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‘ Announcements

m Project 02 Schedule:
o Fri Nov 19: Draft Technical Appendix with HW 10.
2 Mon Nov 29 (or earlier): Full IDMRAD paper first draft.
0 Fri Dec 3: Peer reviews due.
o Fri Dec 10 (or earlier): Full IDMRAD paper final draft!

m Regular classes Nov 22, 29 & Dec 1

= No more graded hw’s or quizzes
0 | may give one more ungraded hw, if | have time to set it up

0 End of semester feedback for me Nov 29

m BJ’s remaining office hours will be in the MSP space in
FMS — not in his office.
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‘ Outline

= Today:

o Shrinkage

0 Review of MLE

0 Crash course in Bayes

0 Normal-Normal Model & Shrinkage

2 MLM’s and Shrinkage
= Mon:

o Multilevel glm’s (multilevel binomial, poisson, etc.)
m After Thanksgiving:

0 Some ideas from nonparametric regression
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‘ An MLM phenomenon: Shrinkage

The fitted multilevel model

underpredicts high obs’s
and overpredicts low ones. I

© |m(y ~ county.name)

The distribution assumptions imerly~1+(1|county.name )) I
underlying Imer() “smooth out”
extreme observations!

Multi-level models provide more
smoothing/shrinkage to groups

Deviation from Grand Mean

with smaller sample sizes (since 3

there is less evidence that their I

values should be different from =

“grand mean”.) ; | | | |
S s N N ¢ oL >

We’ll talk about why today... S F & T O LS L
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Methods of Estimation — How can we

systematically construct “good” estimators?

= Several methods have proven useful:

a Method of Moments (MoM): The k" moment of X is E[XX]. MoM
estimators combine unbiased estimates of moments of X.

0 Least Squares (LS): Obtained by minimizing squared error
Z?zl(yi — E[Y@])Q Ordinary linear regression!

a0 Maximum likelihood (ML): The likelihood is the probability of the
data we observed. ML estimators (MLE’s) choose parameter
values that maximize the likelihood.

0 Bayesian Estimation (Bayes): Treat the parameters as random
variables, and use Bayes’ rule to pick the parameter value most
likely, given the data (the “reverse” of ML!)
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Maximum Likelihood Estimators (MLE’s)

= Let X, ..., X, be aniid sample from f,(x;0), x, ..., x,, are the
observed values

m The likelihood of the sample is the joint density
L(0) = (1,... 20 0) = f(x1; 0)f(22; 0)--- f(2; 0)

= Hf(l‘z‘; 0)

s The maximum likelihood estimate @ AL E Maximizes L(6):

LOwyre) > L(6) V6
m Strategy: It’s usually (but not always) easier to work with
the log likelihood

LL(0) =log L(0) = Zlog f(xi; 0) .
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‘ Florida, 2020 Pre-Election Poll

Donald Trump (R) running for election to the presidency
against Joe Biden (D)

In a Suffolk University Poll (October 1-4, 2020):

0 451 of 500 voters expressed a preference for Trump or Biden.
0 Of those 451: 226 prefer Donald Trump.

In most polling, weights are attached to each response,
to adjust the “representativeness” of the response for
things like

o whois likely to be home when survey worker calls

o who refuses to answer

o etc

We will ignore weights etc and treat the 451 as a simple
random sample.
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‘ Possible models for the data

= 451 individual Bernoulli coin flips, x, = 1 for

Trump, x;= 0 for Biden
451

Lber(p) — Hpmq:(l _ p)l—mi — p226(1 _p)225
1=1

m 451 trials, 226 “successes” (Trump voters)

451
Lpin(p) = (226)19226(1 — p)?*°

= What matters for MLE and SE is shape, not size!
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‘ Binomial and Bernoulli Likelihoods

Binomial Likelihood
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‘ Finding the MLE...

= If we use the Bernoulli likelihood,

LLbefr (P) — log Lbe'r‘(p)
— logpk(l — p)“_k = klogp+ (n—k)log(l — p)
= |f we use the Binomial likelihood
LLyin(p) = log Lyin(p)
= log (Z)p’“(l =p)"" o klogp+ (n— k)log(1 - p)

m Either way we want to maximize
klogp + (n — k) log(1 — p)
with k =226, n=451

11/17/2021
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MILE: Point Estimate

= Differentiating and setting to zero...

0 = LL(p) = %[klogm(n—k)log(l—p)]

k. n—k k— pn

p 1-p p(1 —p)

m SO, clearly,

~ k226 __

11/17/2021
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‘ Bayes’ Rule (a.k.a. Bayes’ Theorem)

= Avery simple idea with very powerful
conseqguences

s We often start with information like P[A|B] and
what we really want is P[B|A]. Bayes’ Theorem
lets us “turn the conditioning around”:

P[A&B] P[A|B|P|B]
P BIA| = —
BIA= "l PlA]
m See https://arbital.com/p/bayes rule/ for lots of
examples and proselytizing.

