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Summary

We review some results on the analysis of longitudinal data or, more generally, of repeated
measures via linear mixed models starting with some exploratory statistical tools that may be
employed to specify a tentative model. We follow with a summary of inferential procedures under a
Gaussian set-up and then discuss different diagnostic methods focusing on residual analysis but also
addressing global and local influence. Based on the interpretation of diagnostic plots related to three
types of residuals (marginal, conditional and predicted random effects) as well as on other tools, we
proceed to identify remedial measures for possible violations of the proposed model assumptions,
ranging from fine-tuning of the model to the use of elliptically symmetric or skew-elliptical linear
mixed models as well as of robust estimation methods. We specify many results available in the
literature in a unified notation and highlight those with greater practical appeal. In each case,
we discuss the availability of model diagnostics as well as of software and give general guidelines
for model selection. We conclude with analyses of three practical examples and suggest further
directions for research.

Key words: Leverage; local influence; mixed models; random coefficients; random effects; residual
analysis.

1 Introduction

Repeated measures and longitudinal data from diverse fields such as Agriculture, Biol-
ogy, Economy, Genetics, Medicine and Sociology usually present some degree of correlation
and regression models for their analysis have attracted the attention of investigators for a
long time. In particular, we mention the seemingly unrelated regression models considered by
Zellner (1962) and the growth curve models proposed by Potthoff and Roy (1964) as some of
the first attempts to address this problem. The thrust in the development of appropriate statis-
tical methodology designed to analyse this type of data probably stems from the seminal paper
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by Laird and Ware (1982). In this context, a myriad of multivariate models (MM), linear mixed
models (LMM), generalised linear mixed models (GLMM), generalised estimating equations
(GEE)-based models, non-linear mixed models (NLMM) and transition models (TM) have been
proposed in the literature. The variety of texts recently published on the subject clearly empha-
sises its importance. Vonesh and Chinchilli (1997), Singer and Andrade (2000), Verbeke and
Molenberghs (2000), Diggle et al. (2002), Molenberghs and Verbeke (2005), Hedecker and
Gibbons (2006), Fitzmaurice et al. (2008), Fitzmaurice et al. (2011) or Demidenko (2013),
among many others, are good examples.

Gaussian linear mixed models are those most commonly used for such purposes, not only
because of their simplicity but also because they may serve as approximations for models in
other classes and are computationally easy to work with. They are extremely flexible and useful
to model the covariance structure of dependent data and allow both unit-specific or population-
averaged analyses as indicated in Verbeke and Molenberghs (2000), for example. Even working
within this particular class of models, there are so many alternatives for data analysis that
statisticians often have difficulties in selecting an appropriate approach for their applications.
This is where model selection and diagnostic tools play an important role. Many alternatives
have been developed for such purposes, but they are scattered in the vast literature on linear
mixed models. An attempt to gather such tools and provide some guidance to practitioners is
made in Loy and Hofman (2013). Our objective is to provide a broader review of the many
results in this field, to specify them in an unified notation, to point to those with greater practical
appeal and to propose some guidelines for the post-diagnostic analysis.

In Section 2, we introduce the linear mixed model and present essential estimation/prediction
results under a Gauss–Markov set-up. In Section 3, we review the basic inferential results under
a classical Gaussian set-up. Diagnostic procedures (residual, leverage, case deletion and local
influence analyses) under such a framework are presented in Section 4; slight modifications
of the existing tools to facilitate comparison of different models are suggested. In Section 5,
we describe remedial measures to deal with cases where the diagnostic tools suggest that a
proposed model may not be satisfactory; in particular, we consider fine tuning of the Gaus-
sian LMM, or alternatively, fitting elliptically symmetric, skew-elliptical LMM or using robust
estimation methods. In each case, we comment on available diagnostic techniques. Compu-
tational aspects are outlined in Section 6 along with some exploratory tools that may help
in the specification of a tentative model. Some analysis strategies are illustrated with prac-
tical examples. We conclude with a brief discussion and an overview of research problems
in Section 7.

2 The Linear Mixed Model

The linear mixed model may be expressed as

yi D Xiˇ C Zibi C ei ; i D 1; : : : ; n; (1)

where yi D .yi1; : : : ; yimi /
> is an mi � 1 vector of observations (response profile) for the i -th

unit, ˇ D .ˇ1; : : : ; ˇp/
> is a p� 1 vector of unknown population parameters (fixed effects), Xi

is ami �p known specification matrix corresponding to the fixed effects, bi D .bi1; : : : ; biq/>

is a q � 1 vector of unobservable random elements (random effects), Zi is an mi � q known
specification matrix corresponding to the random effects and ei D .ei1; : : : ; eimi /

> is anmi �1
vector of random errors. Usually, we assume that bi and ei are all uncorrelated and are such
that E.bi / D 0, V .bi / D G D G.�/, E.ei / D 0, V .ei / D Ri D Ri .�/ where � is a t � 1
covariance parameter vector not functionally related to ˇ and G and Ri are, respectively, q � q
and mi �mi appropriate covariance matrices.

International Statistical Review (2017), 85, 2, 290–324
© 2016 The Authors. International Statistical Review © 2016 International Statistical Institute.



292 J. SINGER, F. ROCHA AND J. NOBRE

The marginal distribution of the vector of observations from the i -th unit has mean vector
Xiˇ and covariance matrix

V .yi / D �i .�/ D ZiG.�/Z
>
i C Ri .�/: (2)

The first component of the right-hand side of (2) models the dispersion of the individual
response profiles (yi ) around the mean response profile, and the second component is related to
the conditional dispersion of the response within the individual profile.

It is common to consider Ri D �2Imi , with Ir denoting an r-dimensional identity matrix.
In this case, if a single random effect bi such that V .bi / D �2

b
is included, it follows that � D

.�2
b
; �2/>, and a uniform (within-unit) covariance matrix (i.e. with equal variances, �2

b
C�2 and

equal covariances, �2
b
) is induced for V .yi /. When the maximum number of possible random

effects is included in the model, an unstructured (i.e. with possibly different variances and
covariances) covariance matrix is obtained. On the one hand, the simplicity of the uniform
structure may not be adequate to model real data, but on the other, the excessive number of
parameters associated to the unstructured covariance matrix may decrease the efficiency of
estimators, specially for small or moderate sample sizes. Models for G and Ri with a small
number (e.g. 2–4) of covariance parameters (e.g. autoregressive, Toeplitz or ante-dependence)
are thus interesting alternatives to the two extreme cases mentioned previously; they relax the
strong restrictions on the covariance structure imposed by the single random intercept model
and avoid the over-parametrisation required by the more general case (see Diggle et al. (2002)
or Demidenko (2013) for details).

Letting y D .y>1 ; : : : ; y
>
n /
>, X D .X>1 ; : : : ;X

>
n /
>, Z D ˚niD1Zi , b D .b>1 ; : : : ;b

>
n /
> and

e D .e>1 ; : : : ; e
>
n /
>, we can write model (1) more compactly as

y D Xˇ C ZbC e: (3)

This implies that E.y/ D Xˇ and V .y/ D � D Z�Z> C R, where � D In ˝ G and R D
˚niD1Ri .

Given the model specification and assuming that the covariance matrices � and R are known,
best linear unbiased estimators (BLUE) of the fixed effects ˇ and best linear predictors (BLUP)
of the random effects bi may be obtained as the solutions to the mixed model equations (MME)
[see Henderson (1975) for details].�

X>R�1X X>R�1Z
Z>R�1X Z>R�1ZC ��1

� b̌bb
!
D

�
X>R�1y
Z>R�1y

�
; (4)

namely b̌D .X>��1X/�1X>��1ybb D �Z>��1.y � Xb̌/ D �Z>Qy;
(5)

where

Q D ��1 ���1X.X>��1X/�1X>��1:

This implies that

E.b̌/ D ˇ; V .b̌/ D .X>��1X/�1; (6)

E.bb/ D 0; V .bb/ D �Z>QZ� : (7)
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Although some derivations of (5) require assumptions on the form of the distribution of y,
they may be obtained by simply specifying the mean and covariance structure of the underly-
ing random variables as in (3). Such results are useful to estimate/predict unit-specific linear
combinations of the form Li D K>1 ˇCK>2 bi , where K1 and K2 are known p�k and q�k matri-
ces, respectively. The reader is referred to Harville (1976) or to Robinson (1991) for excellent
accounts on the subject.

In practice, the covariance matrices � and R are unknown, and empirical BLUE or BLUP
of Li may be obtained by using consistent estimates. Inferential procedures, however, depend
on further assumptions on the elements of model (3). Mainly because of its mathemati-
cal tractability, the classical approach to this problem is to assume Gaussian distributions
for b and e.

3 Inference in a Gaussian Set-up

The Gaussian LMM is given by (1) coupled with

bi
iid
� Nq.0;G/ and ei

iid
� Nmi .0;Ri /; i D 1; :::; n; (8)

or equivalently with �
b
e

�
� NMCN

��
0M
0N

�
;

�
� 0M�N

0N�M R

��
where N D

Pn
iD1mi and M D nq.

The corresponding likelihood is

L.ˇ;�/ D

nY
iD1

.2�/�mi=2j�i .�/j
�1=2 exp

²
�

1

2
.yi � Xiˇ/

>Œ�i .�/�
�1.yi � Xiˇ/

³
D .2�/�N=2j�.�/j�n=2 exp

²
�

1

2
.y � Xˇ/>Œ�.�/��1.y � Xˇ/

³
:

(9)

If�.�/ were known, the maximum likelihood estimator (MLE) of ˇ would be

b̌.�/ D  nX
iD1

X>i Œ�i .�/�
�1Xi

!�1 nX
iD1

X>i Œ�i .�/�
�1yi

D
�
X>Œ�.�/��1X

��1
X>Œ�.�/��1y:

(10)

In general,�.�/ is not known and must be estimated. For such purposes, we may maximise (9)
with respect to ˇ and � simultaneously. Given the non-linear nature of the likelihood function,
with the exception of some particular situations, it is necessary to use iterative procedures like
those based on the Newton–Raphson, Fisher Scoring or EM algorithms to obtain the MLE of � .

