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Announcements
◼ Project 02 Schedule:

❑ Mon Nov 29 (or earlier): Full IDMRAD paper first draft.

❑ Fri Dec 3: Peer reviews due.

❑ Fri Dec 10 (or earlier): Full IDMRAD paper final draft!

◼ Regular classes Nov 29 & Dec 1

◼ No more graded hw’s or quizzes

❑ There is an ungraded HW11 on nonparametric regression

◼ BJ’s remaining office hours will be in the MSP space in 
FMS – not in his office.

❑ BJ will hold office hours at 11am M and W next week as well. 
The location is negotiable – Shall I keep coming to FMS?
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Outline
◼ Two meanings of “Linear” model / linear smoother

❑ 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀,    vs.   𝑌 = 𝐻𝑌

❑ 𝑑𝑓 = 𝑡𝑟(𝐻)

◼ Polynomial Regression

◼ Fixing Collinearity: Orthogonal basis for X

◼ Ridge Regression as a wiggliness/roughness penalty

❑ Effective 𝑑𝑓 = 𝑡𝑟(𝐻𝜆)

◼ Cubic Regression Splines

◼ Variations 

❑ Natural Splines

❑ Specifying the number of knots instead of the locations

◼ Smoothing Splines
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Two meanings of “Linear” models
◼ Informally, we say a “linear” model involves a linear 

relationship (plus error) between 𝑥 and 𝑦:
𝑦𝑖 = 𝛽𝑜 + 𝛽1𝑥𝑖 + 𝜀𝑖

◼ A more precise and generalizable definition is that the 
vector ො𝑦 is a linear function of the vector 𝑦:

ො𝑦 = 𝐻𝑦

where 𝐻 = 𝑋 𝑋𝑇𝑋
−1
𝑋𝑇.  Recall that

𝑡𝑟 𝐻 = 𝑡𝑟 (𝑋𝑇𝑋) 𝑋𝑇𝑋
−1

= 𝑝 + 1 = 𝑑𝑓

◼ We will consider linear models and linear smoothers that 
generalize “linear” in the sense of (1) but preserve 
“linear” in the sense of (2)!

412/3/2021
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Polynomial Regression
◼ We already know about polynomial regression

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 +⋯+ 𝛽𝑝𝑥𝑖

𝑝
+ 𝜀𝑖

◼ This is just multiple regression where the columns of 
the X matrix are powers of 𝑥: 1, 𝑥, 𝑥2, … , 𝑥𝑝

𝑋 =
1 ⋯ 𝑥1

𝑝

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑛

𝑝

and 𝑑𝑓 = 𝑡𝑟 𝐻 = 𝑝 + 1

◼ Good for estimating some nonlinear functions; but

❑ Vif’s tend to be large

❑ Can be overly “wiggly” or “rough”
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A Running Example…
◼ For most of this lecture we will try to estimate 
𝑓(𝑥) from the data 𝑦𝑖 = 𝑓 𝑥𝑖 + 𝜀𝑖 where 

❑ 𝑓 𝑥 = 1 + 2𝑥 sin
2𝜋

0.25+0.75𝑥
, 𝑥 ∈ (0,1)

❑ 𝜀𝑖 ∼ 𝑁 0, 𝜎2 , 𝑖 = 1…100 (𝜎2 = 1)

612/3/2021
See the r file for this lecture for all 

sorts of computational details…



Polynomial regression of order 1,4,7,10
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Powers of 𝑥 have a lot of collinearity

> ## lmfit fits the 10th degree polynomial

> X <- model.matrix(lmfit) 

> tr <- function(m) sum(diag(m))

> tr(X%*%solve(t(X)%*%X)%*%t(X))

[1] 10.9998      ## = 11, up to floating point error

> round(summary(lmfit)$coef,2)

Estimate Std. Error t value Pr(>|t|)

(Intercept)       -5.93       1.90   -3.12     0.00

I(x^1)           379.17     128.10    2.96     0.00

I(x^2)         -7315.39    2696.74   -2.71     0.01

I(x^3)         63240.23   26773.03    2.36     0.02

I(x^4)       -290224.39  148518.47   -1.95     0.05

I(x^5)        771227.11  499693.74    1.54     0.13

I(x^6)      -1233102.85 1058658.55   -1.16     0.25

I(x^7)       1183276.84 1419406.84    0.83     0.41

I(x^8)       -645684.02 1167866.53   -0.55     0.58

I(x^9)        171639.32  537883.43    0.32     0.75

I(x^10)       -13430.82  106143.90   -0.13     0.90

> vif(lmfit)  

