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Summary

Residuals are frequently used to evaluate the validity of the assumptions of statistical models and may
also be employed as tools for model selection. For standard (normal) linear models, for example, resi-
duals are used to verify homoscedasticity, linearity of effects, presence of outliers, normality and inde-
pendence of the errors. Similar uses may be envisaged for three types of residuals that emerge from the
fitting of linear mixed models. We review some of the residual analysis techniques that have been used
in this context and propose a standardization of the conditional residual useful to identify outlying
observations and clusters. We illustrate the procedures with a practical example.
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1 Introduction

Linear mixed models constitute a popular alternative to analyze repeated measures and, in particular,
longitudinal data. Such models may be expressed as

yi ¼ Xibþ Zibi þ ei ; i ¼ 1; . . . ; m ; ð1:1Þ
where yi is a (ni � 1) vector of response variables measured on subject i, b is a (p� 1) vector of
parameters (fixed effects), Xi and Zi are (ni � p) and (ni � q) known matrices of full rank, respec-
tively, bi is a (q� 1) random vector, the components of which are called random effects and ei is a
(ni � 1) random (within-subject) vector of measurement errors. Usually one assumes that

b1; . . . ; bm �
iid

Nqð0; s2GÞ and ei �
ind

Nnið0; s2RiÞ ; i ¼ 1; . . . ;m ; ð1:2Þ

with bi and ei independent, G and Ri being (q� q) and (ni � ni) positive definite matrices respec-
tively, with elements expressed as functions of a vector of covariance parameters, q, not functionally
related to b. Letting y ¼ ðy>1 ; . . . ; y>mÞ

>, X ¼ ðX>1 ; . . . ;X>mÞ
>, Z ¼ �m

i¼1 Zi, where � represents the
direct sum (Searle, 1982), b ¼ ðb>1 ; . . . ; b>mÞ

> and e ¼ ðe>1 ; . . . ; e>mÞ
>, we can write model (1.1) more

compactly as

y ¼ Xbþ Zbþ e : ð1:3Þ
This implies that

b
e

� �
� Nqmþn

0qm
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0n�qm s2S
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where n ¼
Pm

i¼1 ni, D ¼ Im � G and S ¼ �m
i¼1 Ri, with � denoting the Kronecker product (Searle,

1982) and Im, the identity matrix of order m. Under model (1.3), the covariance matrix of y is

V ¼ s2ðZDZ> þ SÞ. Conditionally on D and S, the best linear unbiased estimator (BLUE) of b and
the best linear unbiased predictor (BLUP) of b (see Robinson, 1991, for example), are respectively
given by

b̂b ¼ ðX>V�1XÞ�1 X>V�1y ¼ Ty ð1:4Þ
and

b̂b ¼ DZ>Qy ð1:5Þ
with T ¼ ðX>MXÞ�1

X>M, Q ¼ MðI � TÞ, where M ¼ s2V�1 ¼ ðZDZ> þ SÞ�1. The matrix T is the
oblique projection matrix using the distance induced by the matrix M. In practice, replacing D and V
in (1.4) and (1.5) by convenient estimates, generates the so called empirical BLUE (EBLUE) and
empirical BLUP (EBLUP). Properties of the EBLUE and the EBLUP are discussed in Jiang (1998,
1999), for example. The most popular estimation methods for the covariance parameters (q) are based
on full and restricted maximum likelihood. Other estimation methods are presented in Searle et al.
(1992) and Demidenko (2004), for example. As with standard (normal) linear models, residual analy-
sis may be employed to check the validity of the underlying assumptions. Since mixed models have
two sources of variability (within and between-subjects) different types of residuals may be defined
and the corresponding analysis is more complex. We summarize the major results in this field and
propose a standardization of the conditional residual that is useful for the identification of outlying
observations or clusters. In Section 2, we define the three types of residuals generated by fitting
model (1.1) and indicate how each of them may be employed to check some of the underlying
assumptions; in particular, we detail the proposed standardization of the conditional residuals. In Sec-
tion 3, we outline the analysis strategy employed to fit linear mixed models to data from a practical
example and illustrate how residual analyses may be employed to assess the fit of the chosen model.
Our conclusions are discussed in Section 4.