It is well-known (for example, Diggle et al., 2002) that the MLE of variance components are,
in general, biased. To reduce the bias, Patterson and Thompson (1971) suggest that we should
maximise the likelihood function of a transformation of the response that does not depend on
the fixed effects. This method may be implemented by considering the density function of the
marginal residuals Qe D y � X Q̌ , where Q̌ is the ordinary least squares estimator of ˇ under the
model y D Xˇ C e. The resulting log-likelihood function is proportional to
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l.Qe;�/ D �
1

2

°
log jX>�.�/�1Xj C log j�.�/j C Qe> Qe

±
: (11)

The estimator of � obtained via the maximisation of (11), say b�R, is known as the restricted
(residual) maximum likelihood estimator (REMLE). As in the earlier case, we have a non-
linear constrained maximisation problem. Both the MLE and REMLE of � are asymptotically
equivalent; however, in small/moderate samples, the bias of the REMLE is smaller, and for
this reason, it is commonly used in practice. The corresponding REMLE of ˇ is obtained by
replacing�.�/ with its REMLE in (10). For details, the reader is referred to Dey et al. (2000),
McCulloch et al. (2008) and Demidenko (2013), among others.

Under model (1), with the assumptions of normality and known � , we may show that

b̌.�/�Np °ˇ; �X>Œ�.�/��1X
��1
±
: (12)

When � is unknown, if we assume that

lim
n!1

n�1
�
X>Œ�.�/��1X

�
D A;

where A is a positive definite matrix, we may use the consistency of the MLE (b�) and Sverdrup’s
theorem [ e.g. Sen et al. (2009)] to show that

p
nŒb̌.b�/ � ˇ�! Np

�
0;A�1

�
; (13)

so that for large n, the distribution of b̌.b�/ may be approximated by (12) with b� in lieu of
� . Given that the MLE and REMLE are asymptotically equivalent, it follows that the same
approximate distribution remains valid if we substitute b�R for b� in (10) and (12). For more
details, see, for example, Jiang (1996) and Demidenko (2013) or Sen et al. (2009).1

Other methods of estimation, like the method of moments or minimum norm quadratic unbi-
ased estimation (MINQUE) are presented and discussed in Demidenko (2013), for example.
Bayesian methods have also been developed by many authors, like Dey et al. (2000), Wu and
Zhang (2006), Daniels and Hogan (2008) or Demidenko (2013).

4 Diagnostic in the Gaussian setup

Residual and sensitivity analyses constitute important tools for evaluating the fit of any sta-
tistical model to a given data, for checking the validity of its assumptions, and consequently, for
evaluating the reliability of statistical inference based on it. In standard Gaussian linear mod-
els, residuals are used to verify linearity of effects, normality, independence, homoskedasticity
of the errors as well as the presence of outliers and influential observations. Sensitivity analysis
is based on a set of tools designed to evaluate changes in the fitted model when some perturba-
tion is imposed on the data or on the model assumptions. They include leverage analysis, based
on the effect of the explanatory variables via the ‘hat’ matrix, case-deletion analysis or local
influence analysis, where the effect of a small (infinitesimal) perturbation of the data or of the
model is evaluated.

Many alternatives to evaluate the fit of ordinary linear models are available in the litera-
ture, as described in Hoaglin and Welsch (1978), Belsley et al. (1980), Cook and Weisberg
(1982), Cook (1986), Chatterjee and Hadi (1988), Wei et al. (1998) and Atkinson and Riani
(2000), among others. Generalisations to Gaussian LMM are more recent. For example,
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Beckman et al. (1987), Christensen et al. (1992), Banerjee and Frees (1997), Lesaffre and
Verbeke (1998), Tan et al. (2001), Fung et al. (2002), Demidenko and Stukel (2005), Zewotir
and Galpin (2005), Zewotir (2008), Nobre and Singer (2007, 2011), Gumedze et al. (2010),
Schützenmeister and Piepho (2012) or Demidenko (2013) present a series of such diagnostic
methods that we summarise and update in the following sections.

A distinctive feature of diagnostic analysis of LMM relates to the evaluation of the impact of
an entire unit or of some within-unit observations on certain features of the model. For example,
units identified as possible outliers may be so because of the effect of a single (within-unit)
observation.

4.1 Residual Analysis

Diagnostic analysis is more complex in LMM than in the standard case because the
associated sources of variation (e and b/ generate the following three types of residuals:

(i) Marginal residuals,b� D y�Xb̌, that predict the marginal errors � D y�EŒy� D y�Xˇ.
(ii) Conditional residuals,be D y � Xb̌ � Zbb, that predict the conditional errors e D y �

EŒyjb� D y � Xˇ � Zb.
(iii) Random effects residuals, Zbb, that predict the random effects, Zb D EŒyjb� � EŒy�.

A further complication is related to the concept of confounding. As discussed by Hilden-Minton
(1995), a residual is considered confounded for a specific type of error if it depends on other
errors than the one that it is supposed to predict. Given thatbe D RQeCRQZb, conditional and
random effects residuals may be confounded (except in cases where the columns of Zi belong
to the space generated by the columns of Xi , i D 1; : : : ; n). This implies, for example, thatbe
may not be adequate to check for the normality of e because when b is grossly non-Gaussian,be
may not present a Gaussian behaviour even when e is Gaussian.

4.1.1 Marginal residuals

Lesaffre and Verbeke (1998) comment that when the within-unit covariance structure is ade-
quate, V i D jjImi � E iE>i jj2, where E i D b��1=2

i
b�i with�i D �i .�/ should be close to zero.

Units with large values of Vi are those for which the proposed covariance structure might not be
adequate. Given that the true variance ofb�i is V .b�i / D �i �Xi .X>i �

�1
i Xi /�1X>i and not�i ,

we consider replacing E i in Vi with the standardised marginal residualsb��i D ŒbV .b�i /��1=2b�i ,
where V .b�i / corresponds to the diagonal block of��X.X>��1X/�1X> associated to the i -
unit. Furthermore, to avoid giving much weight to units with many observations, we consider
taking V�i D

p
Vi=mi as a standardised measure of adequacy of the within-unit covariance

structure. Plots of the V�i versus unit indices, i , (generally known as unit index plots) may help
to identify units for which the covariance structure should be modified.

To evaluate the linearity of the fixed effects in model (1), we consider plotting the elements of
the standardised marginal residualsb��ij Db�ij =Œd iagj .bV .b�i //�1=2, where diagj .V .b�i // is the

j -th element of the main diagonal of V .b�i /, versus the values of each explanatory variable as
well as versus the fitted values. We also recommend plottingb��ij versus the observation indices
as a tool to detect outlying observations.

4.1.2 Conditional residuals

Given that V .be/ D RŒ��1 � ��1X
�
X>��1X

��1
X>��1�R D RQR; Nobre and Singer

(2007) observe that the conditional residuals may have different variances. They suggest plots
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of standardised conditional residuals,be�ij Dbeij =diagij .bRbQbR/1=2, with diagij .RQR/ denot-
ing the main diagonal element of RQR corresponding to the j -th observation of the i -th unit
versus fitted values to check for homoskedasticity of the conditional errors (in the case of
homoskedastic models) or versus observation indices to check for outlying observations.

As indicated in Hilden-Minton (1995), the ability to check for normality of the conditional
errors increases as we minimise the fraction of confounding for the k-th conditional residual,
namely

0 �
u>
k

RQZ�Z>QRuk
u>
k

RQRuk
D 1 �

u>
k

RQRQRuk
u>
k

RQRuk
� 1 (14)

where uk is the k-th column of IN . With this in mind, he advocates the use of least con-
founded conditional residuals, that is, of a linear transformation of the conditional residuals
that minimises the fraction of confounding. The least confounded residuals are given by

c>kbe D ��1=2
k

`>k R�1=2be D �1=2
k
`>k R�1=2y; k D 1; : : : ; N � p

where 1 � �1 � : : : � �N�p > 0 are the ordered values of ƒ, obtained from the spectral
decomposition

R1=2QR1=2 D LƒL>; L>L D IN�p

and `k represents the k-th column of L. Standardised least confounded residuals, c>
k
be�, may be

obtained by dividing c>
k
be by the square root of the corresponding element in CbRbQbRC>, where

C D Œc1; : : : ; cN�p�>. QQ plots of the standardised least confounded conditional residuals,
c>
k
be�, may be employed to check for normality.
More recently, Schützenmeister and Piepho (2012) comment that linear transformation of

residuals may not be so useful as diagnostic tools because, first, linearly transformed residuals
do not correspond to individual observations, and second, they may amplify the super-normality
effect, that is, may tend to look more normal than the underlying effects really are. As an
alternative, they propose to analyse the LMM as if it were a fixed effects linear model and to
use the corresponding studentised residuals as diagnostic tools. They also propose a simula-
tion approach to construct tolerance intervals for the corresponding QQ plots. Their proposal
is computer-intensive and may not be reasonable as an exploratory tool in cases where many
models are under investigation.

4.1.3 Random effects residuals

When there is no confounding and the random effects follow a q-dimensional Gaussian dis-
tribution, Mi Dbb>i ¹V Œbbi � bi �º�1bbi (the Mahalanobis’s distance betweenbbi and E.bi / D 0)
should have a chi-squared distribution with q degrees of freedom. Therefore, an �2

q QQ plot for
Mi may be used to verify whether the random effects follow a (q-variate) Gaussian distribution.
Unit index plots of Mi may also be employed to detect outliers.

The different uses for the three types of LMM residuals are summarised in Table 1, adapted
from Nobre and Singer (2007).

4.2 Global Influence Analysis

4.2.1 Leverage analysis

In a standard linear model, y D Xˇ C e, the leverage of the i -th observation is defined as
hi i D @byi=@yi with byi denoting the i -th fitted value (i.e. the i -th element ofby D Xb̌) and
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Table 1. Uses of residuals for diagnostic purposes.