I(x^1)       I(x^2)       I(x^3)       I(x^4)

1.466822e+05 7.209028e+07 6.345761e+09 1.680260e+11

I(x^5)       I(x^6)       I(x^7)       I(x^8) 

1.634700e+12 6.343098e+12 1.000800e+13 5.972944e+12 

I(x^9)      I(x^10) 

1.130705e+12 3.958930e+10 

◼ The degrees of freedom 
are p+1 = 11, as expected

◼ The መ𝛽’s and their SE’s 
are huge

◼ The vif’s are enormous!

812/3/2021



Fixing collinearity: Orthogonal basis for X 

◼ The columns of X form a basis for a p+1 dimensional 
subspace S of ℜ𝑛: S = {v ∈ ℜ𝑛 𝑠𝑡 𝑣 = 𝑋𝛽 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛽}.

◼ If we replace the columns of X with orthogonal columns* 
that form a basis for the same space S and use them to 
make a model matrix Z,

❑ Fit, prediction, etc. for the model 𝑦 = 𝑍𝛽𝑧 + 𝜀 will be the same

❑ The vif’s should all be 1’s

❑ The 𝛽𝑧’s, 𝛽𝑧’s, and 𝑆𝐸(𝛽𝑧)’s will be different, but who cares? 

◼ The columns of Z are called “orthogonal polynomials 
over x”

◼ The R function poly(x,p)provides a set of orthogonal 
polynomials for us.

912/3/2021
*One way (among many) to do this is 

“Gram-Schmidt orthogonalization”



Let’s try it…

> Polyfit <- lm(y ~ poly(x,10))

> Z <- model.matrix(polyfit) 

> tr <- function(m) sum(diag(m))

> tr(Z%*%solve(t(Z)%*%Z)%*%t(Z))

[1] 11

> round(summary(polyfit)$coef,2)

Estimate Std. Error t value Pr(>|t|)

(Intercept)       0.70       0.10    7.02     0.00

poly(x, 10)1      6.80       0.99    6.84     0.00

poly(x, 10)2      0.52       0.99    0.52     0.60

poly(x, 10)3     -3.78       0.99   -3.81     0.00

poly(x, 10)4     -7.43       0.99   -7.47     0.00

poly(x, 10)5      1.22       0.99    1.23     0.22

poly(x, 10)6      4.27       0.99    4.30     0.00

poly(x, 10)7     -2.28       0.99   -2.29     0.02

poly(x, 10)8     -4.56       0.99   -4.59     0.00

poly(x, 10)9      4.22       0.99    4.25     0.00

poly(x, 10)10    -0.13       0.99   -0.13     0.90

> vif(polyfit)

poly(x, 10)1  poly(x, 10)2  poly(x, 10)3  poly(x, 10)

1             1             1             1 

poly(x, 10)5  poly(x, 10)6  poly(x, 10)7  poly(x, 10)8 

1             1             1             1 

poly(x, 10)9  poly(x, 10)10 

1             1 
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df = 11

Different, well 

behaved 𝛽𝑧’s

vif’s all 1’s

Same fitted 

values

Columns of Z

10th degree polynomial 

with orthogonal columns



Polynomials tend to get too wiggly as 
the degree increases…

◼ A polynomial with enough flexibility to track the 
more complex parts of 𝑓(𝑥) starts to interpolate 
𝑓(𝑥) + 𝜀, and becomes too wiggly for the less 
complex parts of 𝑓(𝑥).