2 Types of Residuals in Linear Mixed Models

Cox and Snell (1968) present a general definition of residuals for models with a single source of
variability. Authors like Hilden-Minton (1995), Verbeke and Lesaffre (1996a) or Pinheiro and Bates
(2000), for example, extended such ideas to define three types of residuals that accommodate the extra
source of variability present in linear mixed models, namely

(i) Marginal residuals, x̂x ¼ y� Xb̂b ¼ M�1Qy, that predict the marginal errors,
x ¼ y� E ½y� ¼ y� Xb ¼ Zbþ e;

(ii) Conditional residuals, êe ¼ y� Xb̂b� Zb̂b ¼ SQy, that predict the conditional errors
e ¼ y� E ½y j b� ¼ y� Xb� Zb;

(iii) The BLUP, Zb̂b, that predict the random effects, Zb ¼ E ½y j b� � E ½y�.

Each type of residual is useful to evaluate some assumption of model (1.1).
According to Hilden-Minton (1995), a residual is considered pure for a specific type of error if it

depends only on the fixed components and on the error that it is supposed to predict. Residuals that
depend on other types of errors are called confounded residuals. Given that, under (1.3)–(1.5), we
have

x̂x ¼ ½I � XðX>MXÞ�1X>M� x ; ð2:1Þ
êe ¼ SQeþ SQZb ; ð2:2Þ

Zb̂b ¼ ZDZ>QZbþ ZDZ>Qe ; ð2:3Þ
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the residuals êe and Zb̂b are confounded with b and e, respectively. This implies, for example, that êe
may not be adequate to check for the normality of e since when b is grossly non-normal, êe may not
present a normal behaviour even when e is normal.

2.1 Marginal residuals

Given that marginally y ¼ Xbþ x, plots of the elements of the vector of marginal residuals

x̂x ¼ ðx̂x
>
1 ; . . . ; x̂x

>
mÞ
>

versus the explanatory variables in X may be employed to check the linearity of y
with respect to such variables with the same spirit as the usual residuals in standard (normal) linear
models. A random behavior around zero is expected when the linear relationship holds.

They may also be used to check the validity of the within-subjects covariance structure, i.e.,
Vi ¼ s2ðZiDZ>i þ RiÞ. In this direction, Lesaffre and Verbeke (1998) consider jjIni �RiR>i jj

2 where

Ri ¼ V̂V
�1=2
i x̂xi and jjAjj denotes the Frobenius norm of the matrix A as the appropriate residuals for

the within-subjects covariance matrix. Given that Var ½yi� can be estimated by x̂xi x̂x
>
i when the vector of

means for the i-th subject is correctly modeled by Xib, jjIni �RiR>i jj
2 is expected to lie near zero and a

plot of such values versus the subject indices may help to detect cases for which the assumed covar-
iance structure does not fit well.

2.2 Conditional residuals

Pinheiro and Bates (2000, p. 115) consider plots of the elements of êe=ŝs, where ŝs is an estimate of s,
versus those of ŷy ¼ Xb̂bþ Xb̂b and Q-Q plots of êe=ŝs for checking homoscedasticity and normality of
the conditional error e. Similar proposals to check for homoscedasticity using conditional residuals are
given in Weiss and Lazaro (1992) and Oman (1995).

Since Var ½êe� ¼ s2SQS (see Appendix for details), the elements of êe may have different variances,
depending on both s2 and pkk, with pkk representing the k-th principal diagonal element of SQS,
k ¼ 1; . . . ; n. For many diagnostic procedures, it is useful to define a studentized version of the residuals
that does not depend on the scale and allows a comparison among them, as advocated by Cook and
Weisberg (1982, p. 18) in a different setup. We suggest to standardize the conditional residuals by taking

