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Smoothing Splines and Rank Structured Matrices: Revisiting the
Spline Kernel

Martin S. Andersen* and Tianshi Chenf

April 2020

Abstract

We show that the spline kernel of order p is a so-called semiseparable function with
semiseparability rank p. A consequence of this is that kernel matrices generated by the
spline kernel are rank structured matrices that can be stored and factorized efficiently. We
use this insight to derive new recursive algorithms with linear complexity in the number of
knots for various kernel matrix computations. We also discuss applications of these algo-
rithms, including smoothing spline regression, Gaussian process regression, and some related
hyperparameter estimation problems.

1 Introduction

Spline functions play a key role in many areas of applied mathematics. They are flexible and
have good approximation properties, and they arise naturally, e.g., in the so-called smoothing
spline regression problem
1 < b
minimize J(f) = . Z(yl — f(x:))* + )\/ 7P ()| da . (1)
a

=1

The vector y = (y1,...,yn) and a < x1 < 9 < -+ < T, < b are given, A > 0 is a parameter, p
is a natural number less than or equal to n, and the pth derivative of f is assumed to be square
integrable. The second term of the functional J(f) may be viewed as a roughness penalty.
Schoenberg [15] showed that the solution to (1) is a so-called natural spline of order 2p with
knots z1,...,2z,. The set of such splines form a vector space of dimension n, and hence the
variational problem (1) can be cast as an equivalent finite-dimensional problem by introducing a
suitable set of basis functions; see, e.g., [16] for an introduction to spline functions. Alternatively,
the solution to (1) can be found by solving a convex quadratic optimization problem of the form
[20]

1
minimize —|jy — (Za + FB)|3 + Ao’ Za (2)
n

with variables « € R™ and f € RP. The matrix ¥ is symmetric and positive semidefinite of
order n with entries generated by the so-called spline kernel, and F' € R™*P is a Vandermonde
matrix. Given an optimal solution (a*, 5*) to (2), the natural spline of order 2p that interpolates
(1,71),- -+, (Tn, Un) With § = Xa* + F5* is the unique optimal solution to (1). It can be shown
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from the optimality condition associated with (2) that there exists a solution (a*,*) that
satisfies the system of equations
Y40 F||a*| |y (3)
FT of (B~ |0]"

Forming this system explicitly requires O(n?) memory, and solving it using a standard, general-
purpose method requires O(n?) floating-point operations (flops).

The main purpose of this paper is to show that the spline kernel is a so-called p-semiseparable
function, and as a consequence, the matrix ¥ is a rank structured matrix. Specifically, we show
that 3 is a so-called extended generator representable p-semiseparable matrix (see definition 2).
In other words, the lower-triangular part of 3, which we will denote by tril(X), is generated by
a rank p matrix, i.e., it can be expressed as

tril(2) = tril(UVT), U,V € RV,

We show this in section 3, and it has two important consequences: (i) the matrix ¥ admits an
implicit representation (in terms of its generators U and V') that only requires O(pn) memory,
and (ii) the system (3) can be solved in O(p?n) flops. As a second contribution, we show in
section 4 that key computations that involve ¥ can be carried out efficiently (e.g., in O(p?n)
flops rather than O(n3) flops) by exploiting the inherent structure. Specifically, we show that
positive definite matrices of the form ¥ 4 diag(d) may be factorized as LL” where L is lower tri-
angular and, like ¥, it has a memory-efficient implicit representation. We also derive an implicit
representation of L™! that we use to construct efficient recursive algorithms for computing the di-
agonal elements of matrices of the form (X +diag(d))~! and the trace of, e.g., (X +diag(d))'X.
This is useful for model selection based on generalized cross validation (GCV) or generalized
maximum likelihood (GML) estimation, e.g., in the context of smoothing spline regression. We
provide a brief review of theory pertaining to smoothing spline regression in the next section,
and in section 5, we discuss how the algorithms that we derive in section 4 can be applied to
smoothing spline regression and Gaussian process regression. Finally, we provide a numerical
example in section 6 that demonstrates the computational efficiency of some of the algorithms
presented in section 4, and we conclude the paper in section 7.

2 Background and related work

Before we present our main results in sections 3 and 4, we briefly introduce notation, recall some
results from the literature about splines and smoothing spline regression, and discuss related
work. Interested readers may find a comprehensive introduction to smoothing spline regression
in, e.g., the monographs by Wahba [20] and Schumaker [16].

2.1 Notation

We denote by R/} the set of elementwise nonnegative vectors in R", and R}, = int R’} denotes
its interior (i.e., elementwise positive vectors). Given n real numbers x1,...,x,, we define
x = (z1,...,%y) to be a column vector in R™. The identity matrix of order n is denoted I,,; we
will simply use I when the order can be inferred from its context. The vector e denotes the unit
vector whose kth element is equal to 1, and 1 is the vector of ones. Given a square matrix A
of order n, tril(A) denotes the lower-triangular matrix obtained from A by setting all elements
above the main diagonal to zero, and tril(A4, k) is obtained from A by setting all elements above
the kth superdiagonal to zero (k > 0 corresponds to a superdiagonal, k& < 0 corresponds to a
subdiagonal, and tril(A,0) = tril(A)). Similarly, triu(A) denotes the upper triangular part
of A and triu(4,k) = tril(AT, —k)T. Given a vector x € R", diag(r) is a diagonal matrix
of order n with the elements of x as its diagonal entries. Finally, L?[a,b] denotes the space of
square integrable functions defined on the interval [a, b].



2.2 Splines and smoothing spline regression

We start by recalling the definition of a univariate polynomial spline. Given a set of n simple
knots {x1,...,2n} and an interval [a,b] such that a = 9 < 1 < 22 < -+ < Tp < Tpy1 = b,
a polynomial spline g(z) of order r is a real-valued function, defined on [a, b], that satisfies the
following conditions:

(i) g is a polynomial of degree at most » — 1 on any subinterval [z;,z;41] ( =0,...,n)
(ii) ¢ has r — 2 continuous derivatives (i.e., g € C"~2).