Diagnostic for Type of residual Plot

Linearity of effects fixed (EŒy� D Xˇ) Marginal b��ij versus fitted values or
explanatory variables

Presence of outlying observations (yij ) Marginal b��ij versus observation indices
Within-units covariance matrix (�i ) Marginal V�i versus unit indices and

Presence of outlying observations (yij ) Conditional be�ij versus observation indices

Homoskedasticity of conditional errors (eij ) Conditional be�ij versus fitted values

Normality of conditional errors (eij ) Conditional Gaussian QQ plot for c>kbe�
Presence of outlying subjects (bi ) Random effects Mi versus unit indices
Normality of the random effects (bi ) Random effects �2

q QQ plot for Mi

corresponds to the i -th element of the main diagonal of the orthogonal projection matrix or ‘hat’
matrix H D X.X>X/�1X>. Outlying observations in the vector space spanned by the columns
of X are said to have high leverage with respect to the fitted valuesbyi , as pointed in Cook and
Weisberg (1982), Chatterjee and Hadi (1988) and Wei et al. (1998), for example. For the linear
mixed model (3), Fung et al. (2002) define the generalised marginal leverage matrix as

L1 D
@by
@y>
D
@X

�
X>��1X

��1
X>��1y

@y>

D X
�
X>��1X

��1
X>��1:

(15)

This is essentially the oblique projection matrix in the space generated by the columns of X.
Outlying observations in the vector space spanned by the columns of X are said to have high
leverage with respect to the fitted valuesbyi .

Letting L1i D Xi .X>i �
�1
i Xi /�1X>i �

�1
i , that is, the i -th diagonal block of L1, and L1i.jj /

denote the j -th element of the main diagonal of L1i , we have

tr.L1/ D

nX
iD1

miX
jD1

L1i.jj / D p:

Then, we may consider unit i to have high leverage with respect to the marginal fitted valuesby if tr.L1i /=mi is larger than some arbitrary value, say 2p=n and, similarly, observation j
within unit i to have high leverage with respect to the marginal fitted values if L1i.jj / � 2p=n,
although it is more common to use subjective criteria (based on visual inspection of leverage
plots) for such purposes.

Given that in model (3), a unit or a (within-unit) observation can affect both marginal and
conditional fitted values, it seems reasonable to evaluate the joint influence of each unit or
(within-unit) observation on both. Thus, by� D Xb̌ C Zbb is used instead of by to define the
generalised joint leverage matrix as

L D
@by�
@y>
D

@by
@y>
C
@Zbb
@y>
D L1 C Z�Z>Q D L1 C L2Q; (16)

where L1 is the generalised marginal leverage matrix (15) and

L2 D Z�Z>: (17)

The matrix L2 represents the portion of the within-unit variability explained by the presence
of the random effects. Outlying observations in the vector space spanned by the columns of Z
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should affect the random effect component of the conditional fitted values and consequently
affect the estimate of the within-unit variance explained by the random effects as advocated by
Tan et al. (2001). Therefore, estimates of the components of variance of the model should be
affected by observations with high leverage with respect to the random effect component of the
conditional fitted values. Demidenko and Stukel (2005) suggest that

H2 D Z�Z>Q (18)

could be used as a generalised leverage matrix for such purposes. Nobre and Singer (2011), on
the other hand, observe that

H2 D L2�
�1 ŒIn � L1�

also depends on the generalised marginal leverage matrix L1 and argue that the leverage with
respect to the random effects of the conditional fitted values may be confounded by the leverage
with respect to the marginal fitted values. Thus, given (16), they suggest that a better alternative
to measure the leverage of the observations and units with respect to the random effect com-
ponents of the conditional fitted values is to use the generalised random component leverage
matrix L2 instead of H2.

Along the lines considered in the case of marginal fitted values, the i -th unit generalised
random component leverage matrix is defined as L2i D ZiGZ>i . The corresponding generalised
random component leverage for the j -th observation of the i -th unit is L2i.jj /, that is, the
j -th element of the main diagonal of L2i . Similarly, the decision regarding what should be
considered as high leverage units or (within-unit) observations is usually based on a subjective
assessment.

4.2.2 Case deletion analysis

A simple and easily interpretable tool to evaluate the impact of an observation or of a set
of observations on some characteristic of interest (a parameter estimate or the corresponding
standard error, for example) is based on case deletion, an idea introduced by Cook (1977) and
studied by many authors, like Belsley et al. (1980), Cook and Weisberg (1982) or Chatterjee
and Hadi (1988). In LMM like (3), it seems reasonable to consider the repeated measurements
on a unit (case) or on a set of units as the set of observations to be deleted. In this context, part
of the effort lies in obtaining BLUEs or BLUPs without having to refit the model when each
unit or observation is deleted.

Assuming that � and R are known, and that we are interested in examining the impact of
the set of observations I D ¹i1; i2; :::; ikº (1 � i1 � i2 � ::: � ik � N ), we may consider
the model

y D Xˇ C ZbC UI�.I / C e; (19)

where �I represents a k-dimensional (fixed) parameter vector and UI D Œui1 ;ui2 ; :::;uik � with
ui denoting the i -th column of IN . In general, the set I contains all the observations related to
a unit or to a set of units. Hilden-Minton (1995) and Fung et al. (2002) show that the BLUE of
ˇ and the BLUP of b in model (19) are the same as those obtained from model (3) when the
observations in the set I are deleted and denote them by b̌.I / andbb.I /, respectively. They also
show that the BLUE of �.I / is

b�.I / D �U>I QUI
��1

U>I Qy (20)
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and that b̌
.I / D b̌� �X>��1X

��1
X>��1UIb�.I / (21)

b.I / Dbb � �Z>QUIb�.I /: (22)

Furthermore, we have

V
�b̌� b̌.I /	 D �X>��1X

��1
X>��1UI

�
U>I QUI

��1
U>I �

�1X
�
X>��1X

��1
(23)

V
�bb �bb.I /	 D �Z>QUI .UIQUI /

�1UIQZ� (24)

and

V
�b̌

.I /

	
D V .b̌/ � V

�b̌� b̌.I /	 : (25)

With these ingredients, we may consider Cook’s distance

DI D

�b̌� b̌.I /	> �X>b��1X
	 �b̌� b̌.I /	

p
D

�by �by.I /�> b��1
�by �by.I /�

p
; (26)

as a measure of influence of the observations in the set I on the estimate of the fixed
parameter ˇ.

Tan et al. (2001), among others, comment on the limited efficiency of Cook’s distance (26)
as a measure of influence in the context of LMM. In particular, they stress that unit-oriented
measures may not be convenient to detect influential units in view of the relative position
of the observations within and across subjects and propose a conditional approach based on
observation-oriented influence measures. They assume that the covariance matrix of ei in (1) is
Ri D �2Ini , but we may generalise their results to cases where Ri is more general and consider
the conditional model

y D X�ˇ� C e

where X� D ŒX Z� and ˇ� D .ˇ>;b>/>. The conditional Cook distance is defined as

Dcond
i.j / D

nX
iD1

�by�i �by�i.j /	> bV Œyi jbi ��1
�by�i �by�i.j /	

.n � 1/q C p
D

nX
iD1

�by�i �by�i.j /	>bR�1
i

�by�i �by�i.j /	
.n � 1/q C p

:

(27)

whereby�i D Xib̌C Zibb,by�
i.j /
D Xib̌.i.j // C Zibb.i.j // and b̌.i.j // andbb.i.j // denote, respec-

tively, the BLUEs of ˇ and b obtained with the elimination of the j -th observation from the
i -th unit.

As suggested by Tan et al. (2001), (27) may be decomposed asDcond
i.j /

D Dcond
1i.j / CD

cond
2i.j / C

Dcond
3i.j / , where

Dcond
1i.j / D Œ.n � 1/q C p��1

�b̌� b̌.i.j //	>X>bR�1X
�b̌� b̌.i.j //	
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is a useful measure to evaluate the influence of the j -th observation from the i -th unit on the
estimate of ˇ

Dcond
2i.j / D Œ.n � 1/q C p��1

nX
iD1

�bb �bb.i.j //	> Z>i bR�1
i Zi

�bb �bb.i.j //	
is convenient to evaluate the influence of the j -th observation from the i -th unit on the estimate
of b and

Dcond
3i.j / D Œ.n � 1/q C p��12

�b̌� b̌.i.j //	> nX
iD1

X>i bR�1
i Zi

�bb �bb.i.j //	
is a measure of the covariation between a change in the average profile and a change in the
position of the unit-specific profiles relative to the average profile when the j -th observation
from the i -th unit is eliminated. They also show that when the interest lies in evaluating the
influence of an entire unit on the estimates of the parameters, it suffices to sum (27) over all the
observations corresponding to that unit.

A different approach to (conditional) case-deletion diagnostics is considered in Fei and Pan
(2003). Zewotir (2008), on the other hand, considers some computational aspects related to
unit-deletion diagnostics.

The ratio of the variance ellipsoids

	.I /D

ˇ̌̌
V .b̌.I //ˇ̌̌
jV .b̌/j D

ˇ̌̌�
X>��1X

��1
�

IpC X>��1UI
�
U>I QUI

��1
U>I �

�1X
�
X>��1X

��1
	ˇ̌̌

ˇ̌̌�
X>��1X

��1
ˇ̌̌

D
ˇ̌̌
Ip C X>��1UI

�
U>I QUI

��1
U>I �

�1X
�
X>��1X

��1
ˇ̌̌

(28)

can be used to evaluate the influence of the units in set I on the covariance matrix of b̌ as
highlighted by Hilden-Minton (1995). In practice, global influence may be evaluated by the
index plots summarised in Table 2.

For homoskedastic conditional independence models, we may also consider the decompo-
sition of the conditional Cook distance (27) proposed by Tan et al. (2001) as summarised in
Table 3.

More recently, Mun and Lindstrom (2013) propose a non-deletion method based on studen-
tized residual sums of squares (TRSS) plots, claiming that it is more efficient and flexible than
Cook distance-based methods to identify outlying units or observations.

Table 2. Global influence plots for observations or units.