1112/3/2021



Digression: Review of Ridge Regression

◼ Recall that in Ridge Regression we are minimizing the 
penalized RSS


𝑖=1

𝑛

𝑦𝑖 − 𝑋𝑖𝛽
2 + 𝜆

𝑖=1

𝑛

𝛽2 = 𝑌 − 𝑋𝛽 𝑇 𝑌 − 𝑋𝛽 + 𝜆𝛽𝑇β

◼ Setting the derivative w.r.t. 𝛽 equal to 0,

−2𝑋𝑇 𝑌 − 𝑋𝛽 + 2𝜆𝛽 = 0

𝑋𝑇𝑌 = 𝑋𝑇𝑋 + 𝜆𝐼 𝛽

𝛽𝜆 = 𝑋𝑇𝑋 + 𝜆𝐼
−1
𝑋𝑇𝑌

◼ We are effectively dividing by a function of 𝜆 , and so 
𝛽𝜆 shrinks toward zero.

◼ The hat matrix is 𝐻𝜆 = 𝑋 𝑋𝑇𝑋 + 𝜆𝐼
−1
𝑋𝑇, and we define

(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) 𝑑𝑓 = 𝑡𝑟(𝐻𝜆)

1212/3/2021
In the r file for this lecture I show how you can fit a ridge 

regression with nothing more than the lm() function in R.



Try to use ridge regression to control 
wiggliness/roughness of polynomial…

1312/3/2021

• 𝜆 = 0 corresponds to the 

least-squares fit (no 

shrinkage) 

• For small positive 𝜆, we 

reduce the scale of the 

wiggliness at the 

expense of some bias

• For larger values of 𝜆, 

the curve is clearly 

shrinking towards a 

constant (the intercept, 

≈ 0.70) 

• Note how the (effective) 

df decreases as 𝜆
increases.

We increase df by increasing the polynomial 

degree; we decrease df by increasing 𝜆.



A more “local” approach…
◼ Instead of fitting one curve to all the data, fit 

different curves to different sections of the data

❑ Piecewise constant not
very satisfying…

❑ Piecewise polynomial
still suffers from 
discontinuities…

❑ →Impose continuity and
smoothness constraints

1412/3/2021

P
ie

c
e
w

is
e
 c

o
n
s
ta

n
t 

o
n
 1

2
 i
n
te

rv
a
ls

P
ie

c
e
w

is
e
 q

u
a
d
ra

ti
c
 o

n
 6

 i
n
te

rv
a
ls

We increase df either by increasing the number of 

intervals, or by increasing the polynomial degree 



Cubic Regression Splines*

◼ Divide x up into m+1 intervals
𝑡0 = −∞, 𝑡1 , 𝑡1, 𝑡2 , … , 𝑡𝑚−1, 𝑡𝑚 , 𝑡𝑚, 𝑡𝑚+1 = ∞

according to the knots 𝑡1, 𝑡2, … , 𝑡𝑚 and consider the 
regression

𝑦 =
𝑘=1

𝑚+1

1 𝑥∈ 𝑡𝑘−1,𝑡𝑘 𝑎𝑘 + 𝑏𝑘𝑥 + 𝑐𝑘𝑥
2 + 𝑑𝑘𝑥

3 + ε

=
𝑘=1

𝑚+1

1 𝑥∈ 𝑡𝑘−1,𝑡𝑘 𝑝𝑘 𝑥 + 𝜀

subject to the constraints

❑ 𝑝𝑘 𝑡𝑘 = 𝑝𝑘+1(𝑡𝑘) for all 𝑘 = 1…𝑚

❑ 𝑝′𝑘 𝑡𝑘 = 𝑝′𝑘+1(𝑡𝑘) for all 𝑘 = 1…𝑚

❑ 𝑝′′𝑘 𝑡𝑘 = 𝑝′′𝑘+1(𝑡𝑘) for all 𝑘 = 1…𝑚

1512/3/2021
*Cubic 𝑝𝑘 𝑥 are most popular, but obviously we could 

do something similar polynomials 𝑝𝑘 𝑥 of any degree



What are the degrees of freedom?
◼ Let 𝛽 = 𝑎1, 𝑏1, 𝑐1, 𝑑1, … , 𝑑𝑚+1

𝑇and let X be the 
matrix of functions of x, so that 𝑦 = 𝑋𝛽 + ε

◼ There are 𝑚 + 1 𝑝𝑘(𝑥)’s with 4 parameters each

❑ +4(𝑚 + 1) columns in the X matrix

◼ There are 3 linear constraints on the parameters at 
each of the 𝑚 knots.

