36-617: Applied Linear
Models

Nonparametric Regression |
Brian Junker

132E Baker Hall
brian@stat.cmu.edu

12/3/2021

‘ Announcements

m Project 02 Schedule:
o Mon Nov 29 (or earlier): Full IDMRAD paper first draft.
0 Fri Dec 3: Peer reviews due.
0 Fri Dec 10 (or earlier): Full IDMRAD paper final draft!

m Regular classes Nov 29 & Dec 1
= No more graded hw’s or quizzes
0 Thereis an ungraded HW11 on nonparametric regression

m BJ’s remaining office hours will be in the MSP space in
FMS — not in his office.

o BJ will hold office hours at 11am M and W next week as well.
The location is negotiable — Shall | keep coming to FMS?

12/3/2021 2

‘ Outline

= Two meanings of “Linear” model / linear smoother
0 y=Bo+Px+e vs. Y=HY
0 df = tr(H)

= Polynomial Regression

m Fixing Collinearity: Orthogonal basis for X

= Ridge Regression as a wiggliness/roughness penalty
o Effective df = tr(H))

= Cubic Regression Splines

= Variations

o Natural Splines
o Specifying the number of knots instead of the locations

= Smoothing Splines

12/3/2021

Two meanings of “Linear” models

= Informally, we say a “linear” model involves a linear
relationship (plus error) between x and y:

Vi = Bo + b1x; + & (1)
= A more precise and generalizable definition is that the
vector J is a linear function of the vector y:

y = Hy 2)
where H = X(XTX)_lXT. Recall that
er(H) = tr ((XTX)(XTX)_l) —p+1=df

m We will consider linear models and linear smoothers that
generalize “linear” in the sense of (1) but preserve
“linear” in the sense of (2)!

12/3/2021

‘ Polynomial Regression

= We already know about polynomial regression
Vi = Bo + Bix; + Boxi 4+ Bpx] + €

m This is just multiple regression where the columns of
the X matrix are powers of x: 1, x, x?, ..., xP

X = |: : :
1 cee xﬁ_

anddf =tr(H) =p+1

m Good for estimating some nonlinear functions; but
o Vif's tend to be large

o Can be overly “wiggly” or “rough”

12/3/2021

‘A Running Example...

m For most of this lecture we will try to estimate
f(x) from the data y; = f(x;) + & where

2T

2 f() = (1 + 2x)sin (———),x € (0,1)
0 g ~N(0,02),i=1..100 (02 =1)

w=f00) +e

See the r file for this lecture for all

12/3/2021 sorts of computational details...

‘ Polynomial regression of order 1,4,7,10

(Xl + (X)) + (ZuX]l + (LX) + L ~ A

(b + |~ A

1.0

08

06

0.4

02

0.0

(OTwX)1 + (BX)1 + (8uX)1 + (LuX)1 + (9uX)1 + (GuX)1 + (PuX)1 + (EuX)1 + (@)1 + (TuX)1 + T ~ K

1.0

06

0.4

02

0.0

(L (90X + (GuX)]+ (o] + (E9X)] + (ZuX)] + (LX) + L ~ A

12/3/2021

‘ Powers of x have a lot of collinearity

1lmfit fits the 10th degree polynomial
X <- model.matrix (Imfit)

tr (X%*Ssolve (Lt (X) $*%X) $* 3t (X))

>

>

> tr <- function(m) sum(diag(m))

>

[1] 10.9998 ## = 11, up to floating point error

> round (summary (Imfit) Scoef, 2)
Estimate Std. Error t value Pr(>|t])

(Intercept) -5.93 1.90 -3.12 0.00
I(x"1) 379.17 128.10 2.96 0.00
I(x"2) -7315.39 2696.74 -2.71 0.01
I(x"3) 63240.23 26773.03 2.36 0.02
I(x"4) -290224.39 148518.47 -1.95 0.05
I(x"5) 771227.11 499693.74 1.54 0.13
I(x"6) -1233102.85 1058658.55 -1.16 0.25
I(x"7) 1183276.84 1419406.84 0.83 0.41
I(x"8) -645684.02 1167866.53 -0.55 0.58
I(x"9) 171639.32 537883.43 0.32 0.75
I(x"10) -13430.82 106143.90 -0.13 0.90

> vif (Imfit)
I(x"1) I(x"2) I(x"3) I(x"4)
1.466822e+05 7.209028e+07 6.345761e+09 1.680260e+11
I(x"5) I(x"06) I(x"7) I(x"8)
1.634700e+12 6.343098e+12 1.000800e+13 5.972944e+12
I(x"9) I(x710)
1.130705e+12 3.958930e+10

m The degrees of freedom
are p+1 =11, as expected

s The f’s and their SE’s
are huge

m The vif’s are enormous!