Diagnostic for effect on Global influence measure Index plot of

Fixed portion of Generalised marginal L1i.jj/ [tr.L1i /=mi ] versus

fitted value (Xb̌) leverage matrix L1 (15) observations (units)
Random portion of Generalised random component L2i.jj/ [tr.L2i /=mi ] versus

fitted value (Zbb) marginal leverage matrix L2 (17) observations (units)

Regression coefficients (b̌) Cook’s distanceDI (26) Di.j / [Di ] versus
observations (units)

Covariance matrix of Ratio of variance �i.j / [�i ] versus

regression coefficients [V .b̌/] ellipsoids �.I/ (24) observations (units)
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Table 3. Global influence plots based on decomposition of
the conditional Cook distance for homoskedastic conditional
independence models.

Diagnostic for effect on Index plot of

Regression coefficients (b̌) Dcond
1i.j / versus observations

Random effects (bb) Dcond
2i.j / versus observations

Changes in covariance

betweenb̌andbb Dcond
3i.j / versus observations

4.3 Local Influence Analysis

The concept of local influence was introduced by Cook (1986) with the objective of evalu-
ating the changes in the analysis resulting from ‘small’ perturbations on the data or on some
element of the model. Essentially, the idea is to investigate the behaviour of the likelihood
displacement defined as

LD.!/ D 2
°
L.b / � L �b !j!	± ; (29)

where L denotes the likelihood for the proposed model,  is a p-dimensional parameter
vector, ! 2 � � IRq is a q-dimensional vector of ‘perturbations’ and b and b ! are,
respectively, the MLEs of  based on L. / and L. j!/. We assume that there exists some
!0 2 � such that  !0

D  and that L. j!/ has continuous first-order and second-order
derivatives in a neighbourhood of !0. In this context, the normal curvature of the graph
G.!/ D Œ!>; LD.!/� in the direction of the q-dimensional vector d with unit norm at the
point !0 is

Cd D 2
ˇ̌̌
d>H> RF

�1
Hd
ˇ̌̌
; (30)

where RF D Œ@2L. /=@ @ >�
 Db and H D Œ@2L. j!/=@ @!>�

!D!0I Db . Letting Cmin

and Cmax, respectively, denote the smallest and the largest eigenvalues of �H> RF
�1

H, it
is possible to show that Cmin � Cd � Cmax. The normalised eigenvector dmax corre-
sponding to Cmax may be used to identify what linear combination of the elements of !
is more influential on the curvature of LD.!/. This is usually employed to evaluate the
effect of perturbations on the response variable, that is, yi .!i / D yi C !i , on the explana-
tory variables, that is, Xi .Wi / D Xi C Wi , where Wi D Œ!i1; : : : ;!ip� with !ij D
.!ij1; : : : ;!ijmi /

>, on the variance of the random effects, that is, G.!/ D !G or on
the variance of the errors, Ri .!i / D !iRi . In each case, plots of the absolute values
of the elements of dmax (obtained for the specific H and RF) versus the unit (or within-
unit observations) indices may then be used to identify those with more impact on the
likelihood displacement.

The selection of the appropriate perturbation scheme is not straightforward, mainly because
‘arbitrarily perturbing a model may lead to inappropriate inference about the cause (e.g. influ-
ential observations) of a large effect’ and ‘the components of a perturbation vector may not be
orthogonal to each other’, which may lead to difficulties in the interpretation, as discussed in
Zhu et al. (2007). A slightly different and more practical approach for local influence diagnos-
tics in LMM is considered in Beckman et al. (1987) and Lesaffre and Verbeke (1998). These
authors consider the marginal likelihood of  D .ˇ>;�>/>, namely
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L. / D

nX
iD1

Li . / D

nX
iD1

.�1=2/
®
log j�i j C .yi � Xiˇ/

>��1
i .yi � Xiˇ/

¯
; (31)

and include perturbations of its individual terms by taking

Li . !/ D

nX
iD1

!iLi . /; (32)

where Li denotes the likelihood for the i -th unit and ! D .!1; : : : ; !n/
>. Here, !0 D 1n,

where 1n denotes an n-dimensional vector with all elements equal to 1. Letting ui denote the
i -th column of an n-dimensional identity matrix, the normal curvature (30) computed in the
direction ui is

Cui D 2
ˇ̌̌
u>i H> RF

�1
Hui

ˇ̌̌
D 2

ˇ̌̌
H>i RF

�1
Hi

ˇ̌̌
; (33)

where Hi denotes the i -th column of H. Large values of (33) indicate a large impact of the i -th
unit on the likelihood displacement in a local sense, that is, a slight perturbation in the corre-
sponding weight vector !i induces a large displacement in the corresponding log-likelihood.
Lesaffre and Verbeke (1998) also show that Ci D Cui D �2.b � b 1

.i/
/> RF.b � b 1

.i/
/, whereb 1

.i/
is referred to as the one-step approximation to b .i/ and that for large n, it is equivalent

to Pregibon’s (1981) proposal to measure the global local influence of the i -th unit. They show
that the computation of the normal curvature (30) in the direction dmax corresponding to the
largest eigenvalue of �H> RF

�1
H suggests the perturbation of the model leading to the largest

changes in the likelihood displacement.
Because Ci relates to the impact of the i -th unit on the estimator of the parameter vec-

tor  , Lesaffre and Verbeke (1998) discuss a decomposition of this measure that may be
used to suggest which part of the model is most affected by a specific unit. In partic-
ular, they recommend index plots of jjImi � E iE>i jj2, jjE iE>i jj2 jjX iX>i jj2, jjZ iZ>i jj2
and jj�>i jj

2, where E i D b��1=2
i

b�i , X i D b��1=2
i Xi and Z i D b��1=2

i Zi as addi-
tional diagnostic tools when influential units are highlighted by Ci . The analysis based on
Vi D jjImi � E iE>i jj2 is closely related to residual analysis as already pointed out in
Table 1. Finally, these authors mention that their results were derived assuming MLEs for
the covariance matrix parameters, and that they may not follow when a restricted max-
imum likelihood approach is considered. However, because the proposed methods should
only be viewed with an exploratory spirit, their use in either case may bring more benefits
than losses.

5 Some Remedial Measures

Adequate modelling of data necessarily depends on diagnostic tools, because, in many cases,
little or no theoretical basis is available to suggest the specific form of the inter-relationships of
the intervening (response and explanatory) variables. Diagnostic tools are undoubtedly useful
to highlight the inadequacy of some characteristics of the tentative models. The question is how
to proceed with the analysis when these tools suggest that the proposed models do not seem to
accommodate one or more features of the data. In this section, we indicate a few alternatives to
cope with this problem.
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5.1 Fine Tuning of the Model

Diagnostic tools like those summarised in the previous section rely on the correct speci-
fication of the within-unit covariance structure of the model as pointed out by Zewotir and
Galpin (2007), for example. Although Christensen et al. (1992) note that good estimates of
the covariance parameters might serve the (exploratory) purpose of a diagnostic, some effort
in the refinement of the associated model should be employed to prevent or at least to reduce
erroneous indication of influential or outlying units or (within-unit) observations.

For such purposes, Rocha and Singer (2016) suggest some guidelines in the case of
random polynomial coefficient models, that is, when the columns of Xi and Zi in (1) corre-
spond to values of powers of the time variable; in particular, they propose (i) simple t-tests
based on the estimated coefficients of standard linear regression models fitted to each unit’s
data as a tool for selecting fixed effects and (ii) Bonferroni-corrected reference intervals
for selecting random effects. They also note that when Ri D �2Imi , the structure of the
columns of the within-unit covariance matrix is similar to that of the individual profiles.
More explicitly, letting z>is denote the s-th row of Zi , it follows that the random effects
contribution to the s-th column of the marginal dispersion matrix (2) is ZiGzis , which has
the same form as the individual profile component Zibi : When the data for all subjects
are collected at the same time points, we have Zi D Z� so that V D Z�GZ�> may be
estimated by

bV D n�1
nX
iD1

.yi � y/.yi � y/> �b�2Im

where m is the common number of observations per unit, y D n�1
Pn
iD1 yi and b�2 is an

estimate of �2. Rochar and Singer (2016) suggest fitting standard linear regression models to
the rows of bV and using Bonferroni-corrected reference intervals for the coefficients to decide
what random effects should be considered in the model. Based on a simulation study, they show
that the procedure is reasonably efficient even for moderate sample sizes, for example, 25 units
with five repeated measures each, and for non-Gaussian random effects or error terms.

Grady and Helms (1995) suggest that plots of covariances and correlations versus time
between measurements (lags) may be used as a tool for identifying possible auto-regressive
covariance patterns and propose a strategy to compare different longitudinal data models. Auto-
correlation plots may also be used for such purposes. Singer and Cúri (2006) consider an
experimental data example in which the relations between the estimated variances and covari-
ances obtained under a saturated model for the fixed parameters and an explanatory variable
are explored to suggest the form of the Zi and G matrices in (1).

5.2 Elliptically Symmetric and Skew-elliptical Linear Mixed Models

Linear mixed models based on elliptically symmetric or skew-elliptical distributions have
been proposed as alternatives to the standard Gaussian set-up. Pinheiro et al. (2001), Savalli et
al. (2006), Osorio et al. (2007), Arellano-Valle et al. (2005, 2007), Bolfarine et al. (2007) and
Lachos et al. (2010), among others, have adopted this approach.

The class of elliptically symmetric distributions includes the Gaussian, multivariate-t , power
exponential as well as other distributions with densities of the form

f .y/ D j†j�1=2gŒ.y � �/>†�1.y � �/� (34)
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where y is an m-dimensional random vector, u and † are, respectively, location and
scale parameters and g is a non-negative valued function defined in IR such thatR1

0 um=2�1g.u/du < 1. When the second moment exists, E.y/ D �, V .y/ D � D ˛†
with ˛ denoting a convenient constant (D 
=.
 � 2/ for the multivariate-t distribution with

 > 2 degrees of freedom, for example). We use the notation ESm.�;†; ˛/ to represent an
elliptically symmetric distribution with parameters �, † and ˛.

