on a combination of empirical Bayes and maximum likelihood estimation
 of model parameters and using the EM algorithm, is discussed. Two examples are taken from a
 current epidemiological study of the health effects of air pollution.

 1. Introduction

 Many longitudinal studies are designed to investigate changes over time in a characteristic

 which is measured repeatedly for each study participant. In medical studies, the measure-

 ment might be blood pressure, cholesterol level, lung volume, or serum glucose.

 Multiple measurements are obtained from each individual, at different times and possibly

 under changing experimental conditions. Often, we cannot fully control the circumstances

 under which the measurements are taken, and there may be considerable variation among

 individuals in the number and timing of observations. The resulting unbalanced data sets

 are typically not amenable to analysis using a general multivariate model with unrestricted

 covariance structure.

 Statisticians have often analyzed data of this form using some variant of a two-stage

 model. In this formulation, the probability distribution for the multiple measurements has

 the same form for each individual, but the parameters of that distribution vary over

 individuals. The distribution of these parameters, or 'random effects', in the population

 constitutes the second stage of the model. In a study of changes in lung volume during

 childhood, for instance, it may be reasonable to assume that the relationship between lung

 volume and the cube of height is linear for each child, but with linear regression

 parameters that vary among children. If we assume that the usual linear regression model

 applies for each child, conditional on the child's individual parameters, and that the

 regression parameters have a bivariate normal distribution in the population, the marginal

 distribution of the serial measurements is multivariate normal with a special covariance

 structure.
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 964  Biometrics, December 1982

 Such two-stage models have several desirable features. There is no requirement for

 balance in the data. They allow explicit modelling and analysis of between- and within-

 individual variation. Often, the individual parameters have a natural interpretation which

 is relevant to the goals of the study, and their estimates can be used for exploratory

 analysis. These models also facilitate the study of the effects of background variables on

 the response. The major limitation of these models relative to the general multivariate

 model is the special form assumed for the covariance structure.

 Despite wide recognition of the value of two-stage models, many statisticians are

 unaware of recent methodologic developments that allow a unified approach to the

 formulation and fitting of these models. This paper describes that unified methodology

 and illustrates its value in two problems of data analysis arising in an epidemiologic sttldy

 of air pollution.

 In §2, we introduce a family of two-stage models for repeated measurements, based on

 the work of Harville (1977). This family includes growth models and repeated-measures

 models as special cases. In §3, §4 and §57 we describe a unified approach to inference

 using these models. Both maximum likelihood and empirical Bayes estimation are

 discussed. The relationships, both conceptual and algorithmic, between these two ap-

 proaches to inference are stressed. The EM algorithm is shown to offer a conceptually

 straightforward method for parameter estimation in this setting. Section 6 describes two

 applications of the method.

 2. Models

 Most stochastic models for serial measurements can be classified either as full multivariate

 models or multi-stage random-effects models. In the full multivariate model, we assume

 that each vector of responses, Yi, is multivariate normal with mean gui(nixl) and an

 arbitrary ni x ni dispersion matrix t. Here ni is the number of observations for the ith

 individual, i = 1, 2, . . ., m. The mean vector may depend upon the pattern of observations

 and also upon covariates.

 When the design is balanced, but observations are missing at random, the full multi-

 variate model can be applied by use of multivariate methods for missing observations

 (Orchard and Woodbury, 1972; Beale and Little, 1975; Dempster, Laird and Rubin,

 1977). However7 when individuals are measured at arbitrary or unique times, or when the

 dimension of X is large, this approach becomes unattractive, since a full multivariate

 model with an unrestricted dispersion matrix requires a proliferation of variance parame-

 ters, many of which will be poorly estimated. In addition, the full multivariate model does

 not permit the definition and estimation of (random) individual characteristics.

 Two-stage random-effects models are based on explicit identification of individual and

 population characteristics, and their form extends naturally to the unbalanced situation.