❑ −3𝑚 linear constraints on the columns of X

◼ So we can replace the columns of X with a basis for 
the same subspace with only 

4 𝑚 + 1 − 3𝑚 = 𝑚 + 4

columns: the df for the spline on m knots is m+4.
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What should the columns of the 
reduced X matrix be?
◼ After a little calculus*, one can show that the 
𝑚 + 4 columns of the reduced X can be written 
as 1, 𝑥, 𝑥2, 𝑥3, 𝑥 − 𝑡1 +

3 , … , 𝑥 − 𝑡𝑚 +
3 , where

𝑥 − 𝑡 + = ቊ
𝑥 − 𝑡, 𝑥 ≥ 𝑡

0, 𝑥 < 𝑡

◼ This “basis” for X suffers from collinearity 
problems, and an almost-orthogonal basis of 
“B-splines” is usually used instead.

1712/3/2021
*See exercise #1 on pp. 321ff of 

Ch 7 of James et al.’s ISLR book.



Our running example with cubic 
regression splines…
> library(splines)   ## for B-spline function bs()

> knots <- seq(.1,.9,by=.2) ; m <- length(knots)

> pos.part <- function(x) (x+abs(x))/2

> B <- data.frame(x=x,x2=x^2,x3=x^3) ## R supplies the intercept...

> for (k in knots) { B <- cbind(B,pos.part(x-k)^3) } ; B <- as.matrix(B)

> bjfit0 <- lm(y ~ B)

> X <- model.matrix(bjfit0)

> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2)

> ## setup() on the next line plots f(x) and the data…

> setup(paste("handmade regression spline with", 
+ length(knots), "knots &",df,"df"))

> lines(x,predict(bjfit0))

> bsfit0 <- lm(y ~ bs(x,knots=knots))

> X <- model.matrix(bsfit0)

> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2)

> setup(paste("R's regression spline with",m,"knots &",df,"df"))

> lines(x,predict(bsfit0))

> round(vif(bjfit0),2)

x                        x^2                         x^3             (x – k1)+^3 

34715.01         5734082.57        67249875.68        38208202.68 

(x – k2)+^3        (x – k3)+^3       (x – k4)+^3    (x – k5)+^3 

66989.68            3094.03             136.76               3.97

> round(vif(bsfit0),2)

bs(x, knots = knots)1 bs(x, knots = knots)2 bs(x, knots = knots)3 

2.72                              3.81                             4.51 

bs(x, knots = knots)4 bs(x, knots = knots)5 bs(x, knots = knots)6 

3.64                             3.59                              4.10 

bs(x, knots = knots)7 bs(x, knots = knots)8 

2.90                              1.53

1812/3/2021



Variations on regression splines…

◼ Natural splines spend 2 more df 
to force 𝑝1 𝑥 and 𝑝𝑚+1 𝑥 to be 
linear

◼ If you specify df instead of knots, 
you get ≈ df equally spaced knots.

1912/3/2021

> knots <- seq(.1,.9,by=.2)

> m <- length(knots)

> nsfit0 <- lm(y ~ ns(x,knots=knots))

> X <- model.matrix(nsfit0)

> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2)

> setup(paste("R's natural spline with",m,"knots &",df,"df"))

> lines(x,predict(bsfit0))

> df.req <- 9 ## select knots at (df.req – 3) quantiles of x

> bsfit1 <- lm(y ~ bs(x,df=df.req))

> X <- model.matrix(bsfit1)

> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2)

> setup(paste("R's regression spline with",df.req,"knots requested &",df,"df"))

> lines(x,predict(bsfit1))

> ## plot not shown; similar to others…

We increase df by increasing 

the number of knots



Aside: Residual diagnostics, F-test, 
LRT, AIC, BIC still work…
> par(mfrow=c(2,2))

> plot(nsfit0)

> plot(bsfit0)

> anova(nsfit0, bsfit0)

Analysis of Variance Table

Model 1: y ~ ns(x, knots = knots)

Model 2: y ~ bs(x, knots = knots)

Res.Df RSS Df Sum of Sq           F     Pr(>F)  

1       93 115.16                              

2       91 108.05   2      7.1084 2.9933 0.05508 .

2012/3/2021
Be careful with F-test and LRT that 

the models are really nested!