Linear mixed models given by (1) with random effects and error terms following (34) may
be defined hierarchically as in the standard Gaussian case by

yi jbi � ESmi ŒXiˇ C Zibi ;Ri .�/; �i �; bi � ESqŒ0;G.�/; ˛i �;

i D 1; : : : ; n with bi and ei � ESmi Œ0;Ri .�/; �i � uncorrelated. Although in some special
cases (e.g. the multivariate-t distribution), the joint distribution of .y>i ;b

>
i /
> belongs to the

same class; this is not valid in general. For computational convenience and generalisability,
many authors consider the following alternative specification for the model

�
yi
bi

�
� ESmiCq

²�
Xiˇ

0

�
;

�
ZiG.�/Z>i C Ri .�/ ZiG.�/

G.�/Z>i G.�/

�
; ˛i ; �i

³

and work with the marginal model yi � ESmi ŒXiˇ;Di .�/; ˛i ; �i �, Di .�/ D ZiG.�/Z>i C
Ri .�/, usually assuming that Ri .�/ D �2Imi . In theory, the parameters ˛i and �i may be
different for different units, but in practice, it is common to set ˛i D ˛ and �i D � or to
consider only a few values for such parameters, for example, one for each group of units, as
suggested by Pinheiro et al. (2001).

Maximum likelihood estimation parallels the Gaussian case and may be obtained by iterating
the following expressions:

ˇ.hC1/ D

´
nX
iD1

v
�
u
.h/
i

	
X>i ŒDi .�/

.h/��1Xi

μ�1 ´ nX
iD1

v
�
u
.h/
i

	
X>i ŒDi .�/

.h/��1yi

μ

and

�.hC1/ D argmax�¹l.ˇ
.h/;�/º

where l.ˇ;�/ denotes the log-likelihood, u.h/i D .yi �Xiˇ
.h//>ŒDi .�/.h/��1.yi �Xiˇ

.h// and
v.u/ D �2g0.u/=g.u/, for h D 0; 1; 2 : : :.

For inferential purposes, we must rely on asymptotic results even in special cases, and it is
usual [see Pinheiro et al. (2001) for example] to consider approximate Gaussian distributions
for the MLEs b̌ andb� . Savalli et al. (2006) suggest that for large n

b̌� Np �ˇ;K�1
ˇ

	
where Kˇ D

Pn
iD1 4dgi=miX>i ŒDi .�/�

�1Xi with dgi D E¹Œg0.ui /=g.ui /�2uiº is the cor-
responding Fisher information matrix. A similar result may be considered for b� . Mitchell
(1989) presents a simple expression to compute E¹Œg0.ui /=g.ui /�2uiº for a number of
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elliptically symmetric distributions. For Student’s t- distribution with 
 > 2 degrees of freedom,
it is given by

dgi D
mi

4

�

 Cmi


 Cmi C 2

�
:

Assuming that � is known, predictors for the random effects may be obtained via a Bayesian
argument and are expressed like those obtained in a Gaussian set-up, namely

bbi D E
�

bi jyi ; b̌;�	 D G.�/Z>i ŒDi .�/�
�1
�

yi � Xib̌	 :
The covariance matrix of bbi is not as easy to obtain as in the Gaussian case because of the
weights v.ui /. Assuming fixed weights and letting �.�/ D In ˝ G.�/, D.�/ D ˚niD1Di .�/,
X D ŒX>1 ; : : : ;X

>
n �
> and Z D ˚niD1Zi , it follows that

V .bb/ D �.�/Z>ŒD.�/��1V
�

y � Xb̌	 ŒD.�/��1Z�.�/

with

V
�

y � Xb̌	 D V .b�/ D D.�/�Q.�/��.�/Q.�/�D.�/�;

D.�/� D ˚niD1Œv.ui /Di .�/�, Q.�/� D ŒD.�/���1 � ŒD.�/���1X.X>ŒD.�/���1X/�1X>

ŒD.�/���1. For practical applications, one should replace the unknown terms by their estimates.
Residual and leverage analyses for elliptically symmetric LMM are still not well established.

However, the similarity with the Gaussian case suggests some exploratory tools. For example,
index plots of the weighted marginal residualsb�i D p

v.bui /Œyi � Xib̌� may be used to detect
outliers as suggested by Savalli et al. (2006). Note that, for the most commonly used non-
Gaussian elliptically symmetric distributions such as the multivariate-t or the power exponential
distributions, the weights v.bui / D .yi�Xib̌/>ŒDi .b�/��1.yi�Xib̌/ tend to reduce the influence
of units associated to larger values of Mahalanobis’s distance and therefore may accommodate
outliers possibly detected in a standard Gaussian mixed model set-up. A similar analysis may be
carried out for the conditional residuals,bei D yi �Xib̌�Zibbi . We believe that the suggestions
of Schützenmeister and Piepho (2012) could be useful in this context, but this is a topic that
deserves further research.

Local influence, on the other hand, has been considered in detail by Osorio et al. (2007).
These authors derive the appropriate general expressions for H and RF in (30) corresponding
to perturbations in case weights (wi ), in the scale matrix (Di ) or in the explanatory (Xi ) and
response (yi ) variables. In practice, one should choose the desired member of the class of
elliptically symmetric distributions by specifying g, ˛ and D.�/ to obtain the corresponding
local influence measure (33).

As pointed out by Mudholkar and Hutson (2000), the effects of asymmetry on the appropri-
ateness of normal theory methods are, in general, more serious than those of heavy tails, and
for this reason, a considerable research effort has been directed at LMM with alternative asym-
metric distributions for the random effects and error terms. Jara et al. (2008) adopt a Bayesian
approach to deal with skew-elliptical distributions in this context. In particular, they consider a
two-stage version of model (1) defined as
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yi j
�
ˇ;bi ; �

2;Ri ;ƒei ; g
mi
�e

	
� SEmi

�
Xiˇ C Zibi ; �

2Ri ;ƒei ; g
mi
�e

	
(35)

bi j
�

G;ƒb; g
q

�b

	
� SEq

�
0;G;ƒb; g

q

�b

	
(36)

where SEr.�;†;ƒ; g� / denotes an r-dimensional skew-elliptical distribution with r-
dimensional location vector �, r-dimensional scale matrix † , r-dimensional asymmetry
matrix ƒ and density generator function g� .

Although the models proposed by Jara et al. (2008) are quite general, fitting them in practice
is quite complicated so that one must consider narrower alternatives, such as the class of skew-
normal distributions. Arellano-Valle et al. (2007) also adopt a Bayesian approach to analyse
skew-normal LMM assuming that

yi j


ˇ;bi ;Ri .�/;ƒei

�
� SNmi



Xiˇ C Zibi ;Ri .�/;ƒei

�
(37)

bi jŒG.�/;ƒb� � SNqŒ0;G.�/;ƒb� (38)

where SNr .�;†;ƒ/ denotes a skew-normal distribution with r-dimensional location vector
�, r-dimensional scale matrix † and ƒ D ˚riD1�i with � D .�1; : : : ; �r/

> representing the
asymmetry parameters. The corresponding density function is

f .yj�;†;ƒ/ D 2r�r.yj�;† Cƒ
2/˚r Œƒ..† Cƒ

2/�1.y ��/j0; Ir Cƒ†
�1ƒ�

where �r.yj�;†/ and ˚r.yj�;†/, respectively, denote the density and distribution functions
of a Gaussian distribution with mean vector � and covariance matrix †. This implies that

E.y/ D �C
p

2=� �; and V .y/ D † C .1 � 2=�/ ƒ2:

For a special case where Ri D �2Imi and ƒei D � Imi , Arellano-Valle et al. (2007) show
how Bayesian methodology may be used to fit the model to the marginal distribution of y,
mentioning that ‘although the associated density functions are quite difficult to handle, we show
that the models can be easily fitted using MCMC methods’.

Bolfarine et al. (2007) consider the LMM (1) with slightly different formulation for the
underlying skew-normal distributions. More specifically, they consider distributions for which
the density function is

f .yj�;†;�/ D 2�r.yj�;† C ��
>/˚1

"
�>†�1.y � �/

.1C �>†�1�/1=2

#

so that

E.y/ D �C
p

2=� �; and V .y/ D † C .1 � 2=�/ ��>:

They restrict their attention to the special case where Ri D �2Imi and write the model in a
two-stage formulation that facilitates the derivation of the marginal density of yi , namely

f .yi j�;G.�/;�/ D 2�mi ¹yi jXiˇ;Zi .ŒG.�/�
�1 C ��>/Z>i º˚1¹�i .yi � Xiˇ/º
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where

�i D
�>ŒG.�/��1ŒDi .�/��1Z>i ŒRi .�/�

¹1C �>ŒG.�/��1�C �>ŒG.�/��1ŒDi .�/��1ŒG.�/��1�º1=2

with

Di .�/ D ¹ŒG.�/C ��
>��1 C Zi ŒRi .�/�

�1Ziº:

In this context, they develop an EM algorithm to compute maximum likelihood estimates of
the model parameters and propose local influence diagnostic measures based on perturbation
of the dispersion matrix for the random effects (G.�/), of case weights (wi ), of the explanatory
variables (Xi ) and of the response variables (yi ). They also consider a case-deletion diagnostic
measure and mention that model adequacy is still an open problem.

As with LMMs based on elliptically symmetric distributions, other diagnostic tools such as
residual or leverage analysis are still not available.

5.3 Robust Linear Mixed Models

More recently, Koller (2013) proposed robust methods for analysing LMM. He considered
model (3), reparametrising it as

y D Xˇ C ZUb.�/b
� C Uee

�;

with b� � N.0; �2Iq , e� � N.0; �2IN / so that �.�/ D Ub.�/Ub.�/> and R D UeU>e ,
that is, Ub.�/ and Ue represent the lower parts of the Cholesky decomposition of �.�/ and R,
respectively.

