
112/3/2021

36-617: Applied Linear
Models

Nonparametric Regression I

Brian Junker

132E Baker Hall

brian@stat.cmu.edu

Announcements
◼ Project 02 Schedule:

❑ Mon Nov 29 (or earlier): Full IDMRAD paper first draft.

❑ Fri Dec 3: Peer reviews due.

❑ Fri Dec 10 (or earlier): Full IDMRAD paper final draft!

◼ Regular classes Nov 29 & Dec 1

◼ No more graded hw’s or quizzes

❑ There is an ungraded HW11 on nonparametric regression

◼ BJ’s remaining office hours will be in the MSP space in
FMS – not in his office.

❑ BJ will hold office hours at 11am M and W next week as well.
The location is negotiable – Shall I keep coming to FMS?

212/3/2021

Outline
◼ Two meanings of “Linear” model / linear smoother

❑ 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀, vs. 𝑌 = 𝐻𝑌

❑ 𝑑𝑓 = 𝑡𝑟(𝐻)

◼ Polynomial Regression

◼ Fixing Collinearity: Orthogonal basis for X

◼ Ridge Regression as a wiggliness/roughness penalty

❑ Effective 𝑑𝑓 = 𝑡𝑟(𝐻𝜆)

◼ Cubic Regression Splines

◼ Variations

❑ Natural Splines

❑ Specifying the number of knots instead of the locations

◼ Smoothing Splines

312/3/2021

Two meanings of “Linear” models
◼ Informally, we say a “linear” model involves a linear

relationship (plus error) between 𝑥 and 𝑦:
𝑦𝑖 = 𝛽𝑜 + 𝛽1𝑥𝑖 + 𝜀𝑖

◼ A more precise and generalizable definition is that the
vector ො𝑦 is a linear function of the vector 𝑦:

ො𝑦 = 𝐻𝑦

where 𝐻 = 𝑋 𝑋𝑇𝑋
−1
𝑋𝑇. Recall that

𝑡𝑟 𝐻 = 𝑡𝑟 (𝑋𝑇𝑋) 𝑋𝑇𝑋
−1

= 𝑝 + 1 = 𝑑𝑓

◼ We will consider linear models and linear smoothers that
generalize “linear” in the sense of (1) but preserve
“linear” in the sense of (2)!

412/3/2021

(1)

(2)

Polynomial Regression
◼ We already know about polynomial regression

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 +⋯+ 𝛽𝑝𝑥𝑖

𝑝
+ 𝜀𝑖

◼ This is just multiple regression where the columns of
the X matrix are powers of 𝑥: 1, 𝑥, 𝑥2, … , 𝑥𝑝

𝑋 =
1 ⋯ 𝑥1

𝑝

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑛

𝑝

and 𝑑𝑓 = 𝑡𝑟 𝐻 = 𝑝 + 1

◼ Good for estimating some nonlinear functions; but

❑ Vif’s tend to be large

❑ Can be overly “wiggly” or “rough”

512/3/2021

A Running Example…
◼ For most of this lecture we will try to estimate
𝑓(𝑥) from the data 𝑦𝑖 = 𝑓 𝑥𝑖 + 𝜀𝑖 where

❑ 𝑓 𝑥 = 1 + 2𝑥 sin
2𝜋

0.25+0.75𝑥
, 𝑥 ∈ (0,1)

❑ 𝜀𝑖 ∼ 𝑁 0, 𝜎2 , 𝑖 = 1…100 (𝜎2 = 1)

612/3/2021
See the r file for this lecture for all

sorts of computational details…

Polynomial regression of order 1,4,7,10

712/3/2021

y
 ~

 1
 +

 I
(x

^1
)

+
 I
(x

^2
)

+
 I
(x

^3
)

+
 I
(x

^4
)

+
 I
(x

^5
)

+
 I
(x

^6
)

+
 I
(x

^7
)

+
 I
(x

^8
)

+
 I
(x

^9
)

+
 I
(x

^1
0
)

Powers of 𝑥 have a lot of collinearity

> ## lmfit fits the 10th degree polynomial

> X <- model.matrix(lmfit)

> tr <- function(m) sum(diag(m))

> tr(X%*%solve(t(X)%*%X)%*%t(X))

[1] 10.9998 ## = 11, up to floating point error

> round(summary(lmfit)$coef,2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.93 1.90 -3.12 0.00