 Most of the two-stage models in the literature can be described either as growth models or

 as repeated-measures models.

 As the name implies, growth-curve analyses emphasize the explanation of within-

 person variation by the natural developmental or aging process (Rao, 1965; Fearn, 1975;

 Ware, 1983). These analyses often compare growth characteristics for different popula-

 tions, emphasizing the contribution of experimental conditions to between-individual varia-

 bility.

 In constrast, repeated-measures models, as described in the design literature, typically

 assume that individual effects remain constant over the time period of interest (Hayes,

 1973). Experimental conditions are changed during the course of observation, either by
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 Random Effects in Longitudinal Data  965

 design or circumstance, so that the experimental effects contribute to the within-person
 variation.

 In this section, we utilize ideas introduced by Harville (1977) to define a family of
 models for serial measurements that includes both growth models and repeated-measures
 models as special cases. Population parameters, individual effects, and within-person
 variation are introduced at Stage 1, and between-person variation at Stage 2. In §6, we
 illustrate how growth and repeated measures can be represented in this family, and
 demonstrate some of the advantages of the more general formulation.

 Let ac denote a p x 1 vector of unknown population parameters and Xi be a known
 ni x p design matrix linking zx to Yi. Let bi denote a k x 1 vector of unknown individual
 effects and Zi a known ni x k design matrix linking bi to Yi. For measured, multivariate
 normal data, we propose the following model:

 Stage 1. For each individual unit, i,

 Yi = Xiot+Zibi +ei, (2.1)

 where ei is distributed as N(0, Ri) (normal with mean 0 and covariance matrix Ri). Here
 Ri is an ni x ni positive-definite covariance matrix; it depends on i through its dimension
 ni, but the set of unknown parameters in Ri will not depend upon i. At this stage, ac and b
 are considered fixed, and the ei are assumed to be independent.

 Stage 2. The bi are distributed as N(0,D), independently of each other and of the ei.
 Here D is a k x k positive-definite covariance matrix. The population parameters, ac, are
 treated as fixed effects.

 Marginally, the Yi are independent normals with mean Xiec and covariance matrix
 Ri +ZiDZiT. Further simplification of this model arises when Ri = cr2I, where I denotes an
 identity matrix. In that case we call the model the 'conditional-independence model', since
 it implies that the ni responses on Individual i are independent, conditional on bi and ac.

 Inference for this general linear model can be based either on least squares and
 maximum likelihood methods, or on empirical Bayes methodology. If 0 is a q-vector of
 variance and covariance parameters found in Ri, i = 1, . . ., m, and D, the classical
 approach is based on maximum likelihood estimation of ac and 0 from the marginal
 distribution of yT = (Y11 . . ., yT). An estimate for bT = (b1, . . ., bT) can be obtained by use
 of an extended version of the Gauss-Markov theorem for random effects (Harville, 1976).
 This approach is reviewed by Harville (1977). We apply it to the model (2.1) in §3,
 discussing some of the limitations of the maximum likelihood approach, and possible
 alternatives.

 One alternative can be derived using a Bayesian formulation of the model. Here we
 introduce a flat prior for the location parameters, ac, and estimate 0 from the marginal
 likelihood of y after integrating out aL and bi, i -1, 2, . . ., m. This approach was consi-
 dered by Harville (1974, 1976) and Dempster, Rubin and Tsutakawa (1981). This
 modification yields restricted maximum likelihood (REML) estimates for 0. The empirical
 Bayes estimates of a and the bi are the estimated means of the posterior distributions.

 In §5, we show that this Bayesian approach leads to estimates of parameters and their
 variances which are identical to those proposed in a sampling-theory context as alterna-
 tives to maximum likelihood estimates. The Bayesian formulation is emphasized in this
 paper because it provides both a conceptual and computational unity to the estimation
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 966  Biometrics, December 1982

 methods which we discuss. For either formulation, the EM algorithm provides a conve-

 nient approach to computation for random-effects models, since the individual charac-

 teristics can be viewed as missing data. Implementation of the EM algorithm for

 parameter estimation is described in §4.