We outline the proposal in a special case where the covariance structure is similar for all units
and where the robustifying bounded functions  are equal for random effects and error terms.
First, we let di D b�i

>
; i D 1; : : : ; n and consider the weights

w.d/ D

²
 .
p
d/=
p
d if d ¤ 0

 0.0/ if d D 0:

Then, we let w.d/ D Œw.d1=�/; : : : ; w.dn=�/� ˝ 1>q and Wb.d/ D diagŒw.d/�. The
corresponding robust estimating equations are

X>Ue�> .be�=�/ D 0
Ub
>Z>Ue�> .be�=�/ �Wb.bd/b�=� D 0

(39)

For given � and � , the estimation of the fixed and random effects can be obtain using itera-
tively reweighted least squares. Defining We D diagŒw.be�/� similarly to Wb , the estimating
equations are then given by�

X>Ue�>WeU�1
e X X>Ue�>WeU�1

e ZUb
UbZ>Ue�>WeU�1

e X U>b Z>Ue�>WeU�1
e ZUb CWb

�" b̌bb�
#
D

�
X>Ue�>Wey

UbZ>Ue�>Wey

�
:

(40)
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An efficient algorithm to obtain estimates of the fixed and random effects consists in alter-
nating the computation of b̌ andbb� with updated weights. The initial values may correspond
to all weights equal to a constant and we stop the algorithm when the relative change of the
estimates is small.

In practice, the values of � and � are unknown and may be estimated by robustifying the
restricted maximum likelihood equations. Details may be obtained in Koller (2013).

6 Computation and Examples

The numerous approaches available to analyse repeated measures via LMM may turn out
to be a source of concern when fitting such models to real data. First, it is difficult to decide
which class of models and what analysis strategy to adopt. Second, suitable software is not
always available or may not accommodate the peculiarities that accompany practical prob-
lems. It is possible to adapt existing software to deal with specific details of the problem under
investigation; however, this may require more time than the practitioner is allowed to.

The first step in specifying the model, that is, choosing X and Z, may be approached via the
construction of individual and mean profile plots originally proposed by Rao and Rao (1966).
An examination of the mean profile may suggests a structure for the fixed effects. For example,
the degree of a polynomial relating (at least approximately) the mean response to the time
metameter (dose, for example) may help in the specification of X. The individual profiles may
also suggest the degree of the unit-specific polynomials as well as possible heteroskedasticity
and/or the within-unit covariance structure, giving an idea about how Z and G may be defined.
Guidelines in this direction may be found in Fearn (1977), Weiss and Lazaro (1992) or Rutter
and Elashoff (1994).

The modelling strategy should include an iterative procedure according to which after each
new model is fitted, appropriate diagnostic tools should be employed to check whether the
new proposal is more adequate than the previous one. This procedure may be complemented
by comparing the models via criteria like AIC, BIC or likelihood ratios, when appropriate.
Obviously, an optimal fit may never be attained, but the increasing acquaintance with the data
will certainly improve the analysis.

We also note that the diagnostic tools described in Section 4 depend on the covariance struc-
ture of the model which, in general, is unknown. For practical applications, we must replace
the corresponding covariance parameters with estimates and start the diagnostic procedure with
an examination of plots of the modified Lesaffre–Verbeke index V�i versus unit indices. When
there is some indication that the proposed covariance structure is not adequate for some units,
we may try to respecify it. In this process, we must face the dilemma of modifying either the
between-units or the within-units variance components or both, namely, G and Ri in (2). Strate-
gies to accomplish this depend on the specific problems under investigation; we outline some
alternatives in the examples. Among the various statistical software packages for fitting linear
and non-linear mixed models, including GenStat, SPSS and ASREML, SAS proc MIXED
and the libraries lme4 and nlme in the free software package R are the most popular. We focus
our attention on the latter given its flexibility and the possibility of modifying the available
functions or programming new ones. The appropriate R functions to fit linear mixed models as
well as more general mixed models are indicated in Table 4.

Software for diagnostics is generally only available from a few statistical packages or
from authors and mainly designed for use in specific cases. A recent review is given
by West and Galecki (2011). We have developed R-based functions to produce residual,
leverage and case deletion plots for Gaussian LMM. The functions are designed to work
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Table 4. R-based software for fitting mixed models.

Random effects G or RW Error Ri
Library Function Fits distribution matrix distribution matrix

lme4 lmer LMM Gaussian Unstructured G Gaussian � 2Imi
nlmer NLMM Gaussian Unstructured G Gaussian Structured
glmer GLMM Gaussian Unstructured G exponential NA

family
nlme lme LMM Gaussian Structured G Gaussian Structured

nlme NLMM Gaussian Structured G Gaussian Structured
gls LM NA NA Gaussian Structured

gee gee GEE-based NS Structured RW Exponential NA
model matrix family or NS

geepack geeglm GEE-based NS Structured RW Exponential NA
model matrix family or NS

heavy heavyLme ES-LMM Elliptically Unstructured G Elliptically NA
symmetric symmetric

robustlmm rlmer Robust Symmetric Diagonal or Symmetric � 2Imi
LMM unstructured G

RW , working covariance marix; NA, not applicable; NS, not specified.

with objects generated via the lme4 and nlme libraries and may be downloaded from
www.ime.usp.br/�jmsinger/lmmdiagnostics.zip.

We discuss three examples to illustrate how the diagnostic tools may be used to modify the
Gaussian model proposed initially. In the first example, directed at the prediction of random
effects, we show how an heteroskedastic model identified via an analysis of the residual plots
may accommodate outliers in the conditional errors and generate better predictors of random
effects. Although it is possible to identify these outliers by looking at the data, this example
allows a clear view of the features of the diagnostic procedures. In the second example, we show
how some ad hoc changes in the covariance structure may cope with an apparent long-tailedness
of the underlying distributions. In both cases, we compare the results with those obtained from
other elliptically symmetric and robust models. The third example is considered to indicate
how diagnostic procedures may be useful to identify and accommodate serial correlation in the
conditional errors.

Computation for the three examples were carried out via the function lme available in the
library nlme in R using restricted maximum likelihood (REML) and a Cholesky decomposition
for the covariance matrices. Although there is some debate with respect to the appropriate
criteria to compare mixed models [see Muller et al. (2013), for example], we used the default
AIC and BIC in lme, defined as

AIC D �2lR.b/C 2.p C t /

BIC D �2lR.b/C 2.p C t / log.N /;

where p denotes the number of fixed parameters, t denotes the number of covariance parameters
in the model, N is the total number of observations used to fit the model and lR.b/ denotes the
REML log-likelihood.

Decisions based on residual, Cook’s distance and leverage plots must be considered sub-
jectively and with an exploratory spirit; the idea is to identify units or observations that do
not follow the overall pattern. To facilitate the analysis, reference limits corresponding to the
third quartile plus 1.5 times the interquartile range (dashed line) are indicated in the plots. In
the leverage plots, we also include a dotted line corresponding to 2p=n, which is commonly
suggested in the literature.
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6.1 Passive Filter Example

The first example is extracted from a study conducted at the Laboratory for Atmospheric
Pollution, University of São Paulo, Brazil, with the objective of evaluating the Ozone concen-
tration (as an indicator of atmospheric pollution) in different periods. Given the high cost of
the standard equipment used to measure Ozone concentration directly, the reflectance of pas-
sive filters impregnated with a solution of indigo carmine, whose colour fades when exposed
to that pollutant, is used as an indirect measure. The fading measured by a reflectometer con-
stitutes the response. The results will be employed by the investigators to estimate a calibration
curve. Because of the passive filter design, rain and other factors may interfere in the reflectance
measures leading to possible outliers.

Each of nine sets consisting of three passive filters placed next to the standard equipment
employed by the state environment protection agency was observed in nine different periods of
7 days spaced by 10 days. After each period of 7 days, the responses of the three filters in the
corresponding set were recorded. The observed reflectance of each filter is displayed in Table 5.

A standard LMM for this problem is

yij D �C ai C eij ; i D 1; : : : ; 9; j D 1; 2; 3 (41)

where yij denotes the reflectance of filter j in period i , � is the expected reflectance over all
periods, ai � N.0; �2

a/ and eij � N.0; �2/, with independence for all random terms. Fitting
this model to the data results inb� D 46:4,b�2

a D 100:4,b�2 D 104:8. The predicted reflectances
obtained as BLUPs under this model are given by

byij D y C k.yi � y/ (42)

where yi D 1=3
P3
jD1 yij , y D 1=9

P9
iD1 yi and the shrinkage constant

k D
�2
a

�2
a C �

2=3
(43)

is estimated asbk D 0:75. The residual diagnostic plot for the modified Lesaffre–Verbeke index
is presented in Figure 1 and suggests that the proposed covariance structure may not be adequate
for units 3 and 5.

Table 5. Reflectance of passive filters.

Period Filter Reflectance Period Filter Reflectance

1 1 27.0 6 1 47.9
1 2 34.0 6 2 60.4
1 3 17.4 6 3 47.3
2 1 24.8 7 1 50.4
2 2 29.9 7 2 50.7
2 3 32.1 7 3 55.9
3 1 35.4 8 1 54.9
3 2 63.2 8 2 43.2
3 3 27.4 8 3 52.1
4 1 51.2 9 1 38.8
4 2 54.5 9 2 59.9
4 3 52.2 9 3 61.1
5 1 77.7
5 2 53.9
5 3 48.2
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Figure 1. Passive filter example–modified Lesaffre–Verbeke unit index plot for model (41). Dashed line: third quartile
+ 1.5 interquartile range.

Given the experimental design, there is no reason to consider modification of the between-
units covariance structure (defined by �2

a). Keeping in mind that uncontrolled variables such
as wind, humidity and temperature might affect the within-period variability, we propose to
modify model (41) by including period-specific variances, for which the shrinkage constant is
ki D �

2
a=.�

2
a C �

2
i =3/. The (BLUP) predicted reflectances under this model are given by

byij D b�C ki .yi �b�/ (44)

where b� DP9
iD1.wi=

P9
iD1wi /yi is a weighted mean with wi D .�2

a C �
2
i =3/�1.

For parsimony reasons, instead of a completely heteroskedastic model, we consider setting
model (41) with

�2
i D �

2; i D 3; 5 and �2
i D �

2; otherwise. (45)

As a result, we obtain b� D 45:9, b�2
a D 114:3, b�2 D 49:3, b�2 D 274:0, bki¤3;5 D 0:87,bkiD3;5 D 0:56. Here, the expected predicted reflectance for the periods (3 and 5) with largest

error variances (by3 D 43:8 and by5 D 53:7) are closer to the mean than in the original model
(by3 D 43:1 andby5 D 56:4), accommodating the possible effect of the inappropriate covariance
structure in the original model. In the corresponding plot of the modified Lesaffre–Verbeke
index (Figure 2), periods 3 and 5 are no longer flagged, but period 9 and possibly period 1 show
up, suggesting that further modelling might be considered.