I(x^1) 379.17 128.10 2.96 0.00

I(x^2) -7315.39 2696.74 -2.71 0.01

I(x^3) 63240.23 26773.03 2.36 0.02

I(x^4) -290224.39 148518.47 -1.95 0.05

I(x^5) 771227.11 499693.74 1.54 0.13

I(x^6) -1233102.85 1058658.55 -1.16 0.25

I(x^7) 1183276.84 1419406.84 0.83 0.41

I(x^8) -645684.02 1167866.53 -0.55 0.58

I(x^9) 171639.32 537883.43 0.32 0.75

I(x^10) -13430.82 106143.90 -0.13 0.90

> vif(lmfit)

I(x^1) I(x^2) I(x^3) I(x^4)

1.466822e+05 7.209028e+07 6.345761e+09 1.680260e+11

I(x^5) I(x^6) I(x^7) I(x^8)

1.634700e+12 6.343098e+12 1.000800e+13 5.972944e+12

I(x^9) I(x^10)

1.130705e+12 3.958930e+10

◼ The degrees of freedom
are p+1 = 11, as expected

◼ The መ𝛽’s and their SE’s
are huge

◼ The vif’s are enormous!

812/3/2021

Fixing collinearity: Orthogonal basis for X

◼ The columns of X form a basis for a p+1 dimensional
subspace S of ℜ𝑛: S = {v ∈ ℜ𝑛 𝑠𝑡 𝑣 = 𝑋𝛽 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛽}.

◼ If we replace the columns of X with orthogonal columns*
that form a basis for the same space S and use them to
make a model matrix Z,

❑ Fit, prediction, etc. for the model 𝑦 = 𝑍𝛽𝑧 + 𝜀 will be the same

❑ The vif’s should all be 1’s

❑ The 𝛽𝑧’s, 𝛽𝑧’s, and 𝑆𝐸(𝛽𝑧)’s will be different, but who cares?

◼ The columns of Z are called “orthogonal polynomials
over x”

◼ The R function poly(x,p)provides a set of orthogonal
polynomials for us.

912/3/2021
*One way (among many) to do this is

“Gram-Schmidt orthogonalization”

Let’s try it…

> Polyfit <- lm(y ~ poly(x,10))

> Z <- model.matrix(polyfit)

> tr <- function(m) sum(diag(m))

> tr(Z%*%solve(t(Z)%*%Z)%*%t(Z))

[1] 11

> round(summary(polyfit)$coef,2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.70 0.10 7.02 0.00

poly(x, 10)1 6.80 0.99 6.84 0.00

poly(x, 10)2 0.52 0.99 0.52 0.60

poly(x, 10)3 -3.78 0.99 -3.81 0.00

poly(x, 10)4 -7.43 0.99 -7.47 0.00

poly(x, 10)5 1.22 0.99 1.23 0.22

poly(x, 10)6 4.27 0.99 4.30 0.00

poly(x, 10)7 -2.28 0.99 -2.29 0.02

poly(x, 10)8 -4.56 0.99 -4.59 0.00

poly(x, 10)9 4.22 0.99 4.25 0.00

poly(x, 10)10 -0.13 0.99 -0.13 0.90

> vif(polyfit)

poly(x, 10)1 poly(x, 10)2 poly(x, 10)3 poly(x, 10)

1 1 1 1

poly(x, 10)5 poly(x, 10)6 poly(x, 10)7 poly(x, 10)8

1 1 1 1

poly(x, 10)9 poly(x, 10)10

1 1

1012/3/2021

y
 ~

 1
 +

 I
(x

^1
)

+
 I
(x

^2
)

+
 I
(x

^3
)

+
 I
(x

^4
)

+
 I
(x

^5
)

+
 I
(x

^6
)

+
 I
(x

^7
)

+
 I
(x

^8
)

+
 I
(x

^9
)

+
 I
(x

^1
0
)

df = 11

Different, well

behaved 𝛽𝑧’s

vif’s all 1’s

Same fitted

values

Columns of Z

10th degree polynomial

with orthogonal columns

Polynomials tend to get too wiggly as
the degree increases…

◼ A polynomial with enough flexibility to track the
more complex parts of 𝑓(𝑥) starts to interpolate
𝑓(𝑥) + 𝜀, and becomes too wiggly for the less
complex parts of 𝑓(𝑥).