We will denote the set of polynomial splines by S"(A) where A = {z¢,x1,...,Zn+1}. The set of
functions that satisfy the first condition has dimension (n + 1)r, and since the second condition
imposes r — 1 constraints for each of the n knots, the dimension of S"(A) is n + r.

The set of natural polynomial splines of order r = 2p, which we will denote S

o (A), s the
n dimensional subset of S?P(A) that is obtained by imposing the additional condition that

(iii) g is a polynomial of degree at most p — 1 on each of the subintervals [a,z;] and [z, b].

As mentioned in the introduction, Schoenberg [15] showed that the solution to the smoothing
spline regression problem (1) is a natural polynomial spline of order 2p.

We now turn our attention to the problem (1) and let the functional J(f) be defined on the
Sobolev space

Wp2[a, b = {f: £ f ..., f® Y absolutely continuous, f®) € L2[a,b]}

endowed with the inner product

p—1

b
(f.9) = 5 FP(a)g® (a) + / FP gD () du, g € W2a,b). 4)

k=0

It follows from Taylor’s theorem that any f € I/Vp2 [a, b] can be expressed as

Pl p(k) a T (g — )Pt
=37 e =t [ ) du )

(]

where the last term is the integral form of the remainder. Furthermore, the inner product (4)

implies that the space W7[a, b] can be decomposed as W72[a,b] = Ho & H1 where Ho and H; are

orthogonal complements and defined as [20]

(x —a)k—!
k—1)

Hy = {f: f(k)(a):O, k=0,...,p—1, f(p) GLQ[a,b]}.

HOZSpan{¢17"'7¢p}7 ¢k’(x): kzlaap

As a consequence, every f € Wg [a,b] has a unique decomposition f = fy + f1 where fy € Ho
and f; € Hy. It is easy to check that if f € Hp, then the remainder term in (5) is zero, and
similarly, if f € Hi, then only the remainder term can be nonzero. If we let P;f denote the
orthogonal projection of f onto H;, the roughness penalty in (1) can be expressed as

b
A / FO ()] du = APy f, P f),

and hence it can be viewed as a penalty on the remainder term in the Taylor expansion (5).



Both Hoy and #H; are reproducing kernel Hilbert spaces (RKHSs). Their corresponding
reproducing kernels (RKs) are

/CO (s,t) Z(bk )i (t) (6)

K (s, 1) = / G, (s,u)Gy(t, u) du (1)

where G, (s, u) = max(0,s—u)P~1/(p—1)! is the Green’s function for the problem D?f = g with
f € Hi, g € L?[a,b], and where the operator DP is the pth derivative; we refer the interested
reader to [11] for an introduction to RKHSs. The kernel functions ng and IC}, are both positive
semidefinite, and H = Ho @ H; is itself a RKHS with RK ICS + IC;. We remark that ICg(s,t)
consists of p multiplicatively separable terms, and, as we will show in section 3, K;(s,t) is a
so-called semiseparable function with semiseparability rank p.

Kimeldorf & Wahba [9] showed that the solution to (1) can be expressed as

Zﬁk ok (z Za &(z (8)

where &;(z) = K)(x;,z) and where the parameter vectors o* and f* satisfy the system of
equations (3). The matrix F'in (3) is of size n x p, and its (¢, j) entry is Fj; = ¢j(z;). Moreover,
% is a kernel matrix generated by the kernel function K, i.e., the (i, 7) entry is X5 = K} (23, ;).
We will show in section 3 that the semiseparable structure of IC; carries over to .

It can be shown that functions of the form (8), parameterized by two vectors o and 3 instead
of a* and %, are natural splines if F7 o = 0; see [20]. Finally, we note that our assumption that
a<x < x9 < -+ < xp < bimplies that X is positive definite; more generally, if we were to
assume that a <z < a9 < -+ <z, < b, then ¥ will be positive semidefinite but not necessarily
positive definite.

2.3 Stochastic processes

The smoothing spline regression problem (1) has strong ties to Bayesian estimation. Specifically,
suppose X (t) is a zero-mean Gaussian process defined on [a, b] and with covariance function IC},,
and let

)= Okdr(t) +vX(t),  tE€la,b], (9a)
k=1
yi:g(ti)—l—q, i:1,2,...,n (9b)

where § € N(0,71,), e ~ N(0,0°1,), and § and X (t) are assumed to be independent. Moreover,
if we let f\ denote the solution to (1) with A\ = 02/(nv?) and z; = t;, then the conditional
expectation of g(t) given the vector y is related to fy through the limit [20, Thm. 1.5.3]

T Blg(t) | 4] = 2(0), t€ [o,0)]

The function f)(t) interpolates the points (¢;,9;) where § = (¢1,...,9n) can be expressed as
g = H(\)y and H(\) is the so-called influence matrix

HN) =1-n\M;' = M 'F(FTMI'F) ' FT MY, My =X +n)\l. (10)

In section 5, we explain how the semiseparable structure of IC}, can be exploited in computations
that involve H () or matrices with similar structure. It can be shown that the covariance matrix
associated with ¢ is given by o?H()\), and the ith diagonal element of this covariance matrix
can be used to construct Bayesian credible intervals for g(¢;). However, in practice, both o and
v must somehow be selected or estimated in order to construct such credible intervals, but only
the ratio A = 02/(nv?) is necessary to compute .