êe*k ¼
êek

ŝs
ffiffiffiffiffiffi
p̂pkk

p ; ð2:4Þ

where p̂pkk is an estimate of pkk. The elements p̂pkk are functions of the joint leverage of the fixed and
random effects (Nobre and Singer, 2006), indicating that the residuals (2.4) constitute a generalization
of the usual studentized residuals. When S ¼ In (i.e., under an independence and conditional homo-
scedasticity assumption), the standardized conditional residuals (2.4) are reduced to êe*k ¼ êek =ðŝs

ffiffiffiffiffiffi
q̂qkk

p
Þ,

with q̂qkk denoting an estimate of the k-th principal diagonal element of Q.
To motivate the use of (2.4) for the identification of outliers, consider an unbiased estimator of s2

obtained when we delete a group K ¼ fk1; k2; . . . ; kng of observations from the sample, given by
ŝs2
ðKÞ ¼ ½y>ðQ� QUKðU>K QUKÞ

�1 U>K QÞ y�=ðn� p� nÞ where UK ¼ ðuijÞn�n ¼ ðUk1 ;Uk2 ; . . . ;UknÞ with
Uk denoting the k-th column of In. Details are presented in the Appendix. When we eliminate only
the k-th observation, it is possible to show that êe2

k =qkk ¼ y>QUkðU>k QUkÞ
�1 U>k Qy; therefore

ðn� pÞ ŝs2

s2
¼
ðn� p� 1Þ ŝs2

ðkÞ

s2
þ êe2

k

s2qkk
;

implying that

ŝs2
ðkÞ

ŝs2 ¼
n� p� êe2

k =qkk

n� p� 1

 !
; ð2:5Þ
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which is a monotone decreasing function of jêe*kj. Consequently, the standardized conditional residuals
(2.4) are useful to identify observations with high influence on the estimate of s2. In standard (nor-
mal) linear models, this residual can be used to test if the k-th observation is an outlier. For long-
itudinal data, the relevant groups correspond to the observations carried on the i-th subject. In such a
case, when we eliminate the set I of all the ni observations of the ith subject, it follows that

ŝs2
ðIÞ

ŝs2 ¼
n� p�MI

n� p� ni

� �
; ð2:6Þ

with MI ¼ y>QUIðU>I QUIÞ�1 U>I Qy. As in the previous case, large values of MI suggest the existence
of at least one outlying observation for subject i. We can use this approach to verify the influence of
subjects on the estimation of s2. This is a generalization of the multiple cases approach in the stan-
dard (normal) linear context (Cook and Weisberg, 1982, p. 28).

To check for homoscedasticity of the conditional errors (when S ¼ In), we suggest to plot the
standardized conditional residuals defined in (2.4) versus the fitted values. To check for normality, we
should keep in mind the confounding present in e. Hilden-Minton (1995) comments that the ability to
check for normality of e, using e, decreases as Var ½SQZ>b� ¼ s2SQZDZ>QS increases in relation to
Var ½SQe� ¼ s2SQSQS; this motivates the definition of the fraction of confounding for the k-th condi-
tional residual ek as

0 � Fk ¼
U>k SQZDZ>QSUk

U>k SQSUk
¼ 1� U>k SQSQSUk

U>k SQSUk
� 1 : ð2:7Þ

It represents the proportion of the variability of êek attributed to the confounding with the BLUP.
Hilden-Minton’s proposal is to consider a linear transformation, L>êe, such that L>êe has minimal con-
founding. For example, denoting the rows of L by li, l>i êe is said to be least confounded if

li ¼
l>i SQSQSli

l>i SQSli
ð2:8Þ

is at a maximum, subject to the restriction that Var ½l>i êe� / l>i SQSli > 0. Thus, the least confounded
residual is obtained by maximizing (2.8), generating a sequence of homoscedastic uncorrelated errors
with variance s2 and with minimum fraction of confounding. Details are presented in the Appendix.
Checking the assumption of normality of the conditional errors may be carried out via normal quantile
plots with simulated envelopes (Atkinson, 1985) for the standardized least confounded residuals. To
illustrate this, a simulation study is outlined in Section 4.