1112/3/2021

Digression: Review of Ridge Regression

◼ Recall that in Ridge Regression we are minimizing the
penalized RSS

𝑖=1

𝑛

𝑦𝑖 − 𝑋𝑖𝛽
2 + 𝜆

𝑖=1

𝑛

𝛽2 = 𝑌 − 𝑋𝛽 𝑇 𝑌 − 𝑋𝛽 + 𝜆𝛽𝑇β

◼ Setting the derivative w.r.t. 𝛽 equal to 0,

−2𝑋𝑇 𝑌 − 𝑋𝛽 + 2𝜆𝛽 = 0

𝑋𝑇𝑌 = 𝑋𝑇𝑋 + 𝜆𝐼 𝛽

𝛽𝜆 = 𝑋𝑇𝑋 + 𝜆𝐼
−1
𝑋𝑇𝑌

◼ We are effectively dividing by a function of 𝜆 , and so
𝛽𝜆 shrinks toward zero.

◼ The hat matrix is 𝐻𝜆 = 𝑋 𝑋𝑇𝑋 + 𝜆𝐼
−1
𝑋𝑇, and we define

(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) 𝑑𝑓 = 𝑡𝑟(𝐻𝜆)

1212/3/2021
In the r file for this lecture I show how you can fit a ridge

regression with nothing more than the lm() function in R.

Try to use ridge regression to control
wiggliness/roughness of polynomial…

1312/3/2021

• 𝜆 = 0 corresponds to the

least-squares fit (no

shrinkage)

• For small positive 𝜆, we

reduce the scale of the

wiggliness at the

expense of some bias

• For larger values of 𝜆,

the curve is clearly

shrinking towards a

constant (the intercept,

≈ 0.70)

• Note how the (effective)

df decreases as 𝜆
increases.

We increase df by increasing the polynomial

degree; we decrease df by increasing 𝜆.

A more “local” approach…
◼ Instead of fitting one curve to all the data, fit

different curves to different sections of the data

❑ Piecewise constant not
very satisfying…

❑ Piecewise polynomial
still suffers from
discontinuities…

❑ →Impose continuity and
smoothness constraints

1412/3/2021

P
ie

c
e
w

is
e
 c

o
n
s
ta

n
t

o
n
 1

2
 i
n
te

rv
a
ls

P
ie

c
e
w

is
e
 q

u
a
d
ra

ti
c
 o

n
 6

 i
n
te

rv
a
ls

We increase df either by increasing the number of

intervals, or by increasing the polynomial degree

Cubic Regression Splines*

◼ Divide x up into m+1 intervals
𝑡0 = −∞, 𝑡1 , 𝑡1, 𝑡2 , … , 𝑡𝑚−1, 𝑡𝑚 , 𝑡𝑚, 𝑡𝑚+1 = ∞

according to the knots 𝑡1, 𝑡2, … , 𝑡𝑚 and consider the
regression

𝑦 =
𝑘=1

𝑚+1

1 𝑥∈ 𝑡𝑘−1,𝑡𝑘 𝑎𝑘 + 𝑏𝑘𝑥 + 𝑐𝑘𝑥
2 + 𝑑𝑘𝑥

3 + ε

=
𝑘=1

𝑚+1

1 𝑥∈ 𝑡𝑘−1,𝑡𝑘 𝑝𝑘 𝑥 + 𝜀

subject to the constraints

❑ 𝑝𝑘 𝑡𝑘 = 𝑝𝑘+1(𝑡𝑘) for all 𝑘 = 1…𝑚

❑ 𝑝′𝑘 𝑡𝑘 = 𝑝′𝑘+1(𝑡𝑘) for all 𝑘 = 1…𝑚

❑ 𝑝′′𝑘 𝑡𝑘 = 𝑝′′𝑘+1(𝑡𝑘) for all 𝑘 = 1…𝑚

1512/3/2021
*Cubic 𝑝𝑘 𝑥 are most popular, but obviously we could

do something similar polynomials 𝑝𝑘 𝑥 of any degree

What are the degrees of freedom?
◼ Let 𝛽 = 𝑎1, 𝑏1, 𝑐1, 𝑑1, … , 𝑑𝑚+1

𝑇and let X be the
matrix of functions of x, so that 𝑦 = 𝑋𝛽 + ε

◼ There are 𝑚 + 1 𝑝𝑘(𝑥)’s with 4 parameters each

❑ +4(𝑚 + 1) columns in the X matrix

◼ There are 3 linear constraints on the parameters at
each of the 𝑚 knots.