2.4 Parameter selection

We now briefly review two commonly used parameter selection criteria, namely generalized cross
validation (GCV) and generalized maximum likelihood (GML). GCV chooses the parameter A
as a minimizer of

1 2
2L — H(A
covy — AU = HOMWIE
(Ltr(I — H(N))

(11)

We show in section 5 that tr(I — H())) can be computed in O(p?n) flops using the recursive
algorithms that we derive in section 4.
A GML estimate of A is a maximizer of the likelihood function of A given y, or equivalently,
a minimizer of
y" Q2(Q3 MAQ2) ' Q3 y

GMLA) = det(QF MyQy)~1/(n=p) 12)

where Qs € R"*("P) is a matrix whose columns form an orthonormal basis for the nullspace of
FT ie., FTQy =0 and QY Q2 = I. Furthermore, the GML estimate of o2 is

&2:LW
n—p

where A denotes the GML estimate of A\. An implicit representation of the matrix ()2 can be
computed by means of a QR factorization

0] (13)

F=[Q1 Q] [0

which requires O(p?n) flops, but the cost of evaluating (12) by means of a Cholesky factorization
of Q¥ M,Q is O((n — p)?) flops. We return to the GML objective (12) in section 5 where we
show how it can be evaluated in O(p?n) flops by exploiting the structure of M.

2.5 Related work

It is well known that for a given parameter A, the smoothing spline regression problem (1) can be
solved in linear time. One of the earliest algorithms is due to Reinsch [13] who derived an O(n)
algorithm for the case where p = 2. This corresponds to f being a natural cubic spline, which is
a popular choice in practice. Reinsch’s method is based on a parameterization of natural cubic
splines that leads to a banded system of equations of order n—2 with bandwidth 5. The approach
can be generalized to other values of p, resulting in a system of equations with a banded matrix
of order n —p and bandwidth 2p+ 1, as shown by Reinsch in a follow-up paper [14]. Hutchinson
& de Hood [7] pointed out that only a partial inverse of this band matrix is needed to compute
a band of the influence matrix, and it can be computed in O(p?n) flops using the recursively
technique developed by Erisman & Tinney [3]. Reinsch’s approach can also be derived from a
stochastic perspective, as shown by Kohn & Ansley [10]. By applying a modified Kalman filter
and Kalman smoothing to a stochastic model by Wahba [19], they derived an O(n) algorithm
for smoothing spline regression and parameter estimation.

The algorithms that we present in section 4 draw upon an extensive body of literature on
semiseparable and rank structured matrices; see, e.g., the books by Vandebril et al. [18, 17] for a
comprehensive overview. We note that our algorithm for computing the Cholesky factorization of
¥ +diag(d), algorithm 3, is very similar to an algorithm proposed by Foreman—-Mackey et al. [4]
which computes an LDL decomposition of an extended generator representable p-semiseparable
matrix that arises from the so-called celerite kernel. However, our results pertaining to the
implicit inverse of the Cholesky factor, theorem 2 and algorithm 4, appear to be new.



As a special case of the semiseparable structure of the spline kernel, Chen et al. [2] and
Carli et al. [1] pointed out that for p = 1, the stable spline kernel generates a kernel matrix that
has a tridiagonal inverse. The stable spline kernel is closely related to the spline kernel, and it
has applications in system identification. We briefly discuss how our results apply to the stable
spline kernel in section 5. Other stochastic processes with semiseparable covariance functions
include Brownian motion and the Brownian bridge, and Keiner & Waterhouse [8] exploited the
semiseparable structure of the covariance matrix associated with these processes to perform fast
principal component analysis.

3 The spline kernel

In this section, we present our main results, namely that lCll,(s, t) is a p-semiseparable function
and that, as a consequence, kernel matrices generated by IC})(S, t) are rank structured matrices
that possess a computationally favorable structure. We start with a formal definition of p-
semiseparable functions.

Definition 1. A real-valued function g(s,t) is said to be p-semiseparable (or semiseparable with
semiseparability rank p) if
p
ug(s)vg(t) s=>1
D=1 Pr(8)ar(t) s <t
where ug, v, pr, and g, for K =1,...,p, are univariate functions.

Remark. If the function g is symmetric (i.e., g(s,t) = g(t,s)), then g = u and pr = vy for
k=1,...,p.

To simplify our notation, we will restrict our attention to a “standardized” version of the
spline kernel (7), defined on [0, 1] x [0, 1] and given by

1
Kp(s,t) :/0 Gp(s,u)Gp(t,u)du, s,te€[0,1] (15)

where G, (s,u) = max(0,s—u)P~1/(p—1)!. Using integration by substitution, it is easy to check
that lCll), which is defined on [a, b] X [a, b], may be expressed in terms of k, as

s—a t—a

b
1 2p—1
ICp(s,t):/aGp(s,u)Gp(t,u)du:(b—a)p Kp(b—a’b—a)’ s,t € [a,b)].

We are now ready to state our first result.

Theorem 1. The spline kernel of order p can be expressed as

-1
_ X (_1)k p—1— ;
Kp(s,t) = go 1T k) (st)P~1"F min(s, t)2F 1, s,t € 0,1]. (16)

The proof is provided in appendix A. As a corollary to theorem 1, we now show that &), is
p-semiseparable.

Corollary 1. The spline kernel ky(s,t) is symmetric and semiseparable with semiseparability
rank p.

Proof. Using theorem 1, we may express kp(s,t) as

Kp(s,t) = {Zz:é(_1)k¢p_k(8)¢l)+1+k(t) s>t
o Zi;(l)(_1)k¢P—k(t)¢p+1+k(S) s <t



where ¢p(t) = t*71/(k — 1)! for k = 1,...,2p. The desired result follows by observing that
this is of the form (14) with u(s) = ¢pr1-k(s), vk(t) = (=1)* 1o,k (t), pr(s) = vi(s), and
qr(t) = up(t) for k=1,...,p. O

We now turn our attention to symmetric kernel matrices of the form

(Kp)ij = ’QP(IZ'VIJ')’ 1,] € {17 .- .,TL},

ie., K, is a symmetric matrix with entries that are generated by the spline kernel , and a
sequence 1,...,T,. Recall that the kernel function «, is positive semidefinite, and as a conse-
quence K, is always positive semidefinite. Moreover, as we will show next, the semiseparable
structure of the spline kernel carries over to the corresponding kernel matrices. We will need
the following definition before we state the result in corollary 2.