Smoothing Splines

◼ A slightly different approach to splines is to try to 
find a smooth function 𝑔 𝑥 that minimizes the 
“Ridge-like” penalized RSS


𝑖=1

𝑛

𝑦𝑖 − 𝑔 𝑥𝑖
2
+ 𝜆න𝑔′′ 𝑡 2 𝑑𝑡

❑ Here, 𝜆 penalizes wiggliness or roughness: the larger 𝜆 is, 
the more linear 𝑔(𝑥) must be.

❑ It turns out that 
the function 𝑔 𝑥 that minimizes (*) is a natural cubic spline, with 
knots 𝑡𝑖 = 𝑥𝑖 at every data point 𝑥𝑖, and coefficients shrunken toward a 
linear form for 𝑔(𝑥). 

(how much shrinkage depends on 𝜆).

2112/3/2021

(*)



Smoothing Splines and df…

◼ When 𝑔 𝑥 is a natural cubic spline with knots at 
𝑡1, … , 𝑡𝑚, the penalized RSS (*) turns out to be

𝑌 − 𝐺𝛽 𝑇 𝑌 − 𝐺𝛽 + 𝜆𝛽𝑇Mβ

◼ 𝐺 is the X-matrix from a natural spline basis 
𝑔1 𝑥 , … , 𝑔𝑚+2 𝑥 , and 𝑀 is a matrix with entries

𝑀𝑖𝑗 = න𝑔′′𝑖 𝑡 𝑔′′𝑗 𝑡 𝑑𝑡

◼ Following the same calculus as for Ridge Regression, 
𝑌 = 𝐻𝜆𝑌,𝑤ℎ𝑒𝑟𝑒

𝐻𝜆 = 𝐺 𝐺𝑇𝐺 + 𝜆𝑀
−1
GT

(Effective) 𝑑𝑓 = 𝑡𝑟(𝐻𝜆)
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We increase df by increasing the sample size 𝑥1, … , 𝑥𝑛; 

we decrease df by increasing 𝜆, or by using fewer knots 

𝑡1, … , 𝑡𝑚 (at possibly different locations than the 𝑥𝑖 ’s).



Our running example: smoothing splines

> par(mfcol=c(3,2))

> setup(expression(paste("smooth spline: maximum knots, LOOCV  ",
+ lambda)))

> lines(ss <- smooth.spline(x,y,all.knots=T))

> ss$df ## [1] 14.76477

> setup(expression(paste(“natural spline:  maximum knots,  ",
+ lambda==0)))

> lines(ss <- smooth.spline(x,y,lambda=0))

> ss$df ## [1] 64

> setup(expression(paste("smooth spline: maximum knots,  ",
+ lambda==100)))

> lines(ss <- smooth.spline(x,y,lambda=100))

> ss$df ## [1] 2.002092

> setup(expression(paste("smooth spline:  ",lambda,
+ "  chosen s.t. ",tr(H)==12)))

> lines(ss <- smooth.spline(x,y,df=12))

> ss$df ## [1] 11.99843

> setup(expression(paste("smooth spline: 5 knots, LOOCV  “, 
+ lambda)))

> lines(ss <- smooth.spline(x,y,nknots=5))

> ss$df ## [1] 5.784098

> setup(expression(paste(“natural spline: 5 knots,  ",
+ lambda==0)))

> lines(ss <- smooth.spline(x,y,nknots=5,lambda=0))

> ss$df ## [1] 7

2312/3/2021

By default, smooth.spline() chooses as many equally-spaced knots as it 

can, up to the sample size n.  If you set all.knots=TRUE, 

smooth.spline() uses all the data points as knots.

smooth.spline() is part of 

the base R distribution.



Summary
◼ Two meanings of “Linear” model / linear smoother

❑ 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀, vs. 𝑌 = 𝐻𝑌

❑ 𝑑𝑓 = 𝑡𝑟(𝐻)

◼ Polynomial Regression

◼ Fixing Collinearity: Orthogonal basis for X

◼ Ridge Regression as a wiggliness/roughness penalty

❑ Effective 𝑑𝑓 = 𝑡𝑟(𝐻𝜆)

◼ Cubic Regression Splines

◼ Variations 

❑ Natural Splines

❑ Specifying the number of knots instead of the locations

◼ Smoothing Splines
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