11/17/2021
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https://arbital.com/p/bayes_rule/

Conditional probability & conditional

density

= P[A|B] = P[A&B]/P[B]

= P[B] =P[B|A]P[A] +
P[B|A°]P[A®]

s P[A & B] =P[B|A]P[A]

= Bayes’ Theorem:

pply — PAYB _ PABIPE

PlA] PlA]
PlA|B|P[B]

P[ABIP[B] +

P[A[B|P[B

‘I

= f(x|y) = f(x,y)/f(y)

/ F(ylo) f (2)da

= f(xy) = f(y|x) f(x)

= Bayes’ Theorem:

_ flxy)  flzly) f(y)
fole) = ") = 7 i
_ (fBIy) (v)
| fxly*) f(y*)dy*

11/17/2021

13



‘ Bayes’ Theorem for Data

= Bayes’ Theorem

 flryy)  f(=ly) f(y)
fole) = 70y = " i@
f(zly) f(y) Dummy

f f(ﬂ?‘y*)f(y*)dy* / variable of

integration

m Let x =data, y = 0 (parameter!); then

f(data, 0) _ f(data|@) f(0)
f(data) f(data)
f(data|6) f(6)
[ (datal6+) £ (67 ) do"

f(6|data)
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‘ Bayes’ Theorem for Data

= We call
a f(0) the prior distribution
a f(data|6) = L(0) the likelihood
a f(6|data) the posterior distribution

= So Bayes’ Theorem says

f(data|0) / (0)
f(data)

m Slogan: (posterior) o< (likelihood) x (prior)

f(6|data)

o f(data]f) £(0)

11/17/2021

15



‘ Back to 2016 Florida pre-election poll

m The likelihood is the same as before:

L(p) o< p* (1-p)"*

= We need a prior distribution. One good choice is
a beta distribution, with

o Density  f(pla, B) = pigirap® (1 — p)Pi~!

o Mean Elp] = 333

o Variance Var(p) = (a+5)f£+5+1)

m Some graphs of beta densities appear on the next
slide

11/17/2021 16



‘ Some Beta Densities
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uniform distribution!

‘ Some Beta Densities
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‘ Choosing prior parameters...

m The likelihood is the same as before:

L(p) o< p (1-p)™= p?2°(1-p)?*>
m The prior distribution is a beta distribution

f(plo, B) = wisiigp® ™ (1 — p)P!

0 a=1, 8=1gives a uniform distribution — no
preference for one p over another!

0 Suppose that in a previous poll, 942 prefer Trump and
1008 prefer Biden. Could set «=942, 3=1008

11/17/2021 19



‘ If =1 and (=1...
m (posterior) o< (likelihood) x (prior):

f(p|data) o« L(p) x1 = p226(1 —p)225

= Since f(p|data)=L(p),
posterior mode = MLE
= Since f(p|data) is a beta

with a=227, 3=226

E[p|data] = 0.501

11/17/2021
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| If 0=942, $=1008..

posterior between

= (posterior)  (likelihood) x (prior): prior & likelihood
f(p‘data) X L(p) X p941(1 . p)1007
— pll67(1 — p)1232

= Since f(p|data) =
beta(p,1168,1233),
E[p|data] = 1168/2401

=(0.486)vs MLE @

11/17/2021
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‘ Normal Model: Estimate u, with o2
Known, One Observation y ~ N(u,0?)

m For our prior distribution, we’ll assume u ~
N(Lt,,T,2):

flylp) = \/21—71_0_6_20%@_“)2
1 —ﬁ(u—#o)g
f(ﬂ) o \/%Toe
N2 RY:
Fl) o Shf) o exp g [UPE g ol

m Posterior must be normal for i (quadratic in u!);
to identify it, complete the square...