12/3/2021

Fixing collinearity: Orthogonal basis for X

m The columns of X form a basis for a p+1 dimensional
subspace Sof R™": S ={ve R" st v = X for some B}.

m |f we replace the columns of X with orthogonal columns*
that form a basis for the same space S and use them to
make a model matrix Z,

o Fit, prediction, etc. for the model y = Zf, + € will be the same
0 The vif’s should all be 1’s

o The B8,’s, B,’s, and SE(B,)’s will be different, but who cares?

m The columns of Z are called “orthogonal polynomials
over X’

s The R functionpoly (x, p) provides a set of orthogonal
polynomials for us.

*One way (among many) to do this is

12/3/2021 “Gram-Schmidt orthogonalization”

‘ Let’s try it...

/

Polyfit <- Im(y ~ poly(x,10))

Z <- model.matrix (polyfit)

tr (Z2%*%$solve (Lt

>

>

> tr <- function (m)
>

[1] 11

Estimate St

(Intercept)

poly (x,

poly(x, 0
poly)3
poly(x, 10)4 =7
poly(x, 10)5 1
poly(x, 10)6 4
poly(x, 10)7 -2
poly(x, 10)8 -4
poly(x, 10)9 4
poly(x, 10)10 -0

> vif (polyfit)

poly(x, 10)1 poly(
1 1
poly(x, 10)5 poly(
1 1
poly(x, 10)9 poly(
1 1

sum (dia

.52
.78
.43
.22
.27
.28
.56
.22
.13

Xy

Xy

Xy

10)2

10)6

10)10

10" degree polynomial
with orthogonal columns

df=11

Columns of Z

Error t value Pr(>]|t])

0.
.99
.99
.99

0
0
0
0.
0.
0
0
0
0
0

10

.99
.99
.99
.99
.99

7.02
6.84
0.52

4.30
-2.29
-4.59

4.25
-0.13

0.
.00 | Different, well

O O O O O O O o o o

00

behaved B,’s

y =1 4 1(x"1) + 1(x"2) + 1(x"3) + 1(x"4) + 1(x"5) + |(x"6) + I(X7) + |(x"8) + |(x"9) + |(x"10)

.00
.02
.00
.00
.90

vif's all 1's

y ~ poly(x,10)

éoame fitted
values

12/3/2021

10

‘ Polynomials tend to get too wiggly as
the degree increases...

= A polynomial with enough flexibility to track the
more complex parts of f(x) starts to interpolate
f(x) + ¢, and becomes too wiggly for the less
complex parts of f (x).

12/3/2021 11

‘ Digression: Review of Ridge Regression

m Recall that in Ridge Regression we are minimizing the
penalized RSS

D G KA f = (= XE) = X+ AT

i=1
m Setting the derivative w.r.t. § equal to O,
—2XT(Y = XB) + 248 = 0

XTy = (XTX + A)B
Br=(XTX+ A1) XTy

m We are effectively dividing by a function of A, and so

—

[y shrinks toward zero.

= The hat matrixis H; = X (XTX + AI)_lXT, and we define
(ef fective) df = tr(H))

In the r file for this lecture | show how you can fit a ridge
12/3/2021 regression with nothing more than the Im() function in R.

‘ Try to use ridge regression to control
wgglmess@/roughness of polynomlal...

A = 0 corresponds to the
least-squares fit (no
shrinkage)

* For small positive A, we
reduce the scale of the
wiggliness at the
expense of some bias

- - T « For larger values of 2,
= “of N\ - “ = of N\ - the curve is clearly
A SR 5 A BN shrinking towards a

T N constant (the intercept,
m
o ~ 0.70)

* Note how the (effective)
df decreases as 4
Increases.

We increase df by increasing the polynomial

12/3/2021 degree; we decrease df by increasing A. 13

‘ A more “local” approach...

= Instead of fitting one curve to all the data, fit
different curves to different sections of the data

0 Piecewise constant not
very satisfying...

stant on 12 intervals

wise con

Piece

2 Piecewise polynomial A M
still suffers from
discontinuities...

nterv:

6i

o —2>Impose continuity and
smoothness constraints

Piecewise quadratic on

We increase df either by increasing the number of
12/3/2021 intervals, or by increasing the polynomial degree

‘ Cubic Regression Splines™

m Divide x up into m+1 intervals
(to = —oo,tq], (t1,t2], o), (1, tn], () tir1 = ©)
according to the knots t4, t,, ..., t,,, and consider the

regression

m+1
y = 2}(_1 Lixe(tr_otil} (ak + bpx + cpx? + dkx3) + €

m+1
- zk_l 1{xe(tk—1rtk]} pk(x) + &

subject to the constraints

0 pr(ty) = pry1(ty) forallk =1..m
a0 p'i(ty) =p'ke1(ty) forallk =1..m
a p'(ty) =" e (t) forallk =1..m

*Cubic py (x) are most popular, but obviously we could

12/3/2021 do something similar polynomials p, (x) of any degree

‘ What are the degrees of freedom?

s Let § = (ay,by,cq,dy, ..., dyr1)Tand let X be the
matrix of functions of x, sothat y = Xf + ¢

m Therearem + 1 p;,(x)’s with 4 parameters each
2 +4(m + 1) columns in the X matrix

m There are 3 linear constraints on the parameters at

each of the m knots.
o —3m linear constraints on the columns of X

m So we can replace the columns of X with a basis for

the same subspace with only
4(m+1)—-3m=m+4

columns: the df for the spline on m knots is m+4.