2.3 EBLUP

In model (1.1), Zi b̂bi reflects the difference between the predicted responses for the i-th subject and
the population average; therefore it can also be used to find outlying subjects, as suggested in Water-
naux et al. (1989), Verbeke and Lesaffre (1996a), Pinheiro and Bates (2000) and Longford (2001), for
example. Pinheiro and Bates (2000), for instance, recommend a plot of the elements of b̂bi, versus the
subject indices. Such a plot is useful to identify subjects that are outliers with respect to the j-th
element of the respective BLUP. Given that the b̂bi ði ¼ 1; . . . ;mÞ are comparable only when the cov-
ariates in Zi are the same for all subjects (Verbeke and Lesaffre, 1996a), we can use a plot of the

elements of Zi b̂bi, or of Mahalanobis’s distance, ẑzi ¼ b̂b
>
i
dVarVar ½b̂bi�bi� b̂bi versus the subject indices as

proposed by Waternaux et al. (1989) to identify outlying subjects.
To assess which subjects are sensitive to the homogeneity of the covariance matrices of the random

effects, Pinheiro and Bates (2000, p. 187) use the scatter plot matrix of the predicted random effects.
Another alternative, proposed by Nobre (2004), consists in perturbing the covariance matrix of the i-th
random effect by letting Var ½bi� ¼ wis

2D with the wi representing weights and identifying subjects
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which are sensitive to this assumption via local influence methods (Cook, 1986). In this direction, a
plot of the normalized eigenvector (jdmaxj) associated with the direction of largest normal curvature of
the influence graph under a perturbation of the covariance matrix of the random effects versus the
subject indices is useful to identify the influential subjects.

The EBLUP can also be used to check for normality of the vector of random effects b. Lange and
Ryan (1989) suggest the use of weighted normal quantile plots of standardized linear combinations of
the random effects for such purposes. Jiang (2001) proposes a test to check the assumption that the
distributions of b and e are as specified. Both papers rely on asymptotic arguments. On the other
hand, considering that the mean vector and the covariance matrix of y are correctly specified, Butler
and Louis (1992) showed through a simulation study, that the BLUE is not affected by an incorrect
specification of the distribution of b. Such a result was theoretically confirmed by Verbeke and Le-
saffre (1996b, 1997) who showed that the estimates of the parameters of model (1.1) obtained under
normality assumptions are asymptotically consistent even when the distribution of b is not normal but
has third finite absolute moment, and only requires a correction in the covariance matrix of the fixed
effects estimators.

The use of each type of residual is summarized in Table 1.

3 Example

To illustrate the above procedures, we analyze data from a study conducted at the School of Den-
tistry of the University of S�o Paulo, Brazil, designed to compare a low cost toothbrush (mono-
block) with a conventional toothbrush with respect to the maintenance of the capacity to remove
bacterial plaque under daily use. The data in Table 2 correspond to bacterial plaque indices ob-
tained from 32 children aged 4 to 6 before and after toothbrushing in four evaluation sessions. A
trellis display for the pretreatment (x) and posttreatment (y) bacterial plaque indices is presented in
Figure 1.

Following Singer et al. (2004) who analyze a different data set from the same study, we considered
fitting models of the form

ln yijd ¼ ajd þ bjd ln xijd þ bi þ eijd ; ð3:1Þ

where yijdðxijdÞ is the posttreatment (pretreatment) bacterial plaque index for the i-th subject evaluated
in the d-th session with the j-th type of toothbrush (j ¼ 0 for the conventional toothbrush and j ¼ 1
for the monoblock toothbrush), ajd is a (fixed) effect associated to the j-th toothbrush type in the d-th
session, bjd is a coefficient of uniformity of the expected bacterial plaque index reduction rate asso-
ciated to the j-th toothbrush type in the dth session, bi � Nð0; t2Þ and eijkl � Nð0; s2Þ are independent
random variables, respectively corresponding to the random effects of subjects and the random meas-
urement errors.

Biometrical Journal 49 (2007) 6 867

Table 1 Uses of residuals for diagnostic purposes.