 3. Estation and Inference with Measured Response Data

 3.1 Known Varzance

 When all covariance parameters are known, and sx is treated as a fixed effect, expressions

 for the estimates of the population and individual effects and their standard errors are

 well-known. Writing var(yi) - Vi = Ri + ZiDZiT, and Wi = Vi-1, we have

 m \-1 en
 _ E XitiXi) E Xi WiYi (3.1)

 1 1

 and

 bi = DZiTWi (Yi - Xi a). (3 .2)

 We assume throughout that, whenever this is implied, the necessary ulatrix inverses exist.

 The equivalent formulas using generalized inverses can be worked out for cases of less

 than full rank.

 The estimate of aL maximizes the likelihood based on the marginal distribution of the

 data and is also the minimum variance unbiased estimate. The expression for bi is of

 course not maximum likelihood but can be derived by an extension of the Gauss-Markov

 theorem to cover random effects (Harville, 1976).

 The estimate for bi is also empirical Bayes, since it has the form bi =E(6i | Yi, ac, 0).

 Because the prior mean of bi is zero, bi is a weighted combination of O and bi, where bi is

 the ordinary weighted least squares estimate obtained by treating bi as a fixed effect. As

 such, bi is related to Stein-type estimates obtained by 'shrinklng towards the origin'.

 Similar empirical Bayes estimates of individual parameters are discussed by Rosenberg

 (1973) and Rao (1975) in the context of growth curves.

 Since both aL and bi are linear functions of y, expressions for their standard errors are

 easily derived as m -1

 var(&)= ( X5VjXi) (3 3)
 1

 and

 var(bi) = DZg {Wi -WiXi ( XtWiXi) X5Vi}Zi D. (3.4)

 If (3.4) is used to assess the error of estimation, the variation in bi-bi will be

 understated, because this expression ignores the variation of bi. We use instead

 m \-1

 var(bi bi) = D-DZiM7ViZiD + DZiTWiXi E XtWiXi) X5ViZi D. (3.5)
 1

 These expressions for the variances, and related ones for covariances, are special cases of

 the general formulas given by Harville (1976).

 3.2 Unknown Variance

 When the covariance matrices are unknown, but an estimate of 0, and thus of Ri and D, is

 available, it is natural to set Vi -Ri +ZiDZiT=Wi-l, and estimate sx and b; by using the
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 Rando7n Efl^ects in Longitudinal Data  967

 weighted least squares equations (3.1) and (3.2), replacing each Wi by Wi. We denote
 A A A

 these estimates by ac(0) and bi(0).

 This approach arises naturally when we consider the estimation of ac and H simultane-
 ously by maximizing their joint likelihood based on the marginal distribution of y. It is
 easily shown that the ML estimates (M, OM) satisfy &M = (0M). Further, let bT =
 (bl,b2,...,bT). Setting bM=E(b|y,acM,OM) gives bM=b(0M), which is the empirical
 Bayes estimate for b when o is estimated by maximum likelihood. Thus, the intuitive
 approach is maximum likelihood for aL and empirical Bayes for b.

 Estimates of the standard errors of ac(o) and b(o) can be obtained by substituting o in
 (3.3), (3.4) and (3.5). As noted by Dempster et al. (1981), methods of adjusting
 the resulting expressions to reflect the uncertainty arising from the use of H rather
 than o would be useful, but such methods are not available at present.

 Except for this problem of adjusting the standard errors of ac(o) and b(o), inference
 about ac and b is relatively straightforward. There seems to be general agreement in the
 literature on the use of &(o) and b(o) for some choice of 0. In addition, once o is available,
 ac(o) and b(o) and expressions for their standard errors are obtained noniteratively. The
 more difficult problem is to obtain a good and easily computed estimate of 0.