We fitted a final model with different within-period variances for periods (1, 9) and (3, 5),
namely, (41) with

�2
i D �

2; i D 3; 5; �2
i D 


2; i D 1; 9 and �2
i D �

2; otherwise; (46)

obtaining the plots presented in the Supporting Information, Figures 1–10. Given the small
amount of data, we feel that there is not enough evidence against this model. The reduction in
AIC, BIC and log-likelihood from 214.9, 218.6,�104.4 to 208.5, 214.7 and�99.2, respectively,
also suggest that the reduction of model (41) to (41 with 46) seems reasonable. As expected,
given the small number of observations, a full heteroskedastic model does not lead to a better
fit (AIC = 215.9, BIC = 229.7 and log-likelihood = �97.0).

Note that periods 1 and 2 are identified as possible outliers (Figure 3 of the Supporting Infor-
mation); this, however, is expected because they correspond to periods in which expected Ozone
concentration is different from the average; therefore, no changes in the model are required.
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Figure 2. Passive filter example–modified Lesaffre–Verbeke unit index plot for model (45). Dashed line: third quartile
+ 1.5 interquartile range.

Table 6. Passive filters example: best linear unbiased predictors for the reflectance latent
values under the different models.

Sample Homoskedastic Heteroskedastic
Period mean LMM LMM (3 variances) t (df=21.8) Robust

1 26.1 31.4 31.9 31.8 29.2
2 28.9 33.4 30.2 33.8 31.6
3 42.0 43.1 44.0 43.3 39.4
4 52.6 51.0 52.2 50.9 51.5
5 59.9 56.4 53.5 56.3 54.4
6 51.9 50.4 51.5 50.4 50.9
7 52.3 50.8 51.9 50.8 51.3
8 50.1 49.1 49.8 49.1 49.4
9 53.3 51.5 51.3 51.4 52.7

Mean 46.4 46.4 46.2 46.6 45.7

LMM, linear mixed models.

For comparison purposes, we fitted the original model (41) adopting elliptically symmetric dis-
tributions for both the random effects and error terms and also considered a robust estimation
approach (using the default options for both the heavy and rlmer functions). The predicted
latent values are compared in Table 6.

The first observation for period 5 (that corresponds to the largest reflectance value in the
data) is flagged in Figures 7–10 of the Supporting Information, suggesting that it is influen-
tial with respect to the both the fixed and random effects. The predicted latent value obtained
via model (41) with (46), namely, 53.5, is closer to the sample mean obtained with the omis-
sion of that observation (51.1) than the predictions obtained with the two competing models
(56.3 for the model based on the t-distribution and 54.4 for the robust approach), indi-
cating that the proposed model downweighs that observation with more intensity than the
two competitors.

6.2 House Prices Example

Next, we analyse an example originally considered in Harrison and Rubinfeld (1978) with
the objective of studying the association between air quality and house prices in the Boston
Metropolitan Area. The data, collected in 1970, involve 14 variables observed in 506 stan-
dard metropolitan statistical areas (SMSA) arising from 92 towns. More details, along with the
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definition of the variables, may be obtained from the Ecdat package in R (Croissant, 2015).
Belsley et al. (1980) fitted a standard linear model to the data via ordinary least squares (OLS)
and constructed a standard raw residual QQ plot (Figure 3), suggesting that the error distribution
should have heavier tails than that of the adopted Gaussian model.

Longford (1993), arguing that the observations from the SMSAs in the same town should
be considered as clusters, reanalysed the data using an LMM having town as a random effect.
He obtained a conditional residual QQ plot (Figure 4), concluding that the violation of the
Gaussian assumption was not as evident as with the OLS analysis but could not be completely
ignored. Both authors did not take the heteroskedasticity and dependence of the raw residual
into account when constructing the QQ plots. We fitted the same model proposed by Longford
(1993) and considered the more detailed residual analysis outlined in Section 4. Besides the
(slight) violation of the Gaussian assumption (Figure 4) for the conditional error terms, the
random effects also do not seem to follow a normal distribution, as depicted in Figure 5. A
plot of the modified Lesaffre–Verbeke measure (Figure 6) suggests that the adopted covariance
structure was not adequate at least for towns labelled 76 (Back Bay, 5 SMSAs), 77 (Beacon
Hill, 2 SMSAs), 80 (East Boston, 10 SMSAs), 81 (South Boston, 12 SMSAs), 82 (South Bay,
7 SMSAs), 90 (Chelsea, 4 SMSAs) and 92 (Winthrop, 4 SMSAs).

To take a possible spatial correlation into account, we should model the within-town covari-
ance structure taking the between-SMSA distances into account. As we do not have that
information, we adopted a simpler ad hoc model, introducing different compound symmetry
within-unit covariance matrices (Ri ) for these towns, refitted the model and generated a new
plot of the modified Lesaffre-Verbeke index that suggested a poorly fitted covariance struc-
ture for some additional towns, namely, 4 (Salem, 7 SMSAs), 15 (Manchester, 1 SMSA), 28
(Sommerville, 14 SMSAs), 29 (Cambridge, 29 SMSAs), 31 (Belmont, 7 SMSAs), 66 (Hull, 1
SMSA), 75 (Allston-Brighton, 7 SMSAs), 78 (North End, 1 SMSA), 79 (Charleston, 6 SMSAs),
83 (Roxbury, 18 SMSAs), 84 (Savin Hill, 22 SMSAs), 85 (Dorchester, 10 SMSAs), 87 (Forest

Figure 3. House prices example–QQ plot for standardised conditional residuals (Belsley model).[Colour figure can be
viewed at wileyonlinelibrary.com]
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Figure 4. House prices example–QQ plot and histogram for standardised conditional residuals (Longford model). [Colour
figure can be viewed at wileyonlinelibrary.com]

Figure 5. House prices example–QQ for Mahalanobis distance (Longford model). [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 6. House prices example–modified Lesaffre–Verbeke unit index plot (Longford model). Dashed line: third quartile
+ 1.5 interquartile range.

International Statistical Review (2017), 85, 2, 290–324
© 2016 The Authors. International Statistical Review © 2016 International Statistical Institute.



Diagnostic Tools for Linear Mixed Models 315

Hills, 6 SMSAs) and 91 (Revere, 7 SMSAs). We refitted the model with a similar covariance
structure for these additional towns; in this case, a plot of the Lesaffre–Verbeke index (Figure 7)
does not suggest other units for which the proposed covariance structure seems inadequate; also,
QQ plots for the standardised marginal and least confounded conditional residuals (Figures 8
and 9) show no evidence against the adopted Gaussian assumption for both the random effects
and error terms. Other diagnostic plots presented in Figures 11–20 in the Supporting Informa-
tion do not show strong evidence against the adopted assumptions. For this final model, the
values for AIC, BIC and log-likelihood were �614.7, �455.2 and 345.4, respectively, in con-
trast with �314.7, �247.5 and 173.3 for the Longford model, confirming the better fit of the
former.

To assess the effect of adopting a heavier tailed distribution for both the random effects and
errors, we fitted a similar model using t-distributions with estimated degrees of freedom. We
also adopted the robust estimation approach proposed by Koller (2013). Estimates of the model
parameters are displayed in Table 7 along with those of the two Gaussian LMM (Longford and
Final) and the standard linear model (Belsley).

As already pointed by Pinheiro et al. (2001), the major differences relate to a consistent
decrease in the magnitude of the standard errors obtained under a t-distribution, which are
consistently larger than those of the competitors. Unfortunately, neither the function heavy
nor the function rlmer in R allow fitting models with structured covariance matrices for the
associated random terms, complicating comparison among the different models.

Figure 7. House prices example–modified Lesaffre–Verbeke unit index plot (final model). Dashed line: third quartile + 1.5
interquartile range.

Figure 8. House prices example–QQ for Mahalanobis distance (final model). [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 9. House prices example–QQ and histogram for conditional least confounded residuals (final model). [Colour figure
can be viewed at wileyonlinelibrary.com]

The estimates are similar across the four LMM. Furthermore, only for the standard linear
model, a different conclusion with respect to the significant explanatory variables was obtained.

6.3 Calf Weight Example

Data for the third example were obtained from a study on the growth of calves conducted by
the Brazilian Agricultural Research Corporation (EMBRAPA) and are presented in Table 1 of
the Supporting Information. Weights (in kg) of 28 calves subjected to an experimental diet were
recorded every 2 weeks for 26 weeks after birth. The corresponding profile plot is displayed in
Figure 10 and suggest that a second degree polynomial may represent the population-averaged
weight growth along the 26 weeks. The ‘parallel’ aspect of the individual profiles in the plot
also suggests that random effects should be included in a model. A longitudinal plot of the
sample variances (Figure 11) confirms that the response variances increase with time.

Table 7. House prices example: parameter estimates and standard errors.