Diagnostic for Type of residual Plot

Linearity of effects (E ½y� ¼ Xb) Marginal x̂xk vs. explanatory variables
Within-subjects covariance matrix (Vi) Marginal jjIni �RiR>i jj

2 vs. subject indices
Presence of outlying observations Conditional êe*k vs. observation indices
Homoscedasticity of conditional errors (ei) Conditional êe*k vs. fitted values
Normality of conditional errors (ei) Conditional QQ for least confounded residuals
Presence of outlying subjects EBLUP ẑzi vs. subject indices
Random effects covariance structure (G) EBLUP jdmaxj vs. subject indices
Normality of the random effects (bi) EBLUP Weighted QQ for b̂bi
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The analysis strategy used to simplify the saturated model (14) consisted of

(i) Testing whether the uniformity coefficients for the two types of toothbrush are homogeneous
across the four sessions, i.e., whether (bjd ¼ b, j ¼ 0; 1; d ¼ 1; . . . ; 4) or, in other words,
whether the model (3.1) could be reduced to

ln yijd ¼ ajd þ b ln xijd þ bi þ eijd : ð3:2Þ

(ii) Testing whether the main effect of type of toothbrush and the interaction between type of
toothbrush and evaluation session regarding the coefficients of residual bacterial plaque index
are null or, in other words, whether

a01 � a11 ¼ a02 � a12 ¼ a03 � a13 ¼ a04 � a14

868 J. S. Nobre and J. M. Singer: Residual Analysis for Linear Mixed Models

Table 2 Bacterial plaque indices.

Subject Tootbrush 1st session 2nd session 3rd session 4th session

Before After Before After Before After Before After

1 Conventional 1.05 1.00 1.13 0.84 1.15 0.86 1.13 0.94
2 Conventional 1.07 0.62 0.92 0.62 1.02 0.57 1.15 0.85
3 Conventional 0.82 0.62 1.52 1.07 1.39 0.97 1.78 1.39
4 Conventional 1.37 0.90 1.65 1.20 1.75 1.40 1.92 1.67
5 Conventional 1.97 1.52 1.30 1.07 1.50 1.15 1.65 1.37
6 Conventional 1.30 0.82 1.17 0.70 0.75 0.50 1.47 1.12
7 Conventional 1.61 1.19 1.52 1.13 1.22 1.00 1.63 1.22
8 Conventional 1.02 0.73 1.08 0.64 0.94 0.73 1.14 0.97
9 Conventional 1.62 1.25 1.45 1.10 1.10 0.75 1.70 1.32

10 Conventional 1.65 1.22 1.57 1.22 1.47 1.10 1.62 1.17
11 Conventional 1.02 0.78 0.60 0.47 0.88 0.75 1.36 1.08
12 Conventional 0.71 0.60 1.13 0.39 0.84 0.65 1.65 1.31
13 Conventional 1.70 1.55 1.85 1.37 1.87 1.55 1.60 1.30
14 Conventional 1.30 1.02 1.65 0.97 1.72 1.20 1.37 1.22
15 Conventional 1.40 0.80 1.83 1.03 1.76 1.38 1.96 1.15
16 Conventional 1.40 1.12 1.25 0.67 1.50 1.10 1.50 1.22
17 Monoblock 1.66 1.63 1.36 1.16 1.52 0.88 1.41 1.20
18 Monoblock 1.02 0.80 0.92 0.82 1.10 0.76 1.28 1.15
19 Monoblock 0.75 0.67 1.00 0.92 1.00 0.87 1.15 1.10
20 Monoblock 1.29 1.23 0.91 0.76 1.14 0.94 1.35 0.97
21 Monoblock 1.27 1.20 1.20 0.95 1.10 1.00 1.37 1.17
22 Monoblock 1.07 0.85 1.39 1.25 1.39 1.25 1.28 1.21
23 Monoblock 1.35 1.21 1.42 1.17 1.42 1.19 1.42 1.23
24 Monoblock 1.32 1.02 1.60 1.40 1.35 1.02 1.50 1.25
25 Monoblock 1.66 1.61 1.50 1.36 1.72 1.41 1.69 1.44
26 Monoblock 1.30 1.07 0.84 0.61 0.88 0.61 0.96 0.57
27 Monoblock 1.57 1.20 1.50 1.07 1.15 1.00 1.25 1.05
28 Monoblock 1.67 1.50 1.47 1.32 1.07 0.97 1.50 1.37
29 Monoblock 0.91 0.67 0.96 0.62 1.09 0.53 1.12 0.37
30 Monoblock 1.06 0.70 1.00 0.85 1.15 0.93 1.12 1.00
31 Monoblock 2.30 2.00 1.37 1.25 1.40 1.32 2.15 1.90
32 Monoblock 1.15 1.00 1.23 1.11 1.15 1.07 1.26 1.00
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and