11/17/2021 22



= The exponent of f(u|y) looks like -1/2 times

(y—w)?  (p—m)?*  1m5+0°[ 5 2yurs +2um00° | Y15 + pgo’
2 + 2 = 2.2 l”“ 21 2 + 2 1 o2
0 00 0 0

2 2\ 2
5 + o Y7y + oo - 2 2
= + junk(y, o“, o, T,

’rgaQ ( 7‘02 + o2 ) junk(y Ho O)]

1
= —2(,u 1) + (known junk)
i

so that |y ~ N(u,, 7,2), where

2 7'302 B 1
L 7'02—|—c72 - 1/02—|—1/7‘02

y'rg + u002 Tg o2
H1 = 5 > D) 5 YT | = 2 | HO
T) + o 70 + o 70 + o
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= The exponent of f(u|y) looks like -1/2 times

(y—p)? (p—po)*  15+0*] > QupTé + 2ppoc?  yrTe + pio?
2 + 2 = 2.2 l”“ + 2 1 o2
0 00 0
T2 -I-O' ,
= . 2 92 X _I_Junk(ya 0-27/11077_(?)]
40

1 :
= —(p— p1)* + (knowyp junk)
1

T

so that |y ~ N(u,, 7,2), where

11/17/2021 24



‘ n Observations y. ~ N(u,0?)

m Since

o1 1
Y dn = N se ey UYn j()'2 — e_%_z(yz‘—li)
Py, YnlLt) (W1, Ynlp, 0°) ;[;[1 orss
1 1 =2
X N(g‘#’oj/n) — e 202/n (y—n)

V2ma? /n

we can apply the results for one observation
. p(yli Y ynllu) X N(Vlluﬁ On2)i on® = 0-2/n

a p(u) = N(pe | ey, 7,2)

o p(u|data) = N(u|p,,, 7,,2) where
) 1 1

n = 1/0%4—1/7‘02 B n/02+1/7'02

_02+07'2 T2 . o2 /n
Mn:y/n M/0:< 0 )y-l—( / )HO

/o2 +1/78 8+ 02/n 8+ 02/n

2

11/17/2021

25



“shrinkage™

‘ Normal Mean’ Example posterior between

prior & likelihood

= Suppose we know 0=12, we look at n=1691Q
scores, and we find y = 100.

= We use as prior N(u,, 7,2) with ¢1.=90, 7/2=4
= Shrinkage determined by

(T N (2 °
fin = 6 +02/n Y 76 + 02 /n Ho

2 %
m " is the reliability © .

¢+ 02/n

= nlarger =
reliability larger =
less shrinkage

11/17/2021 26



Minnesota Radon Example

= Emphasize Distribution Structure

Level 2: e N (g, 73)

Level 1: y,p; mdep N(pj,o%)

= Emphasize Bayesian point of view
Prior: = N (o, 75)

Likelihood: ;1 "7 N(uj,0?)

= Emphasize two-stage (multistage) sampling

M 0 Mean radon across MN
1951 2 . g County-level differences
from grand mean
yiyz .. -Yni Yni+1-- - Yno Ynj_1+1---Yn individual house levels
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‘ Minnesota Radon Example

HJO Mean radon across MN

/ . County-level differences
f d
/ /l \ / \\ rom grand mean

Y11Yi12 . 1nq Y21Y22 - - - Y2ns  YniYr2---YIn:  ingividual house levels

= In each county i with n, houses, the posterior

mean radon level E|u;|yi1, .., Yin,] will be

2 2
post 70 — g /?’L@
& (702 +02/m> e (73 +o?/m) e

o When n, large, ppost = .

o When n; small, p.post = p
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Minnesota Radon Example

= In the figure, the grand 8 l;
ost
i % Hy
mean IS /1/0 ° © Im(y ~ county.name) _
. . © Imer(y~1+(1|county.name)) B Us
= |n each county | with n; g < lyﬁ lupost
- post 8
houses, posterior meanis § =- I 140
’ £ 1 Iugo‘%ﬁé’
2 £ 5
post  _ ( 0 ) 7 S g post I (2 HJPOSt
i — 2 2/, )i =S VS 9
T() —I_ g /n?, 2/ Q - postgg I )
g /n; e M Y9
== Ho g
TO +Cf /?’L@ < | Y2
| n
a0 When n, large, ppost &y, S
| o | & & & /\QY@\ S /\O& Qyé\ ® S (,\oé
a0 When n, small, ppost &= L S P
County
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MLM’s and Shrinkage

m The random effect “estimates” that 1mer produces
with ranef () are a form of posterior means
E[n|data] for each .

m The posterior means E[n|data] are always shrunk
toward the prior mean 0, so that the random effects
o, are always shrunk toward the corresponding
level-2 fixed effects 3.

= The Bayesian pov not only provides insights, but also
0 Novel ways to expand the multi-level model framework

o Simulation-based methods of estimation (MCMC with jags,
Hamiltonian MC with stan, etc.)

(all for a different course focusing on MLM’s & Bayes!)
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‘Summary

= Today:
o Shrinkage
o Review of MLE
o Crash course in Bayes
2 Normal-Normal Model & Shrinkage
o MLM'’s and Shrinkage
= Mon:

o Multilevel glm’s (multilevel binomial, poisson, etc.)

m After Thanksgiving:
o Maybe a little practical Bayes / MCMC

11/17/2021
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