Definition 2. [18, p. 304] A square matrix A of order n is said to be extended {p, q}-generator
representable semiseparable, with natural numbers p > 0 and ¢ > 0, if

tril(A) = tril(UV7T) (17)
triu(A) = triu(PQT) (18)

where U,V € R™P and P,Q € R"*? are so-called generators.

Remark. When A is symmetric (i.e., @ = U and P = V) we will use the shorthand notation
A= S(U,V) where

S(U,V) = trilUVT) + triu(VUT, 1), U,V € RV,

and we will say that A is an extended generator representable p-semiseparable matrix, or equiv-
alently, A is an extended generator representable semiseparable matrix with semiseparability
rank p.

Corollary 2. The kernel matriz K, generated by the spline kernel kp(s,t) and a monotonic
sequence x1,...,Ty 1S an extended generator representable semiseparable matriz with semisepa-
rability rank p.

Proof. Let © = (x1,...,x,) and ¢k(x) = ﬁ(mlf_l, oo xkY for k= 1,...,2p. We start by
assuming that 1, ..., z, is monotonically increasing. This implies that for ¢ > j, we have

(xixj)p—l—k min(xi, $j)2k+1 — xpflka;&#k

7 J )
and hence
p—1
eril(K,) = S (1R tril(@ (@) dps14x(2)7).
k=0
Similarly, if z1, ..., z, is decreasing, then for ¢ > j we have that
(.%'i.%'j)p_l_k min(:ﬁi,xj)QkJ'_l _ x;;—i—kx?—l—k
and hence
p—1
tril(K,) = Z(_l)k tri1(¢p+1+k(x)¢p—k(x)T)-
k=0

It follows that K, is a symmetric extended generator representable semiseparable matrix with
semiseparability rank p. O



4 Algorithms

Corollary 2 establishes that the kernel matrix K, is symmetric extended generator representable
semiseparable with semiseparability rank p, i.e., K}, may be expressed as S(U,V) for some
U,V € R"*P. To simplify notation, we will henceforth write K instead of K, when p is implied by
the column dimension of the generators U and V. We remark that the generator representation
is not unique: it is easy to verify from the definition of S(U, V) that S(U,V) = S(UC,VC~T)
for any nonsingular matrix C € RP*P. However, any such generator representation allows us to
store the matrix K implicitly using only O(np) memory.

The generator representation S(U, V') allows us to perform several operations such as the
matrix—vector product Kz in O(np) flops; see, e.g., [18]. To see this, note that the kth element
of Kx can be expressed as

k n
el Ko = g u;‘fvja:j + g v,{uj:cj = u} v + i Uy,
j=1 j=k+1

where u; = UTek, V = VTek, Up = Z;‘l:k—i-l U;Tj, and 75, = Zk ViTj. Notice that u; and vy

Jj=1
may be computed recursively as

Up = Up—1 — UpTk
B B k=1,....n
Vg = Vgp—1 + Vp Tk

where we define 7y = UTx and 9y = 0. Algorithm 1 exploits this recursive definition and
evaluates the matrix-vector product Kz in O(np) flops.

Algorithm 1 Matrix—vector product Kz
Input: U,V € R"*P such that K = S(U,V)
Output: Overwrites x by Kz
Initialization: v < 0, 4 < UTx
for k=1,...,ndo
V4 U+ VT
U 4— U — ULk
Ty ul v+ ol u
end for

The technique behind the efficient algorithm for evaluating the matrix—vector product Kz
can be generalized to a number of other matrix operations. This, in turn, will allow us to
efficiently solve (3) and evaluate the GCV and GML parameter selection criteria. Before we
return to this in section 5, we now derive the necessary algorithms. Implementations of these
algorithms are available here: https://git.io/JvYbI.

We start by showing that if K = S(U, V) is positive definite, it has a Cholesky factorization
K = LL" where L has a generator representation of the form

L=trilUW?), W eR™P, (19)

A similar result was recently shown by Foreman—Mackey et al. [4] for kernel matrices generated
by the the so-called celerite kernel. We start by showing that the matrix W must satisfy the
equation LW = V. To see this, partition K, L, U, V, and W into conformable blocks, i.e.,

o Bl A5 o v el
- T | > - ) - ) - .
Ko1 Koo Loy Loo| | 0 Ly, Us Va W

It follows from the (2,1) block that Ky = L21Lr{1, or equivalently, using the fact that Ko =
UngT, we arrive at the equation Loy = UngT where Wp = L1_11V1. This has to hold for all



Algorithm 2 Cholesky factorization (K = LLT)
Input: U € R"*?P, V € R"*P such that K = S(U,V) is positive definite
Output: W € R™ P such that L = tril(UWT)
Initialization: P < 0
for k=1,...,ndo
Wy < Vi — Puk

wy, %wk/\/u;‘gwk

P+ P+ wkw,z
end for

possible partitions, and since Li; = tril(U3 W{), we may compute W = L~V recursively in
O(p*n) flops using algorithm 2. The generator representation of L may be used to compute
matrix-vector products with L, LT, L=!, and LT in O(pn) flops. We will omit the details,
which can be found in [18], and note that the corresponding algorithms are special cases of the
more general algorithms included in appendix C. We now turn our attention to a somewhat
more general case.