 3.3 Estimating the Covariance Matrix

 The literature on the estimation of variance components is extensive, most of it in the
 context of ANOVA models. Harville (1977) reviews the state of the art, treating both the
 optimality of various estimates and their computation. We focus here on two competitive

 A A

 estimates, the ML estimate, OM, and a relative, the restricted ML estimate (REML), OR.
 We do so not only because they are leading candidates (0R especially), but also because
 (i) the use of either of these estimates leads to a unified approach to estimation for a, b and
 0, and (ii) the use of the EM algorithm unifies the computation of ac(o), b(o) and 0,

 A ^

 whenever either OM or OR iS used.

 First consider the ML estimate, 0M As pointed out previously, (0M) and OM jointly
 maximize the marginal likelihood of (ac, 0), and b(9M) is the empirical Bayes estimate of b,
 appropriate when we use ot(0M) and HM to estimate sx and 0. Thus, using ML for o leads to
 a unified approach for estimating ac and b as well. In §4 we discuss the use of the EM
 algorithm to calculate at(0M) b(0M) and OM

 In balanced ANOVA models, ML estimates of variance components fail to take into
 account the degrees of freedom lost in estimating sx, and are thus biased downwards. The
 REML estimates are not biased. The REML estimate is obtained by maximizing the
 likelihood of o based, not on y as in maximum likelihood, but on any full-rank set of error
 contrasts, uTy, chosen so that

 E(u y)=0.

 In balanced ANOVA models, the REML likelihood equations have the standard
 ANOVA (unbiased) estimates as their solution. Patterson and Thompson (1971) justify
 their use by giving sufficiency arguments of the type subsequently formalized by Sprott
 (1971).

 It is not so straightforward to see that the use of OR leads to a unified approach to both
 estimation and computation of estimates of ac and b. The REML estimate can be derived
 in at least two completely unrelated ways, one relying on the sampling theoretic argu-
 ments given above, and the other on a Bayesian approach. The sampling theoretic
 approach gives the much more well-known justification for REML, but the Bayesian
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 968  Biometrics, December 1982

 approach leads to the unified treatment of estimation and computation. Strictly speaking,
 it is unnecessary to understand the Bayesian approach to REML, but this approach is
 attractive because it clarifies the theoretical justification for aL(0R), b(0R) and oR, and,
 more importantly, it leads to a simplified derivation of the likelihood equations and shows
 how to handle their computation. For this reason, we discuss the Bayesian approach to
 REML in §5, after a discussion of the use of the EM algorithm for ML estimation.

 4. Using the EM Algorithm for ML Estimates

 In their paper on maximum likelihood estimation with incomplete data, Dempster et al.
 (1977) noted that many iterative algorithms for computing maximum likelihood estimates
 are merely special cases of a very general computing algorithm called EM, applicable in a
 broadly defined incomplete-data setting. Both variance-component models and empirical
 Bayes models were discussed as incomplete-data problems in which the algorithm can be
 applied. Dempster et al. (1981) consider its application to covariance-component models
 as well. We outline here its use in the calculation of oMv and also of at(0M) and b(0M).

 Laird (1981) shows that, when 0 is a vector of variance components (Ri = cr2InlXni and D
 is diagonal), the EM algorithm is equivalent to Henderson's algorithm for maximum
 likelihood, as described in Harville (1977). As Dempster et al. (1981) point out, the
 reasons for viewing the particular algorithm (Henderson's) in the more general form (EM)
 include the following: (i) special derivations are not required for other cases, such as
 covariance-components models; (ii) the general EM theory, which shows that each
 iteration increases the likelihood, can be applied; and (iii) the general expressions for
 defining the iterative steps of the algorithm have meaningful statistical interpretations
 which, as we show in §5, help to elucidate the distinction between REML and maximum
 likelihood estimates of 0.