12/3/2021

16

‘ What should the columns of the

reduced X matrix be?

m After a little calculus™, one can show that the
m + 4 columns of the reduced X can be written
as 1,x,x%,x3,(x —t))3, ..., (x — t,,)3, where

(x —), = x—tx=t
+ 0,x <t

m This “basis” for X suffers from collinearity
problems, and an almost-orthogonal basis of
“B-splines” is usually used instead.

*See exercise #1 on pp. 321ff of
12/3/2021 Ch 7 of James et al.’s ISLR book.

Our running example with cubic
regression splines...

> library(splines) ## for B-spline function bs() > round(vif(bjfit0),2)
X x"2 X3 (x —k,),"3
> knots <- seq(.1,.9,by=.2) ; m <- length(knots) 34715.01 5734082.57 67249875.68 38208202.68
(x=k) A3 (x=k) A3 (x— k)3 (x—kg),A3
> pos.part <- function(x) (x+abs(x))/2 66989.68 3094.03 136.76 3.97
> B <- data.frame(x=x,x2=x"2,x3=x"3) ## R supplies the intercept... > round(vif(bsfit0),2)
> for (k in knots) { B <- cbind(B,pos.part(x-k)*3) } ; B <- as.matrix(B) bs(x, knots = knots)1 bs(x, knots = knots)2 bs(x, knots = knots)3
2.72 3.81 4.51
> bjfit0 <- Im(y ~ B) bs(x, knots = knots)4 bs(x, knots = knots)5 bs(x, knots = knots)6
> X <- model.matrix(bjfit0) 3.64 3.59 4.10
> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2) bs(x, knots = knots)7 bs(x, knots = knots)8
> ## setup() on the next line plots f(x) and the data... 2.90 1.53
> setup(paste("handmade regression spline with", S
+ length(knots), "knots &",df,"df")) \\\\\\\\\\‘ | J%Q B J °\1: i
> lines(x,predict(bjfit0)) % : 3X{ %oﬁf :
: - Lok, e % H
: 0\ off 2
> bsfit0 <- Im(y ~ bs(x,knots=knots)) ‘ N i \ \ .‘} \ :]
> X <- model.matrix(bsfit0) .,]’ \'I; '\\ u N \ m
> df <- round(sum(diag(X%*%solve(t(X)%*%X)%*%t(X))),2) : S AT ;".\ / | .
> setup(paste("R's regression spline with",m,"knots &",df,"df")) o b)
> lines(x,predict(bsfit0)) T L L e o n o

12/3/2021

‘ Variations on regression splines...

m Natural splines spend 2 more df

to force p;(x) and p,,,+1(x) to be
linear

R's regression spline with & knots & 9 df

> knots <- seq(.1,.9,by=.2)
> m <- length(knots)

> nsfit0 <- Im(y ~ ns(x,knots=knots)) 00 02 04 05 08 10
> X <- model.matrix(nsfit0) *

> df <- round(sum(diag(X%*%solve (t(X)%*%X)%*%t(X))),2)

> setup(paste("R's natural spline with",m,"knots &",df,"df"))

> lines(x,predict(bsfit0))

= [f you specify df instead of knots,
you get =~ df equally spaced knots.

> df.req <- 9 ## select knots at (df.req — 3) quantiles of x

> bsfitl <- Im(y ~ bs(x,df=df.req))

> X <- model.matrix(bsfit1)

> df <- round(sum(diag(X%*%solve (t(X)%*%X)%*%t(X))),2)

R's natural spline with 5 knots & 7 df

> setup(paste("R's regression spline with",df.req,"knots requested &",df,"df")) ° i \
> lines(x,predict(bsfitl)) v = . | | |
> ## plot not shown; similar to others... o o o o o "
We increase df by increasing
12/3/2021

the number of knots

Aside: Residual diagnostics, F-test,

LRT, AIC, BIC still work...

> par(mfrow=c(2,2))

> plot(nsfit0)

> plot(bsfit0)

> anova(nsfit0, bsfit0)

Analysis of Variance Table

Model 1: y ~ ns(x, knots = knots)

Model 2: y ~ bs(x, knots = knots)
Res.Df RSS Df Sum of Sq F

1 93115.16
2 91108.05 2

Pr(>F)

7.1084 2.9933 0.05508 .