4.1 Cholesky factorization

Suppose K + D is positive definite where K = S(U, V) is positive semidefinite and D = diag(d)
for some d € R'}. The matrix K + D is a so-called quasiseparable matrix with quasiseparability
rank p, and the inverse of such a matrix is itself quasiseparable with quasiseparability rank p [18,
Thm. 8.46]. We start by deriving an efficient Cholesky factorization of K + D which requires
O(p*n) flops. Specifically, we will show that the Cholesky factorization K 4+ D = LLT yields a
factor L that has a generator representation of the form

L=tril(UW7T, 1) + diag(c), W eR™P,ceR",. (20)
To show this, we introduce the following conformable block partitions
U, 14 Wy L1 0 0
U= |ul|, V=[], W=|wl|, L= Wl ¢ 0|,
Us Vo Wa UW{ Uywy  Lao

where u{, v,{, and wkT denote the kth row of U, V', and W, respectively. The first k columns of
the matrix equation K + D = LL" can then be expressed as

K1+ Dy Vil uy, L LE L1 Wiy
ul Vil wlop +di | = | WILT ul WEWyuy + 3
UleT Usvy, UQWlTL{l UQ(Ck-'lUk + WlTI/Vluk)
where Dy = diag(dy, ...,d,_1) and Wy = L{'Vi. Tt follows from the kth diagonal entry that
1/2
ex = (uf (op — Wi Wiug) +di)) "2, (21)
and from the entries below the kth diagonal entry, we obtain the equation
wi = (v — WITka)/ck. (22)

Thus, we can compute W and ¢ recursively by defining Py = 0 and
Pk:Pk_l—i—wkwg, k=1,....n

such that Wi Wi = P_;. The resulting algorithm, algorithm 3, computes W = L~V and ¢ in
O(p*n) flops. As a special case, note that if K is positive definite and D = 0, then (21) and (22)
imply that ¢ = u] wy, and hence L may also be expressed as (19). Finally, we note that the
generator representation (20) allows us to compute the matrix-vector products Lz, LTz, L™ x,
and L~ Tz in O(pn) flops using algorithms 7 to 10, included in appendix C.



Algorithm 3 Cholesky factorization (K + D = LLT)
Input: U,V € R"*? and d € R’} such that K = S(U,V) and D = diag(d)
Output: W € R"*? and ¢ € R", such that L = tril(UWT, —1) + diag(c)
Initialization: P < 0
for k=1,...,ndo
Wy < Vi — Puk
Ci < (ufwk + dk)1/2
Wy < wk/ck
P+ P+ wkwg
end for

4.2 Inverse of Cholesky factor

The Cholesky factor L = tril([UW”, 1) + diag(c) is a {p, 0}-quasiseparable matrix, and it
follows from [18, Thm. 8.46] that L~ is itself {p,0}-quasiseparable. The following theorem
provides a generator representation of L™! when K + D = LL” and D = diag(d) for some
deR",.

Theorem 2. Let L = tril(UWT, —1)+diag(c) be the Cholesky factor of K +diag(d) = 0 where
K = S(U,V) is positive semidefinite and d € R’ . The inverse of L can then be expressed as

L™ =tril(Y 2T, 1) + diag(c) ™! (23)
where Y = LU and Z = L~TW(WTy — I1)~T.

Proof. We start by showing that the assumption that d € R’ , implies that WTY — I is non-
singular. Using Sylvester’s determinant identity, we may express det(I — W7TY) as

det(I — L7'UWT) =

(i) ).

It now follows from (21) and (22) that C% = u;‘gwkck + d},, or equivalently, ¢ — ufwk = dy/ck
which implies that

det(I - W'Y) =[] - (24)
k=1 k

Thus, WTY — I must be nonsingular since ¢, d € RY .
To show that the strictly lower-triangular part of L=! is determined by Y and Z, we partition
L into blocks as

Lipy O
L =
[L21 L22]

such that L1; and Ly are both square matrices. The inverse of L may then be expressed as

L= [ —1L1_11 Tr-1 91} (25)
_Lzz U2W1 L11 L22

10



where we have used the fact that Lo; = UngT . Using conformable partitions of Y = L~1U and
Z=L"TwWWTy - )77 ie.,

v _ LUy
Yo  |[Lyp Ua(I = WLy U]
21 L1_1TW1(I - U2TL2_2TW2) T -T
= W'Yy —1
=S LS
we may express YQZ;‘F as
Y2Z{ = Ly Ua(I = WL U) (WY — I)7H(I = W3 Ly U)W Ly (26)
It follows from the definition of Y that the matrix WY — I may be expressed as
T -1
Wi L 0 Uy
Wiy — 1= L _H }—I
{WJ [—L221L21L111 L221 Uz
=W LU+ W Lo Uy — W Lo UsWE L Uy — T
= —(I - Wy Ly Us)(I = W{ Ly Uh),
and hence the right-hand side of (26) reduces to the (2, 1) block of L=! in (25). The (2,1) block
of L~! is therefore equal to YngT . This holds for all block partitions of the form (25), and hence
we have that tril(L~!, —1) = tril(Y Z7, —1). To complete the proof, we note that the diagonal

elements of L~! are given by 1/Li1,...,1/Lyy, (this readily follows from the diagonal of the
equation LL~' = I), and hence L™ may be expressed as (23). O

Theorem 2 implies that L~! has a generator representation (Y, Z, ¢) that only requires O(np)
memory, and this representation can be computed in O(p*n) flops using algorithm 4. As we will
show next, theorem 2 allows us to compute the diagonal elements of (K + D)~! and the trace
of matrices of the form (K + D)~}(K + D), where K = S(U,V) and D = diag(d), in O(p*n)
flops.

Algorithm 4 Inverse of L = tril(UW7T, —1) + diag(c)

Input: U W e R"P, ce R} |

Output: Y,Z € R™P such that L=! = tril(Y Z7, —1) + diag(c)~!
Compute Y < LU using algorithm 9
Compute Z « LT using algorithm 10
Compute Z <+ Z(UTZ —I)~!

Remark. The generator representation of the inverse Cholesky factor (23) requires that d is a
positive vector. If d = 0 and K = S(U,V) is positive definite, then the Cholesky factor of
K still has a generator representation of the form (20), but its inverse is no longer generator
representable of the form (23) since WY —1I is singular (see (24)). As a result, the representation
(23) may require high numerical precision to accurately compute all elements of L~! from its
generators when one or more elements of d are small.