 To put the longitudinal-data problem in the context of incomplete-data, note that if we
 were to observe bi and ei, in addition to Yi, we could easily find simple closed-form
 maximum likelihood estimates of the components of 0, based on quadratic forms in bi and
 ei, i = 1, . . ., m. For example, if Ri -cr2IniXni and D is an arbitrary k x k nonnegative-
 definite matrix, we would use

 m /m /m

 (J2= EeiTei/ ni=t1/ni (4.1)
 and

 m

 D = m-1 E bibiT= t2/m, (4.2)

 the 'sufficient statistics' for o being t1 and the 2k(k + 1) nonredundant components of t2.
 If an estimate of o is available, we can use it to calculate 'estimates' of the missing
 'sufficient statistics', by setting them equal to their expectations, conditional on the
 observed data vector y. Letting 0 denote the estimate of 0, a(0) and bi(0) the correspond-
 ing estimates of ac and bi, and tl and t2 the 'estimated suflicient statistics', we have

 t1 = E{2; eiTei I Yi, (x(0), 0}

 m

 = E [ei (0)T ei(0) + tr var{ei I Yi, a(0), 0}], (4 3) 1
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 and m

 t2-E{2; bibi I Yi, (8), }

 m

 - E {bi (8)bi (8)T + var(bi I Yi, a(o), 0)} (4 4)
 i =1

 where ei(o)=E(ei |yi,(o),9)=yi-Xia(8)-Zibi(8).

 To obtain the ML estimate, oM, we start with any suitable initial value for 0, and thus

 for al(o), then iterate between (4.3) and (4.4), which define the E-step, and (4.1) and (4.2),

 which define the M-step. At convergence we have not only 0M, but &(0M) and b(0M), from

 calculation of the last E-step.

 For other models applied to longitudinal data, 1 eTei and 1 bibT are replaced by the

 appropriate 'sufficient statistics', which, depending on 0, are generally quadratic forms in

 bi and ei. Denoting these sufficient statistics by t, (4.1) and (4.2) (defining the M-step of

 the EM algorithm) become M-step: 0=M(t), (4.5)

 where M is the appropriately defined mapping which gives maximum likelihood estimates

 of o when t is observed. The general form of the E-step [(4.3) and (4.4)] becomes

 E-step: t = E{t | y, a(o), 0}. (4.6)

 A different application of the EM algorithm arises in multivariate normal missing-data

 problems (Dempster et al., 1977). Here one proceeds by 'filling in' the missing observa-

 tions. This technique is sometimes employed to create artificially a balanced design even

 when no data are missing (Healy and Westmacott, 1956; Kleinbaum, 1973). Our

 approach here both to modelling and computation is fundamentally different. We regard

 no data as missing; we use the EM algorithm to 'estimate' unobservable (i.e. random)

 parameters, not missing observations.

 In the discussion of Dempster et al. (1977), concerns were raised about the slow

 convergence of the EM algorithm, its sensitivity to starting values, and its convergence to

 a local, rather than a global, maximum. Examples involving its application to missing-data

 problems, mixture problems and factor analysis were given. In applications of the

 two-stage model, we have often experienced slow convergence of the estimates of

 variance components. The problem of slow convergence will be especially severe if the

 maximum likelihood occurs on or near a boundary of the parameter space. Further work

 on the convergence properties of the algorithm is desirable before it can be universally

 endorsed.

 5. REML Estimation and Computation

 For reasons noted earlier, REML estimates of variance components are generally prefera-

 ble to ML estimates. In this section, we discuss the Bayesian interpretation of REML,

 showing how it leads to a unified approach to estimation of a, b and 0, and to

 computation of their estimates.

 Consider the following 'Bayesian' formulation of the general two-stage model presented

 in §2. Stage 1 remains unchanged so that, conditional on a and bi, Yi is normal with mean

 Xia+Zibi and variance Ri. At Stage 2, we let al and each bi be independent and normally

 distributed with mean vectors equal to 0 and var(a) = r, var(bi) = D and cov(a, bi) - 0, for

 i = 1, . . ., m. Marginally, we now have

 Yi N(0, XirXiT+ZiDziT+Ri).