ajd ¼ aj ; d ¼ 1; 2; 3; 4 ; j ¼ 0; 1 :

(iii) Fitting the model that incorporates the conclusions in (i) and (ii), i.e., reducing model (3.2) to

ln yijd ¼ aj þ b ln xijd þ bi þ eijd :

The model reduction procedure was based on likelihood ratio tests (LRT) and on the Akaike and
Bayesian information criteria (AIC and BIC, respectively). The LRT p-values corresponding to the reduc-
tion of (3.1) to (3.2) and of (3.2) to (3.3) were, respectively 0.3420 and 0.1623. The AIC (BIC) for
models (3.1), (3.2) and (3.3) were respectively �95.0 (�68.6), �102.8 (�86.7) and �105.6 (�92.1).
Based on these results, we adopted (3.3) to illustrate the use of the proposed diagnostic procedures.

To check for the linearity of effects, we plot the marginal residuals versus the logarithms of the
pretreatment bacterial plaque index in Figure 2(a). In Figure 2(b) we plot the residuals for the struc-
ture of the covariance matrix versus subject indices. The former supports the regression model for the
transformed response (log of the bacterial plaque index) and the latter suggests the fitted covariance
matrix is not adequate for subjects #12 and #29.

Biometrical Journal 49 (2007) 6 869
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Figure 1 Trellis display for the data in Table 2.
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Figure 2 Marginal residual (a) and residuals for the within-subjects covariance matrix structure (b)
for model (3.3).
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In Figure 3(a) we plot the standardized conditional residuals versus subject indices and in Figure 3(b)
the simulated 95% confidence envelopes for the standardized least confounded residuals to verify the
presence of outlying observations and homoscedasticity and normality of conditional errors ei, respec-
tively. Observations #12.2 (second observation for subject 12) and #29.4 (fourth observation for sub-
ject 29) are highlighted in Figure 3(a) as being atypical with respect to the remaining standardized
conditional residuals, suggesting that they may be possible outliers. We do not identify observations
outside the simulated envelope and do not observe any trends in Figure 3(b), suggesting the plausibil-
ity of the normality assumption for the conditional error.

In Figure 4(a) we plot the EBLUP versus the subject indices, to identify outlying subjects. Also, in
Figure 4(b) we plot Cook’s (1986) jdmaxj computed under a perturbation of the variance of the random
effects versus the subject indices to identify subjects that are sensitive to the homogeneity of the
variances of the random effects. The plot in Figure 4(a) suggests that subject #29 is an outlier; simi-
larly, the plot in Figure 4(b) suggests that subject #29 does not support the assumption of homogene-
ity of the variance of the random effects, t2.

As we mentioned in Section 2, weighted normal quantile plot (that disregarding the possible con-
founding) for checking the normality of the random effects are difficult to implement; however, this
assumption is not crucial for the analysis in view of the robustness of the BLUE with respect to an
incorrect specification of the distribution of the random effects.
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Figure 3 Standardized conditional residuals (a) and simulated 95% confidence en-
velope for the standardized least confounded residuals (b) for model (3.3).
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In Table 3 we present estimates of the parameters (and their relative changes within parentheses)
when subjects #12 and #29 are not considered in the analysis along with corresponding estimates
obtained with complete data. The relative change is defined as ½ðq̂qðIÞ �q̂qÞ=q̂q� � 100%, where q̂qðIÞ de-
notes the parameter estimate obtained without the observations belonging to the index set I, i.e., with-
out the observations for subject #12, subject #29 or both (the covariance parameters were estimated
by restricted maximum likelihood).