4.3 Additional algorithms

The kth diagonal element of (K + D)~! can be expressed as e} (K + D) ley = ||L7 exll3
where K + D = LL”. We now show that given a generator representation of L~!, all the
diagonal elements of (K + D)~! can be computed in O(p?n) flops. Indeed, using the generator
representation of L™!, we can express ||L"teg||3 as

n n
C’;2+ Z(ijzk)ch,erz,{szk, Py = Z yjij, k=1,...,n.
j=kt1 Jj=k+1

11



Noting that P, = 0 and P, = Pgy1 + yzy;[ for k=1,...,n—1, we can compute all the diagonal
elements of (K + D)~! recursively in O(p?n) flops using algorithm 5. In section 5, we show how

Algorithm 5 Diagonal elements of (K + D)1
Input: Y, Z € R"P, c € R}, such that K + D = LLT and

L7 =tril(YZT, 1) + diag(c) !

Output: b € R" such that by = el (K + D) ey = ||[L 7 ek |3
Initialization: P < 0
for k=n,...,1do
b + 0;2 + z,{sz
P« P+ypyl
end for

this algorithm can be used to efficiently compute the diagonal elements of matrices of the form
H()), defined in (10). This is useful for constructing Bayesian credible intervals, as mentioned
in section 2.3. We also show how algorithm 5 can be used to efficiently evaluate tr(l — H()\)),
and hence also the GCV function (11). _

Next we consider the problem of computing the trace of matrices of the form (K + D)™ (K +
D) where K = S(U, V) for some U,V € R"? and D = diag(d) for some d € R". In section 5,
we will see that this can be used to efficiently evaluate a partial derivative of a certain log-
likelihood function. Assuming that K + D = LLT with L = tril(UW7, —1) + diag(c) and
c € Rl , we have that

tr((K + D)"Y(K + D) = Ze YK +D)L™T

The term el L~ YK + D)L~ Tek only involves the first & elements of the vector L™ Tey and the
leading principal minor of K + D of order k, ie.,

Z1Yk

clgl

= (@F o + di)ep 2 + yE ZE (K + Dh) Zvye + 29E ZEViage, !

~ ~ A K1+ D Viu

T 1 T 1Yk 11 1 1UE
L K D L ~ ~
ek ( ) k= |: Cr . :| ﬂjk Vlj ﬂ]k v + dk

where K11 denotes the leading principal minor of K of order k — 1, and Vi and Z; denote the
first k—1 rows of V and Z, respectively. Now define Ry = Zle zif)iT , or equivalently, employing
a recursive definition,

Ry = Ry + 291, Ry =0.

Similarly, we define P, = ZTE;{E,?(I? + E)EkE,ZZ where F), denotes the first k£ columns of the
identity matrix of order n. By expanding ZTEkE;{(K + D)EkE,zZ , We can obtain a recursive
definition of Py, i.e.,

A

%

[Zl] TKy+ Dy Vi
=P._1+ (ﬂgf)k + cik)zkz{ + ZkﬂZ‘N/szl + ZlT‘Zkazg

2 al vl alog + dy

=P, 1+ (ﬁg@k + cik)zkzg + ZkagRg_l + kalﬂkzg
where we define Py = 0. It follows that

egL (K + D)L ek = Vi Pk 1Y + ka Ry_ 1ukck + (ﬂgflk + Czk)CEQ,

12



and hence

n
tr((K + D) (K +D) =) (y,{ P_1yk + 2yf Ri—viike;,t + (i, O + Jk)c,;2) :
k=1
Algorithm 6 evaluates this in O(ppn) flops using the recursive definitions of Ry and P,. As
a special case of this algorithm, we mention that letting K = 0 and d = 1 yields the trace of
(K +D)~!. However, we note that algorithm 6 cannot be used to compute the diagonal elements
of (K + D)™}, so it cannot replace algorithm 5.

Algorithm 6 Trace of L™ *(K + D)L~T
Input: U,V e R™? decR"and Y,Z € R™P ¢ € R, such that

K=5(U,V), D=diag(d), L '=tril(vz” —1)+diag(c)”"

Output: b € R such that b = tr(L~ (K + D)L™T)
Initialization: b+ 0, P+ 0, R+ 0
for k=1,....,ndo
b+ b+ ykTPyk + 2ngﬁkcgl + (ﬂ{@k + czk)cf
P+ P+ (ﬁ{f)k + cik)zkzg + Zk(Rka)T + (Rﬂk)zg
R+ R+ Zkf)g
end for

5 Applications

We now discuss some applications of the algorithms introduced in section 4. We start by
revisiting the smoothing spline regression problem (1), and next we turn to applications in
Gaussian process regression.

5.1 Smoothing spline regression

Recall that the solution to the smoothing spline regression problem (1) can be expressed as (8)
where (a*, 8) is a solution to the system of equations (3). Rearranging (3) yields the equivalent
system of equations
FTMA_lFﬁ* — FTMA_ly
Mya* =y — Ff*.
The matrix M) = X + nAI can be factorized as My = LLT using algorithm 3 in O(p?n) flops,
and we can also compute B = L~'F and the “thin” QR factorization B = QR, where Q € R™*P
and R € RP*P, in O(p?n) flops. This allows us to reduce (3) to
RE* = Q"L Yy (27)
LTo* = (I-QQ")L ™"y, (28)

and hence we can solve for (a*, 3*) in O(p?n) flops. The resulting spline interpolates the points
(1,71), -+, (Tn, Un) where § = Xa* + F* = y — nAa*.