 We continue to let o denote the unknown parameters in D and Ri, i-1, . . ., m.
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 970  Biometrics, December 1982

 If o and r were known, 'Bayesian' estimates for zx and b could be obtained as their

 posterior expectations, given y, o and r. With r and o unknown, an empirical Bayes

 approach would replace r and o with estimates obtained by maximizing their marginal

 normal likelihood based on y, integrating over ae and b.

 We have information in the data about 0, which models both between- and within-

 individual variation, and thus we can obtain an estimate of 0. Typically, however, we have

 no information about r, which models variation in the population characteristics. Thus,

 we cannot estimate r. A reasonable strategy is to let r-l=0, indicating vague prior

 information about a, and use an estimate of o obtained by maximizing the limiting (as

 r-1 O) marginal likelihood of o given y. Harville (1976) demonstrates that this limiting

 likelihood is precisely equivalent to the REML likelihood. Thus, the estimates of o

 obtained in this setting are the REML estimates.

 The expressions for the posterior means of zx and b, given that r-1 = o and o = oR, are

 simply &(0R) and b(0R). That is,

 E(<x | y, r -o, oR) = (0R)
 and

 E(bi | Yi, r-l = O, oR ) = E{bi | Yi, (0R ), oR } = bi (eR )

 These equations follow from the equivalence of ML estimates and posterior means for

 parameters with flat priors. The estimators of zx and b have the algebraic form previously

 derived, but the estimates may differ slightly because of the use of oR rather than oM in

 the matrix of weights.

 Using this empirical Bayes approach to REML, it is straightforward to show how to use

 EM to calculate oR, (0R) and b(0R). For estimating 0, the 'complete data' still consist of

 y,b and e; thus, the M-step [(4.1) and (4.2), or (4.5)] remains the same. The difference

 between ML and REML comes in the E-step [(4.3) and (4.4), or (4.6)]. Here, expecta-

 tions for ML were taken conditional on y and zx. With REML, these expectations are

 conditional on y only, because zx has been integrated out of the likelihood. Thus, (4.3) and

 (4.4) become fn m

 t1 = E( eTei | Yi, H) = E {ei(o)Tei(o) +tr var(ei | Yi, 0)} (5.1)
 and 1 1

 /m \ m

 t2 = EtE bibiT | Yi, 09 = E {6i (o)bi (o)T + var(bi | Yi, 0)} (5 .2)

 Here ei(o) still equals yi-Xizx(o)-Zibi(o). In general, the E-step becomes

 t = E(t | y, 0). (5.3)

 Note that the expectations computed at the E-step involve the conditional means and

 variances of bi and ei. As noted earlier, the conditional means of bi and ei are the same,

 regardless of whether we take zx fixed, or random with infinite variance. The conditional

 variances are different, and this fact illustrates why ML estimates of variance components

 are biased downwards. Because we are dealing with normal expectations, neither

 var(bi ] Yi, zx, 0) nor var(ei | Yi, zx, 0) depends upon zx. This implies that

 var(bi | Yi, 0) = var(bi | Yi, a, 0) +var{E(bi ] Yi, , 0)},

 and likewise for the ei. Thus the expectations computed at the E-step for ML, (4.3) and

 (4.4), are smaller than the corresponding quantities for REML, (5.1) and (5.2), which will

 lead to smaller estimated variance components.