From Table 3, we conclude that subjects #12 and #29 are influential with respect to the covariance
parameters; in particular, subject #12 is influential with respect to s2 and subject #29 with respect to
t2. Such results are compatible with the residual analyses (see Figures 2, 3 and 4). A description of
the characteristics of the influential subjects follows:

� # 12: this subject used the conventional toothbrush; he/she presented the second smallest pretreat-
ment plaque index (0.71) and the smallest posttreatment plaque index (0.39), both on the second
session; he/she also presents a high posttreatment plaque index (in the fourth quartile) contradict-
ing the results based on the fitted model, that predicts larger posttreatment plaque indices for
subjects that use the monoblock toothbrush. He/she presents the largest variability among the
four within-subjects posttreatment plaque indices and the second smallest reduction of the bacter-
ial plaque index ðy=xÞ;

� # 29: this subject used the monoblock toothbrush and presents all posttreatment plaque indices in
the first quartile, with the smallest (0.37) occurring in the fourth session. This contradicts the
expected results under the proposed model, that predicts smaller indices for subjects using the
conventional toothbrush; he/she also presented two among the three smallest, including the smal-
lest, indices of reduction of bacterial plaque ðy=xÞ.

4 Discussion

We present a brief review of residual analysis techniques for linear mixed models of the form (1.1). In
an implicit way, we assume that the covariance parameters are known and discuss the properties of
the different types of residuals. Fei and Pan (2003) showed through a practical example, that incorrect
identification of influential subjects may occur when the covariance structure is misspecified. Conse-
quently, it is important to know whether D and S are correctly specified before performing the pro-
posed residual analysis. The reader is referred to Wolfinger (1993), Rutter and Elashoff (1994) or
Grady and Helms (1995), among others, for methods of selection of the within-subjects covariance
structure in mixed models.

To evaluate the efficiency of the least confounded residuals with respect to the detection of viola-
tion of the normality assumption for the conditional errors, we generated observations from the model

yij ¼ 1þ 2xij þ bizij þ eij ; i ¼ 1; . . . ; 100 ; j ¼ 1; . . . ; 5 ð4:1Þ
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Table 3 Estimates (	 estimated standard errors) and relative changes of the parameters of model
(16) with and without subjects #12 and #29.

Parameters a0 a1 b t2 s2

Complete data �0.32	 0.03 �0.21	 0.03 1.06	 0.06 0.00634	 0.0028 0.021	 0.02
Subject #12 removed �0.32	 0.03 �0.22	 0.03 1.06	 0.06 0.00691	 0.0027 0.015	 0.02

(0.0%) (�4.8%) (0.0%) (�9.0%) (28.6%)
Subject #29 removed �0.33	 0.03 �0.19	 0.03 1.07	 0.05 0.00148	 0.0013 0.017	 0.02

(0.0%) (9.5%) (0.9%) (76.7%) (�19.1%)
Subjects #12 and #29 �0.32	 0.03 �0.19	 0.03 1.07	 0.05 0.00299	 0.0014 0.012	 0.01
removed (0.0%) (9.5%) (0.9%) (52.8%) (42.9%)

# 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



where eij and bi are independent random variables such that eij � Nð0; 1Þ and bi � F, where F is
either (a) Nð0; 1Þ, (b) Student t distribution with 3 degrees of freedom, (c) chi-squared with 3 degrees
of freedom and (d) Poisson with mean 3. We also generated xij and zij from a Uniform (0,2) distribu-
tion. In Figure 5, we plot simulated envelopes for the standardized least confounded residuals under
cases (a)–(d) described above.

In all four situations, we do not identify observations outside the simulated envelope and no type of
trend is observed; this suggests that standardized least confounded residuals may be employed to
evaluate the plausibility of the normality assumption for the conditional error even when the random
effects are not normal. To show that confounding present in e must be taken into account, we gener-
ated observations according to (4.1), with bi obtained from a Student t distribution with 3 degrees of
freedom multiplied by 10 and zij from a Uniform (0,10) distribution. In Figure 6, we plot the simu-
lated 95% confidence envelope for the standardized least confounded residuals and for the standar-
dized conditional residuals.
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Figure 5 Simulated 95% confidence envelope for the standardized least confounded
residuals for different distributions of the random effects.
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As we may see, the standardized conditional residuals do not present a normal behaviour, even
when the conditional error is normally distributed.