The GCV objective (11) involves the matrix-vector product (I — H(\))y and the trace of
I — H()\) where H()) is the influence matrix (10). Using the factorizations M, = LLT and

L™'F = QR, we may rewrite I — H(\) as
I—H\) =n\M; ' = M F(FT M R R M)
=n\LT(I - Q)L™ (29)
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Moreover, (I — H()))y = nAa* and
(T~ H(V) = nA (tr(M; 1) — [ LTQ)

The term tr(M; 1) can be evaluated in O(p®n) flops using algorithms 4 and 5, and it requires
O(p*n) flops to compute L=7Q and its Frobenius norm. We note that in finite precision,
algorithm 4 should be avoided when A is small: the generator representation of the inverse
Cholesky factor becomes unfavorable from a numerical point of view when A approaches zero
(see section 4.2). An alternative when A is small is to compute tr(M; ") as >, [[L7 ;|2 in
O(pn?) flops using algorithm 9.

To evaluate the GML objective (12), we note that it can be expressed as

y (I —HW\)y
nA[det(M,) =1 det(FT M, ' F)~1 det(FTF)]Y/ (n-p)
~ y (I = H\)y
nAdet(M,) Y/ (=p) det(FT M, ' F)~1/(n=p)’

GML(\) =

(30)
as shown in appendix B. Using the fact that (I — H(\))y = nAa* and the factorizations M)y =
LLT and L™'F = QR, the expression (30) can be simplified as

yTo* det(L)? P det(R)¥ ("—P) (31)

which is readily evaluated in O(n) flops.

5.2 Gaussian process regression

The semiseparable structure of ¥ also has applications in Gaussian process regression. As an
example, we consider the following generalization of the observation model (9)

p
g(t) = Opep(t) +vX(t),  t€a,b], (32a)
k=1
y2:£19+€zy Z:L’m> (32b)

where X (t) is a zero-mean Gaussian process with covariance function IC;, the functionals
L1,..., Ly are bounded and linear, and # ~ N(0,7I) and € ~ N(0,02I). Moreover, we will
assume that # and X (¢) are independent. It is easy to see that the model (9) is obtained as a
special case of (32) if we let m = n and define L;g = ¢(t;) for i = 1,...,n. We note that the
model (32) is closely related to the so-called general smoothing spline regression problem [20]

n b
minimize J(f) = %Z(yz —Lif)*+ A/ £ ()] dt

i=1

where the functional 7 is defined on W2la,b].
As a special case of (32), we will focus on an observation model with v = 0 (implying that
6 = 0) and discrete observations

n
=1

where t; € [a,b] for j = 1,...,n, and A;; is the (7,j) entry of a given matrix A € R™*". The
vector of observations can then be expressed as

y=Ax+e (33)
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where the jth entry of z € R™ is z; = g(¢;), and hence z ~ N(0,°Y) where the (i, ;) entry of
> is given by K;(ti, tj). It follows that the posterior distribution of x is given by

T | Yy,o, v~ N(J_2Ew\yATya Z:w|y)

where %, = (v=227 1 + 67247 A)~1. The posterior mean o 2%,,, ATy can also be expressed

as & = ?Ya* where

wly

o = (02T + V2 ASAT) 1y, (34)

Moreover, the covariance function IC; is a reproducing kernel for H;, and the function

at) =v* ) _afKp(tit),  t€[ab],

i=1

interpolates the points (¢;,#;) fori =1,...,n.
The hyperparameters v and ¢ can be estimated by maximizing the likelihood function asso-
ciated with the marginal distribution

y | o,v~N(0,0% +12ABAT).

Expressing the covariance matrix as v2(AX AT + mAI) with A = 02/(mv?), the negative log-
likelihood (up to an additive constant) may be expressed as

v\ v | y) = v 2yt (ASAT + mA) ™y + log det(AS AT + mAT) — mlog(v™?) (35)

with domain dom = R, x Ry ;. Note that ¥(\,v | y) is strictly convex with respect to v 2.
Taking the derivative with respect to v~2 and setting it equal to zero yields
5 y(AZAT 4+ mAI)~y
|
m )
and by substituting this expression for ©? in (35), we obtain the univariate function
P\ | y) = mlog(yT (ASAT + mAI)"Ly) + log det(ASAT + mAI) + m. (36)

Minimizing (36) yields an estimate of A, and a local minimum can be found using, e.g., Newton’s
method or a derivative-free method such as golden section search. We note that the positivity
condition A > 0 can be handled implicitly by means of a change of variables, e.g., by substituting
et for A with p € R.

We now discuss how the semiseparable structure of 3 can be used to reduce the computational
cost of estimating the hyperparameters (A, ) and the cost of computing o*. We will assume
that a < t; <ty < --- < t,, < bsuch that ¥ is positive definite and can be factorized as ¥ = LLT
in O(p?n) flops using algorithm 2. We will also assume that the rank of A is r = min(m,n),
i.e., A has full rank. In the special case where A = I, the estimation problem can be solved
in O(p®n) flops using the algorithms from section 4, as outlined in section 5.1. More generally,
the matrix B = AL can be computed in O(mnp) flops by exploting the structure of L, and
a “thin” singular value decomposition B = USV” can be computed in O(max(m,n)r?) flops
where U € R™*"| § = diag(o1,...,0,), and V € R™*"; see, e.g., [6]. We start by considering
the case where m < n. This implies that » = m and

ASAT 4+ mA = BBT +rAI = U(S% +rAI)UT. (37)

Letting § = UTy, which can be computed in O(r?) flops, we can express (36) as

r -9 r
Y\ | y) = rlog (Z Yi ) + Zlog(a? +7A) + (38)
=1 i=1

a?—i—r)\
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and hence the complexity of evaluating ¢ is O(r). Furthermore, using (37), we have that

~T Q2 12~ 1
V2:y (S +T)‘ )y7 a*:ﬁU(SZ+T)\I)_1~
T 14

Interestingly, minimizing (38) can be viewed as minimizing the ratio of the geometric mean (GM)
to the harmonic mean (HM) of the sequence (o2 +r\)/g? for i = 1,...,r, i.e., (38) satisfies

r 0'1»2-"-7”)\ 1r
S )
=1 01-2—&—7‘)\

provided that ¢; # 0 for ¢ = 1,...,n. The GM-HM inequality implies that the GM-to-HM ratio
is greater than or equal to 1. Moreover, the arithmetic mean of a positive sequence is an upper
bound on its GM, and this leads to the following upper bound

r o; 24r) 1r
(-, = 72 ) < Zizi(0 A TN/5
-1 = ~2 -1
Y; Yi
(Z:ﬂ o$+m> " (Zgzl 03+M)

The harmonic mean is a concave function on R’} ,, and hence the upper bound is a quasiconvex
function of A. However, it is not clear if the left-hand side of (39) is itself a quasiconvex function
of A.