Gaussian LMM t-LMM Robust

Belsley Longford Final df=2.19123 LMM

Variable Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

(Intercept) 9.7560 0.1496 9.6721 0.2140 9.6691 0.1253 9.6820 0.2500 9.6120 0.1577
crim �0.0119 0.0012 �0.0071 0.0010 �0.0064 0.0015 �0.0061 0.0016 �0.0055 0.0008
zn 0.0001 0.0005 0.0000 0.0007 0.0002 0.0004 0.0005 0.0006 0.0012 0.0005
indus 0.0002 0.0024 0.0024 0.0046 0.0027 0.0026 0.0026 0.0056 0.0036 0.0033
chasyes 0.0914 0.0332 �0.0141 0.0288 0.0173 0.0175 0.0159 0.0415 �0.0043 0.0218
nox �0.0064 0.0011 �0.0059 0.0012 �0.0049 0.0011 �0.0052 0.0025 �0.0054 0.0009
rm 0.0063 0.0013 0.0092 0.0012 0.0176 0.0008 0.0182 0.0016 0.0142 0.0009
age 0.0001 0.0005 �0.0010 0.0005 �0.0024 0.0003 �0.0023 0.0006 �0.0016 0.0004
dis �0.1913 0.0334 �0.1248 0.0467 �0.1164 0.0287 �0.1173 0.0577 �0.1087 0.0347
rad 0.0957 0.0191 0.0975 0.0296 0.0617 0.0175 0.0731 0.0268 0.0781 0.0216
tax �0.0004 0.0001 �0.0004 0.0002 �0.0003 0.0001 �0.0003 0.0002 �0.0004 0.0001
ptratio �0.0311 0.0050 �0.0299 0.0102 �0.0241 0.0057 �0.0253 0.0107 �0.0263 0.0075
blacks 0.3638 0.1031 0.5822 0.1005 0.6568 0.0881 0.6393 0.1860 0.6592 0.0762
lstat �0.3710 0.0250 �0.2817 0.0238 �0.1133 0.0157 �0.0985 0.0324 �0.1952 0.0180

SE, standard errors; LMM, linear mixed models.
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In view of the descriptive analysis, the data may be modelled by (1) with yi D
.yi1; : : : ; yini /

>, where yij denotes the j -th observation of the weight of the i -th calf, i D
1; : : : ; 28, j D 1; : : : ; mi and mi represents the corresponding number of observations,

Xi D Zi D

264 1 t1 t21
:::
:::

:::

1 tmi t
2
mi

375 ; ˇ D
0@ ˛ˇ
�

1A ; bi D

0@ aibi
ci

1A ; and ei D

0B@ ei1
:::

eimi

1CA : (47)

The terms ai , bi and ci , respectively, represent the random intercept, linear and quadratic effects
associated to the i -th calf. Initially, we assume that G is unstructured and Ri D �2Imi . This
model induces the heteroskedastic nature of the response detected in the descriptive analysis.

Fitting polynomial models to longitudinal data may lead to convergence problems induced by
possible ill-conditioning of the model-specification matrices (X and Z). This may be handled by
choosing appropriate algorithms, by using orthogonal polynomials or by rescaling the time vari-
able. To avoid such convergence problems in this example, we used a quasi-Newton algorithm
known by the acronym BFGS (Broyden–Fletcher–Goldfarb–Shanno optimisation algorithm).
For details, see Lange (2013), for example. We also rescaled the time variable dividing its values

Figure 10. Calf weight example–profile plot.

Figure 11. Calf weight example—variance plot.
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by 4.29 (=30/7) so that the time unit may be expressed in months (30 days) instead of in weeks;
this favours convergence of the algorithm without affecting the interpretation of the results.

Estimates of the corresponding parameters are presented in Table 8, and a plot of the modi-
fied Lesaffre–Verbeke index is displayed in Figure 12, suggesting that the proposed covariance
structure may not be adequate for units 1, 15 and 22. Units 15 and 22 are also highlighted
either in the standardised marginal residual or the conditional Cook’s distance plots (see Figures
22–24 in the Supporting Information).

A plot of the within-calves correlations versus time lags as suggested by Grady and Helms
(1995) is displayed in Figure 13 giving a clear indication that the within-calves observations are
serially correlated. This is also evident from an auto-correlation plot (see Figure 25 in the SM).

To incorporate this characteristic and keeping in mind that there are missing observations,
we fitted model (47) with the following continuous AR(1) specification to the data.

Cov.eij ; eik/ D �
2¹expŒ��.tij � tik/�º; tij � tik (48)

Estimates for the parameters of model (47)–(48) are also presented in Table 8. An auto-
correlation function plot is displayed in Figure 14 and does not show sufficient evidence of
further serial correlation in the conditional errors.

The corresponding plot of the modified Lesaffre–Verbeke index is displayed in Figure 15 and
still suggests that the covariance structure is not adequate for some animals. Other diagnostic
plots for this model are presented in Figures 26–39 in the SM.

Table 8. Calf weight example: parameter estimates and standard errors for model (47) with different covariance structures.

Conditional CAR1 CAR1 (3 groups) CAR1 (3 groups)
independence complete complete -obs 22.14 and unit 21

Parameter Estimate SE Estimate SE Estimate SE Estimate SE
Fixed effects
Intercept 32.71 0.91 33.49 0.97 33.01 0.94 32.90 0.98
Linear 7.95 1.19 7.80 1.02 7.84 0.97 7.56 1.04
Quadratic 1.34 0.16 1.31 0.14 1.32 0.13 1.36 0.13

Variance components
Intercept (I) 18.88 0.66 1.29 0.001
Linear (L) 36.79 19.37 17.02 19.33
Quadratic (Q) 0.62 0.28 0.24 0.19
Corr(I,L) �0.32 0.92 0.99 0.99
Corr(I,Q) 0.16 �0.56 �0.52 �0.53
Corr(L,Q) �0.74 �0.55 �0.50 �0.52
Residual
Single group 8.04 25.34 — — —
Group 1 — — 37.07 39.26
Group 2 — — 18.26 20.02
Group 3 — — 28.08 30.79

AIC 2135.5 2038.6 2019.2 1966.5
BIC 2174.6 2081.6 2070.0 2017.0
Loglik �1057.8 �1008.3 �996.6 �970.2
� 0.62 0.64 0.67

CAR1: continuous AR(1).
Group1: units 17, 22 and 23.
Group2: units 4, 5, 11, 12 and 28.
Group3: remaining units.
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Figure 12. Calf weight example–modified Lesaffre–Verbeke unit index plot for model (47). Dashed line: third quartile
+ 1.5 interquartile range.

A possible justification is that there might be calf-specific variability for some animals, so
we considered an ad hoc grouping according to the values of the modified Lesaffre–Verbeke
index to avoid over-parametrisation. In particular, we considered a group formed by those ani-
mals with the highest values of the modified Lesaffre–Verbeke index (calves 17, 22 and 23),
a group with those associated to the lowest values (calves 4, 5, 11, 12 and 28) and a third
group with the remaining animals. In fact, these groups correspond to animals with, respec-
tively, the largest and lowest variances in a complete heteroskedastic model. Diagnostic plots
for this model are displayed in Figures 40–53 in the SM, and those corresponding to Cook’s
distances flag the 14th observation of calf 22 as that being more influential. This observation
corresponds to the lowest weight among all calves at the 26th week. Also, calf 21 is singled
out in Figures 51–53 in the Supporting Information as being of high leverage. In fact, half of
the observations are missing for this calf, and this may be the reason for it being highlighted in
those plots.

Estimates of the parameters of the same model fitted without the 14th observation of calf
22 and elimination of the data for calf 21 are also presented in Table 8. A plot of the modified
Lesaffre–Verbeke index for this model is displayed in Figure 16 and does not flag units for
which the proposed covariance structure is inadequate.
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Figure 13. Calf weight–Grady–Helms correlation plot versus time lags for model (47).
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Lag: Difference in weeks
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Figure 14. Calf weight–auto-correlation function plot for model (47)–(48).

Figure 15. Calf weight example—modified Lesaffre–Verbeke unit index plot for model (47)–(48). Dashed line: third quartile
+ 1.5 interquartile range.

Figure 16. Calf weight example—modified Lesaffre–Verbeke unit index plot for model (47)–(48) with three groups of
unit-specific variances and exclusion of calf 21 and the 14th observation of calf 22. Dashed line: third quartile + 1.5
interquartile range.
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Other diagnostic plots for this model are displayed in Figures 54–67 in the Supporting
Information and do not present considerable evidence against its fit.

The AIC and BIC values for this model are 1966.5 and 2017.0, respectively, suggesting a
better fit relatively to the previous model for which the corresponding values are 2019.2 and
2070.0, respectively. The impact on the parameter estimates is not considerable as indicated
in Table 8.

7 Discussion

Analysing repeated measures or longitudinal data via Gaussian LMM is convenient for var-
ious reasons. These models are very flexible (they include the class of linearisable models, as
considered in Alencar et al. (2012), for example), easily interpretable and may be fitted via a
series of very efficient algorithms for which software is widely available. Furthermore, if both
the fixed and random components are well specified, the results obtained in practical applica-
tions are usually very similar to those generated by other classes of models as evidenced in
Pinheiro et al. (2001), Savalli et al. (2006) or Alencar et al. (2012), for example. Such models
are also convenient because in addition to the population parameters, they provide insight on
the covariance structure as well as on the individual components.

Given this flexibility, selection of appropriate models in this class may be a difficult task. A
few criteria proposed for such purposes are well summarised in Müller et al. (2013) but none
is known to perform better than the others. In fact, they should be used with a complementary
spirit, and in this context, the diagnostics tools we consider may be useful additional means
to select reasonable linear mixed models. We believe that a careful use of such tools may pro-
vide the means to better understand the problem under investigation and to suggest appropriate
analyses.

Although some functions designed to generate many of such diagnostic plots are available
in the literature, they are still not implemented in the Comprehensive R Archive Network
(CRAN)-repository. These functions may be obtained from the authors, but their use in practi-
cal applications may not be a straightforward task, because extracting the necessary information
from the fitting function output, specially for more complex models, that is, with different ran-
dom effects and/or different error covariance matrices for different groups, may not be an easy
task. To bypass this problem, we constructed an R-function that provides the desired plots.

Obtaining diagnostic plots is more problematic for the other classes (ES and SE LMM) of
models described in Section 5, where even the definition of residuals is not well established.
Some effort in designing and testing flexible functions for such purposes could help to identify
cases where the use of the Gaussian LMM may not be adequate and to disseminate the use of
models that can accommodate outlying or influential observations. This opens a promising field
for research.

Other alternatives to analyse repeated measures data include GLMM or generalised linear
models with working covariance matrices, but here also, corresponding diagnostic tools still
require investigation for their widespread practical application. Some efforts in this direction
have been carried out in Xiang et al. (2002) or Venezuela et al. (2007). Generalised additive
models for location, scale and shape proposed by Rigby and Stasinopoulos (2005) may also be
employed for such purposes, but in general, are useful only for large sets of data.

Notes

1We will useb� to represent either the MLE or the RMLE throughout the paper.
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