❑ −3𝑚 linear constraints on the columns of X

◼ So we can replace the columns of X with a basis for
the same subspace with only

4 𝑚 + 1 − 3𝑚 = 𝑚 + 4

columns: the df for the spline on m knots is m+4.

1612/3/2021

What should the columns of the
reduced X matrix be?
◼ After a little calculus*, one can show that the
𝑚 + 4 columns of the reduced X can be written
as 1, 𝑥, 𝑥2, 𝑥3, 𝑥 − 𝑡1 +

3 , … , 𝑥 − 𝑡𝑚 +
3 , where

𝑥 − 𝑡 + = ቊ
𝑥 − 𝑡, 𝑥 ≥ 𝑡

0, 𝑥 < 𝑡

◼ This “basis” for X suffers from collinearity
problems, and an almost-orthogonal basis of
“B-splines” is usually used instead.

1712/3/2021
*See exercise #1 on pp. 321ff of

Ch 7 of James et al.’s ISLR book.

Our running example with cubic
regression splines…
> library(splines) ## for B-spline function bs()

> knots <- seq(.1,.9,by=.2) ; m <- length(knots)

> pos.part <- function(x) (x+abs(x))/2

> B <- data.frame(x=x,x2=x^2,x3=x^3) ## R supplies the intercept...

> for (k in knots) { B <- cbind(B,pos.part(x-k)^3) } ; B <- as.matrix(B)

> bjfit0 <- lm(y ~ B)

> X <- model.matrix(bjfit0)

> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2)

> ## setup() on the next line plots f(x) and the data…

> setup(paste("handmade regression spline with",
+ length(knots), "knots &",df,"df"))

> lines(x,predict(bjfit0))

> bsfit0 <- lm(y ~ bs(x,knots=knots))

> X <- model.matrix(bsfit0)

> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2)

> setup(paste("R's regression spline with",m,"knots &",df,"df"))

> lines(x,predict(bsfit0))

> round(vif(bjfit0),2)

x x^2 x^3 (x – k1)+^3

34715.01 5734082.57 67249875.68 38208202.68

(x – k2)+^3 (x – k3)+^3 (x – k4)+^3 (x – k5)+^3

66989.68 3094.03 136.76 3.97

> round(vif(bsfit0),2)

bs(x, knots = knots)1 bs(x, knots = knots)2 bs(x, knots = knots)3

2.72 3.81 4.51

bs(x, knots = knots)4 bs(x, knots = knots)5 bs(x, knots = knots)6

3.64 3.59 4.10

bs(x, knots = knots)7 bs(x, knots = knots)8

2.90 1.53

1812/3/2021

Variations on regression splines…

◼ Natural splines spend 2 more df
to force 𝑝1 𝑥 and 𝑝𝑚+1 𝑥 to be
linear

◼ If you specify df instead of knots,
you get ≈ df equally spaced knots.

1912/3/2021

> knots <- seq(.1,.9,by=.2)

> m <- length(knots)

> nsfit0 <- lm(y ~ ns(x,knots=knots))

> X <- model.matrix(nsfit0)

> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2)

> setup(paste("R's natural spline with",m,"knots &",df,"df"))

> lines(x,predict(bsfit0))

> df.req <- 9 ## select knots at (df.req – 3) quantiles of x

> bsfit1 <- lm(y ~ bs(x,df=df.req))

> X <- model.matrix(bsfit1)

> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2)

> setup(paste("R's regression spline with",df.req,"knots requested &",df,"df"))

> lines(x,predict(bsfit1))

> ## plot not shown; similar to others…

We increase df by increasing

the number of knots

Aside: Residual diagnostics, F-test,
LRT, AIC, BIC still work…
> par(mfrow=c(2,2))

> plot(nsfit0)

> plot(bsfit0)

> anova(nsfit0, bsfit0)

Analysis of Variance Table

Model 1: y ~ ns(x, knots = knots)

Model 2: y ~ bs(x, knots = knots)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 93 115.16

2 91 108.05 2 7.1084 2.9933 0.05508 .