 There is one additional feature of this Bayesian approach which enhances its attractive-

 ness, and also that of using the EM algorithm. Harville (1976) has shown that, if we use
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 Randon Effects in Longitudinal Data  971

 var(ac|r,OR) and var(b|y,OR) to assign estimated variances to sX(0R) and b(o), then

 these quantities are the same as the sampling-theory variances, var(a) and var(b-b),
 given in (3.3) and (3.5), with OR substituted for 0. Since var(b | y, 0) must be computed at

 the E-step, it is available at the final iteration, as is b(0R). The estimate of a, sX(0R), and
 its variance, var(ac | Y, QR) need not be explicitly computed at the E-step, but are readily
 available from the other quantities computed at this step. Thus OR, 6t(0R), b(0R), varest(a5)

 and varest(b-b) are calculable, either directly or indirectly, using the EM algorithm.

 6. Examples

 In this section, we illustrate the application of the general model to two data-analysis

 problems arising in the study of effects of atmospheric pollutants on pulmonary function.

 The first problem has features of a repeated-measures design, and the second is closely
 related to growth-curve analysis. We show how each of these models is represented in the

 general linea- model and demonstrate the advantages of a more general formulation. A
 detailed comparison of several approaches to the analysis of Example 1 is the subject of a
 forthcoming report.

 Example 1: Analysis of the effect of air pollution episodes on pulmonary function.
 Approximately 200 school children were examined under normal conditions, then during

 an air pollution alert and on three successive weeks following the alert. The objective was

 to determine whether FEV1, the volume of air exhaled in the first second of a forced
 exhalation, was depressed during the alert. A secondary objective was the identification of

 sensitive subgroups or individuals most severely affected by the pollution episode.

 The simplest model for these data is a two-stage mixed model7 corresponding to the
 repeatedmeasures design. If Yi is the 5 x 1 vector of FEV1 values for the ith child,

 Yi = Iac + lbi + ei, i - 1, 2, . . ., m, (6.1)

 where I is the 5 x 5 identity matrix and 1 is a 5 x 1 vector of 'l's. The vector (x contains the

 population mean FEVI values on the five days, and bi is the random deviation in average

 FEV1 value for the ith child. We assume ei N(0,¢2I) and bi N(0,T2). When some
 measuremellts are missed, the model for Yi (ni x 1) is the natural modificatlon of (6.1).

 The data were analyzed using the methods described in §5 and by standard multivariate
 methods, with the following findings: (i) a decline in mean FEV1 was observed on and
 after the alert day; (ii) the variances and covariances for the last four measurements were
 larger than those involving the baseline day.

 The increased variability on and after the alert day is consistent with the hypothesis that

 individuals respond differently to the exposure. The notion of sensitive individuals is an

 important idea in the air pollution literature. We can introduce a second random effect to
 quantify the average decline in FEV1 for each child. Let

 Yi =Xiec+Zibi +ei,

 where Xi, a and ei are defined as before, but biT= (bli, b2i) and

 1 0

 z_ 1 1
 i-.

 1 1_

 is niX2.
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 The second stage of the model is a N(0, r), bi N(0, D) with r-1 0. Then b1i is the

 individual effect for the ith child at the baseline examination, and b2i measures the

 average deviation from that value for the alert and post-alert examinations. A negative

 value for b2i implies a larger decline in FEV1 for the ith child than for the sample as a

 whole. The estimates of b2i were used to identify children who showed greatest declines,

 and 20 children were identified for further study and review of previous examinations.

 Many of these children had developed a cold during the follow-up period. The ability to

 summarize individual responses in a way that is useful for exploratory analysis is an

 important feature of random-effects models.

 To study the influence of sex, race, location of residence and other individual charac-

 teristics on response, we defined a model including these factors. If vi is the vector of

 individual characteristics for the ith individual, let b1i and b2i have linear regressions on

 these factors, b1i=vTzl+bli and b2i=vTz2+b2i, where b1i and b2i are the individual

 deviations from the regression model. Then

 bi = [ o vT] [z ] + bi

 = viz+bi/

 and the general model for Yi is

 Yi =Xiat+Zibi +e

 = Xiat+ Zi (Viz + bi') + ei

 = [Xi, ZiVi][ ]+Zibi'+ei,

 a new model in the general family. This development illustrates how we can begin with a

 repeated-measures analysis and continue naturally to models that require the more

 general family.