Some of the procedures discussed in Section 2 are already implemented in the S-plus (nlme3) and
R (nlme and lme4) packages as indicated in Pinheiro and Bates (2000, chapter 4), though some mod-
ifications are needed to take confounding and the correct standardization of the conditional residuals
in consideration. The codes employed for the analysis of the example and the simulation were devel-
oped in R and can be obtained directly from the authors.

Acknowledgements We are grateful to Conselho Nacional de Desenvolvimento Cient�fico e Tecnol�gico
(CNPq) and Funda��o de Amparo � Pesquisa do Estado de S�o Paulo (FAPESP), Brazil for partial financial
support. We thank the anonymous referee and associate editor for their careful examination of our work as well
as for their enlightening suggestions. We also wish to thank Dr. C�lia Delgado and Dr. Symonne Parizzoto for
kindly providing the data.

Appendix

Here, we sketch some proofs of the results considered in Section 2.
Firstly, note that since êe ¼ SQy and Var ½y� ¼ s2M�1, it follows that QM�1Q ¼ Q and conse-

quently, that Var ½êe� ¼ s2SQS.
Secondly, we show that ŝs2

ðKÞ ¼ ½y>ðQ� QUKðU>K QUKÞ�1 U>K QÞ y�=ðn� p� nÞ is unbiased for s2.
Under the assumptions of model (1.3), we have y � NðXb; s2VÞ, and using QX ¼ 0 and
tr ðQM�1Þ ¼ tr ðIn �MXðX>MXÞ�1 X>Þ ¼ ðn� pÞ, we obtain E ½y>Qy� ¼ s2ðn� pÞ. Furthermore,
since tr ðQUKðU>K QUKÞ�1 U>K QM�1Þ ¼ n, we obtain E ½y>QUKðU>K QUKÞ�1 U>K Qy� ¼ s2n, implying
that ŝs2

ðKÞ is unbiased for s2.
Finally, we note that Hilden-Minton’s (1995) suggestion to obtain the least confounded residuals is

to maximize

li ¼
l>i SQSQSli

l>i SQSli
ð18Þ

subject to the restriction Var ½l>i êe� / l>i SQSli > 0. Since S is a positive definite matrix, we only need
to be concerned with the non-null space of Q. Given that Q has rank n� p, we may consider the
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singular value decomposition

S1=2QS1=2 ¼ KLK>

where

K>K ¼ Iðn�pÞ

with K denoting a n� ðn� pÞ matrix and L a ðn� pÞ � ðn� pÞ diagonal matrix. Now, consider
li ¼ S�1=2KL�1=2vi for any ðn� pÞ-vector vi and note that (4.2) can be written by

li ¼
v>i Lvi

v>i vi
:

Taking vi as the ith column of Iðn�pÞ, it is possible to show that the maximum of (2.8) is obtained
when

li ¼ p
�1=2
i S�1=2K�1=2

i ; ði ¼ 1; . . . ; n� pÞ
with Ki representing the ith column of K and pn�p � . . . � p1 � 1 denoting the ordered elements of
L. Then, l>i e ¼ p

1=2
i K>i Sy and it is not difficult to show that l>1 e; . . . ; l>n�pe constitutes a sequence of

homoscedastic uncorrelated errors with variance s2.
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Correction

Biometrical Journal 2007, 49, 863–875

Residual Analysis for Linear Models

Juv�ncio Santos Nobre and Julio da Motta Singer

Unfortunately, in this article, the equation on page 7 is incorrect and it’s numbering is missing. We
apologize for these errors. For the correct equation and numeration see below.

(iii) Fitting the model that incorporates the conclusions in (i) and (ii), i.e., reducing model (3.2) to

ln yijd ¼ ajd þ b ln xijd þ bi þ eijd; ð3:3Þ
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