2012/3/2021
Be careful with F-test and LRT that

the models are really nested!

Smoothing Splines

◼ A slightly different approach to splines is to try to
find a smooth function 𝑔 𝑥 that minimizes the
“Ridge-like” penalized RSS

𝑖=1

𝑛

𝑦𝑖 − 𝑔 𝑥𝑖
2
+ 𝜆න𝑔′′ 𝑡 2 𝑑𝑡

❑ Here, 𝜆 penalizes wiggliness or roughness: the larger 𝜆 is,
the more linear 𝑔(𝑥) must be.

❑ It turns out that
the function 𝑔 𝑥 that minimizes (*) is a natural cubic spline, with
knots 𝑡𝑖 = 𝑥𝑖 at every data point 𝑥𝑖, and coefficients shrunken toward a
linear form for 𝑔(𝑥).

(how much shrinkage depends on 𝜆).

2112/3/2021

(*)

Smoothing Splines and df…

◼ When 𝑔 𝑥 is a natural cubic spline with knots at
𝑡1, … , 𝑡𝑚, the penalized RSS (*) turns out to be

𝑌 − 𝐺𝛽 𝑇 𝑌 − 𝐺𝛽 + 𝜆𝛽𝑇Mβ

◼ 𝐺 is the X-matrix from a natural spline basis
𝑔1 𝑥 , … , 𝑔𝑚+2 𝑥 , and 𝑀 is a matrix with entries

𝑀𝑖𝑗 = න𝑔′′𝑖 𝑡 𝑔′′𝑗 𝑡 𝑑𝑡

◼ Following the same calculus as for Ridge Regression,
𝑌 = 𝐻𝜆𝑌,𝑤ℎ𝑒𝑟𝑒

𝐻𝜆 = 𝐺 𝐺𝑇𝐺 + 𝜆𝑀
−1
GT

(Effective) 𝑑𝑓 = 𝑡𝑟(𝐻𝜆)

2212/3/2021

We increase df by increasing the sample size 𝑥1, … , 𝑥𝑛;

we decrease df by increasing 𝜆, or by using fewer knots

𝑡1, … , 𝑡𝑚 (at possibly different locations than the 𝑥𝑖 ’s).

Our running example: smoothing splines

> par(mfcol=c(3,2))

> setup(expression(paste("smooth spline: maximum knots, LOOCV ",
+ lambda)))

> lines(ss <- smooth.spline(x,y,all.knots=T))

> ss$df ## [1] 14.76477

> setup(expression(paste(“natural spline: maximum knots, ",
+ lambda==0)))

> lines(ss <- smooth.spline(x,y,lambda=0))

> ss$df ## [1] 64

> setup(expression(paste("smooth spline: maximum knots, ",
+ lambda==100)))

> lines(ss <- smooth.spline(x,y,lambda=100))

> ss$df ## [1] 2.002092

> setup(expression(paste("smooth spline: ",lambda,
+ " chosen s.t. ",tr(H)==12)))

> lines(ss <- smooth.spline(x,y,df=12))

> ss$df ## [1] 11.99843

> setup(expression(paste("smooth spline: 5 knots, LOOCV “,
+ lambda)))

> lines(ss <- smooth.spline(x,y,nknots=5))

> ss$df ## [1] 5.784098

> setup(expression(paste(“natural spline: 5 knots, ",
+ lambda==0)))

> lines(ss <- smooth.spline(x,y,nknots=5,lambda=0))

> ss$df ## [1] 7

2312/3/2021

By default, smooth.spline() chooses as many equally-spaced knots as it

can, up to the sample size n. If you set all.knots=TRUE,

smooth.spline() uses all the data points as knots.

smooth.spline() is part of

the base R distribution.

Summary
◼ Two meanings of “Linear” model / linear smoother

❑ 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀, vs. 𝑌 = 𝐻𝑌

❑ 𝑑𝑓 = 𝑡𝑟(𝐻)

◼ Polynomial Regression

◼ Fixing Collinearity: Orthogonal basis for X

◼ Ridge Regression as a wiggliness/roughness penalty

❑ Effective 𝑑𝑓 = 𝑡𝑟(𝐻𝜆)

◼ Cubic Regression Splines

◼ Variations

❑ Natural Splines

❑ Specifying the number of knots instead of the locations

◼ Smoothing Splines

2412/3/2021