Residuals vs Fitted Normal Q-Q
o PR o ot
°] ;
_ B P ° 2
% oo g0 o g -
E L ° w0 g 2
E R R L o o E)
& _ Lo ve ©qu g 5
LRI S Te g -
° o7 - 2 5
o - w &
% ”
- ¢ R
«@ T T T T T T T T T T
1 0 1 2 3 2 1 0 1 2
Fitted val Theoratical | Quantiles

Standardized duals
2 41 0 1 2
' & i k)
SR 2
@ °@° o
.
] .
‘o
Lo

1 0 1 2 3 0.00 0.10 020 0.30
Fitted val Leverag:
Residuals vs Fitted Normal Q-Q
wq o = e i
© @ E]
. SRR SN I
= . %o o p© °
3 & PN o =
R M D 2 o
& £ R ° b4 E
e DA & z
o °Qé ° @
N ot
T T T T T T T
1 o 1 2 3 2 40 102
Fitted values Theorstical | Quantiles

05

00

W S T
-2 Coolds distancs -

T T T T T
00 02 04 06 08

Leverage

12/3/2021

Be careful with F-test and LRT that
the models are really nested!

‘ Smoothing Splines

m Aslightly different approach to splines is to try to
find a smooth function g(x) that minimizes the
“Ridge-like” penalized RSS

ijl(%' — g(xi))z + ﬂf g"'(t)?dt *)

0o Here, A penalizes wiggliness or roughness: the larger A is,
the more linear g(x) must be.

o It turns out that

the function g(x) that minimizes (*) is a natural cubic spline, with
knots t; = x; at every data point x;, and coefficients shrunken toward a
linear form for g(x).

(how much shrinkage depends on A).

12/3/2021 21

‘ Smoothing Splines and df...

= When g(x) is a natural cubic spline with knots at

ty, ..., t,, the penalized RSS (*) turns out to be
Y =GB (Y —GB) + AB"MP

m (is the X-matrix from a natural spline basis
g1(x), ..., gm+2(x), and M is a matrix with entries

M;; = fg”i(t)g”j(t)dt
m Following the same calculus as for Ridge Regression,
Y = H,Y,where

Hy =G (GTG +AM) ™ GT
(Effective) df = tr(Hy)

We increase df by increasing the sample size x;, ..., xy,;
12/3/2021 we decrease df by increasing A, or by using fewer knots
t;, ..., ty, (at possibly different locations than the x;’s).

22

Our running example: smoothing splines

12

> par(mfcol=c(3,2))

> setup(expression(paste("smooth spline: maximum knots, LOOCV ",
+ lambda)))

> lines(ss <- smooth.spline(x,y,all.knots=T))

>ssSdf ## [1] 14.76477

> setup(expression(paste(“natural spline: maximum knots, ",
+ lambda==0)))

> lines(ss <- smooth.spline(x,y,lambda=0))
>ssSdf ##[1] 64

> setup(expression(paste("smooth spline: maximum knots, ",
+ lambda==100)))

> lines(ss <- smooth.spline(x,y,lambda=100))
>ssSdf #4# [1] 2.002092

> setup(expression(paste("smooth spline: ",lambda,
+" chosens.t. ",tr(H)==12)))

> lines(ss <- smooth.spline(x,y,df=12))
>ssSdf ##[1] 11.99843

> setup(expression(paste("smooth spline: 5 knots, LOOCV “,
+ lambda)))

> lines(ss <- smooth.spline(x,y,nknots=5))
>ssSdf ## [1] 5.784098

> setup(expression(paste(“natural spline: 5 knots, ",
+ lambda==0)))

> lines(ss <- smooth.spline(x,y,nknots=5,lambda=0))

smooth spline & chosen s1. triH)

smooth spline: maximum knots, LOOCWL

=0

smooth spline: 5 knots, LOOCY R

natural spline: maximum knots, 3.
o

=100
=0
2

natural spline: 5 knots, A
0

smooth spline: maximum knots, A

>ssSdf ##[1]7 x x
smooth.spline() is part of By default, smooth.spline() chooses as many equally-spaced knots as it
12/3/2021 the base R distribution. can, up to the sample size n. If you set all. knots=TRUE, 23

smooth.spline() uses all the data points as knots.

‘ Summary
= Two meanings of “Linear” model / linear smoother
0 y=Po+Px+e vs. ¥Y=HY
0 df = tr(H)
= Polynomial Regression
m Fixing Collinearity: Orthogonal basis for X

= Ridge Regression as a wiggliness/roughness penalty
o Effective df = tr(H))

= Cubic Regression Splines

= Variations

o Natural Splines
o Specifying the number of knots instead of the locations

= Smoothing Splines

12/3/2021 24