 Example 2: Analyzing the effect of air pollutants on pulmonary function development. In a

 study related to that of Example 1, about 2000 children are examined annually in each of

 six cities to determine the influence of tobacco smoke and fossil-fuel combustion products

 on the level and rate of development of pulmonary function. For specificity, we continue

 with FEV1 as the response.

 The principal factor influencing FEV1 is body size, which we represent here by height.

 If the ith child has a vector, Yi, of responses, the growth-curve model assumes that each

 child also has a vector of growth-curve parameters, b*, and a growth model Yi Ib*=

 Xib*+ei at Stage 1, and b* N(|S, D) at Stage 2. If a polynomial growth curve is assumed,

 the matrix Xi will contain a column of 'l's and various powers of the heights at different

 examinations. Since the pattern of growth, and the number and timing of visits, vary

 among children, the design will be unbalanced.

 If bi=b*-, centers the individual effects at 0, the model can be expressed as

 Yi =Xil+Xibi +ei

 Relating this to the model (2.1), growth models implicitly require that the column space of

 Xi, the matrix linking population parameters to Yi, is contained in the column space of Zi,

 the matrix linking individual effects to Yi. This is not always desirable. For instance, we

 may want to fit a saturated model to the population growth curve and a very simple model

 to the individual deviations.
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 We may assume further, following Grizzle and Allen (1969), that the values of the

 growth parameters depend linearly on a vector of individual characteristics vi, through the

 relationship b*-Vioy+bi, where

 Vi O * ' ' O

 Vi = ° vi O * -
 . .

 O O * * * Vi _

 Therz the model cazl be expressed as

 Yi = XiViZ + Xibi + ei,

 and still belongs to the family of growth curves. However, if changes in some of the

 individual characteristics, such as air pollution concentration, stove type, or smoking in

 the home, can alter the expected rate of growth, the general linear model is required for

 representation of this relationship.

 7. Discussion

 The principal advantage of the general linear model (2.1) is the ability to treat a variety of

 important special problems in a unified way. Although readers may disagree about the

 relative appeal of the Bayes and non-Bayes approaches to parameter estimation, practi-

 cally speaking this choice is often of secondary importance and either approach can be

 accommodated in the general theory.

 We do see room for further technical development in methods of implementation.

 Methods are needed for adjusting the estimates of var(ac) arld var(6) to account for the

 uncertainty in 0. The EM algorithm is a powerful concept for simplifying the computation

 of parameter estimates and likelihoods, but more information on its speed of convergence,

 sensitivity to initial estimates, and convergence to boundary points or nonglobal maxima is

 necessary before it can be universally endorsed. Since the main computational burden is

 the iterative co-mputation of 0, investigation of the properties of noniterative alternatives

 could be useful.

 RESUME

 Les modeles d'analyse de donnees longitudinales doivent prendre en compte la relation entre les
 observations faites en serie sur une meme unite experimentale. Les modeles multivariates avec une

 structure de covariance generale sont souvent difficiles a appliquer a des donnees fortement

 desequilibrees, alors que les modeles a deux niveaux d'effets aleatoires sont d'un emploi aise. Dans

 ces modeles, les distributions de probabilite des vecteurs reponse d'individus differents appartien-
 nent a une seule famille, mais quelques parametres des effets aleatoires varient entre les individus,

 avec une distribution qui est specifiee pour le second niveau. Une famille generale de modeles est

 discutee, comprenant les modeles de croissance aussi que les modeles des mesures repetees comme
 des cas particuliers. On discute une approche unifiee a l'adjustement de ces modeles, fondee sur une
 combinaison de l'estimation bayesienne empirique et la methode du maximum de vraisemblance,
 utilisant l'algorithme EM. Deux exemples sont pris a un travail epidemiologique en cours, concer-
 nant les effets sur la sante de la pollution atmospherique.
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