Next, we consider the case where m > n. We then have r = n and

exp (VA 9))

(39)

(ASAT + mAD) ™! = %(I — B(mA + BTB)"'BT)
m

m)\(I US(mA + S%)~Lsu™) (40)

which follows from the Woodbury identity and the decomposition B = USV™T. Letting § = U™y,
which can be computed in O(mn) flops, we can express (36) as

Y\ | y) =mlog (Hy\lg Z Qy:_ : )\> Zlog <a +m)\) m

which has evaluation complexity O(r). Finally, using (40), we arrive at

2—gTS(mA+ S?)7197 1
U2 — lyllz — 9 7(7:;)\+ ) y, ar = (y — US(mAI + S*)71S9).

mAv2

Thus, the computational cost of estimating the hyperparameters and computing o* is there-
fore at most O(max(m,n)r?), regardless of m and n. Note that without exploiting the struc-
ture of ¥, the computational bottleneck is either forming and factorizing AX AT (which costs
O(r max(m,n)? + m3) flops) or forming and factorizing B = AL (which costs O(n® + mn? +
max(m, n)r?) flops). Consequently, if the semiseparable structure of ¥ is ignored, the computa-
tional cost is O(mn?) instead of O(r? max(m,n)).

5.3 Kernel warping

New kernel functions can be constructed from the spline kernel s, by means of a technique
known as kernel warping. Specifically, by introducing a transformation n: I — [0, 1] where I is
a subset of R, we can construct a new kernel as

K(s,t) = rp(n(s),n(t)),  stel
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An example of such a transformation is the monotonic transformation n(t) = e~?, defined on
I =[0,00) and with parameter p > 0, which yields the so-called stable spline kernel [12]

Ky (5.t p) = kp(e™?, e, s,t € 0,00). (41)

The stable spline kernel was introduced in the context of system identification as a way to
construct a prior that ensures stability of a dynamic system. Corollary 2, combined with the
monotonicity of the transformation ¢t — e ?!, implies that the kernel matrix K;*(p) gener-
ated by the stable spline kernel /@;S(s,t; p) and a monotonic sequence ti,...,t, inherits the
semiseparable structure of the spline kernel. In other words, K;S(p) is an extended generator
representable semiseparable matrix with semiseparability rank p, and hence K;*(p) = S(U,V)
for some U,V € R™*P. We note that for a general transformation 7 (not necessarily monotonic)
and a sequence tq,...,t,, the warped kernel K generates an extended generator representable
matrix with semiseparability rank p up to a symmetric permutation. We note that a recent
example of the use of kernel warping to derive new kernels from the spline kernel can be found
in [5].

We now outline how the algorithms from section 4 can be useful for Gaussian process regres-
sion using a warped version of the spline kernel as covariance function. As an example, we will
consider an instance of the Gaussian linear model (33) where the covariance matrix associated
with x is I/QKZS)S(,O) instead of 2%, Moreover, we will treat the parameter p as an unknown that
should be estimated along with v and A. Eliminating v from the likelihood function, we arrive
at

D\, p|y) =mlog(y" (AKS(p) AT + mAI) y) +log det(AKS (p) AT + mAI) +m

which can be evaluated in O(max(m,n)r?) flops using the same approach as in section 5.2.
Moreover, the partial derivatives of ¥ with respect to A and p can be expressed as
2)1¢l3 1
b\ p|y) = myT~+mtr(C’ )
~TAdK °(p) ATé

o - B - B
a—pw, ply)=— N +tr <C’

X

LAK (p)
dp
where C' = AKIS)S(p)AT +mAI and ¢ = C~1y. The derivative of the stable spline kernel with

respect to the parameter p is itself a semiseparable function with semiseparability rank 2p — 1.
To see this, note that for s > ¢, theorem 1 implies that

)k d

= e Pptk)s o—p(p—1-k)t
(p+ k) dp

stp

( —1—k)!(p+k)! :

kMH Mi

It is easy to check that the right—hand side is a sum of 2p — 1 multiplicatively separable terms
(since (p — 1 — k)t vanishes when k = p — 1), and by the symmetry of }’, the derivative ;l S8
is therefore semiseparable with semiseparability rank at most 2p — 1. Consequently, (ZKIS)S( )
may be represented as

d

L gs(0) = S@O.7), 0,7 e RCrD
dp p(p) ( ’ )7 ’ € )

and hence tr (C‘le()> can be computed in O(mnp) flops given a singular value decompo-

sition B = USVT where B = AL and K>3 (p) = LLT. We note that in the special case where
A = I, algorithms 4 and 6 can be used to evaluate the trace of (K;*(p) +nAl)~ 1dde]§s( ) in
O(p*n) flops without forming the matrix product.
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6 Numerical example

To illustrate the efficiency of the algorithms derived in this paper, we now compare the execution
time for solving (3) and computing § when p = 2 using (i) Reinsch’s algorithm [13] and (ii)
the semiseparable structure of the spline kernel, as outlined in section 5.1. We implemented
both algorithms in MATLAB in an attempt to make a fair comparison. Our implementation
of Reinsch’s algorithm is based on sparse matrices and MATLARB’s built-in sparse Cholesky
factorization. The implementation of our algorithm is based on algorithms 3 and 9, both of
which we implemented as MATLAB MEX files written in C using a row-major representation
of the generators U, V, and W. Table 1 shows the average execution time in milliseconds as a
function of n and based on 107 /n repetitions. We used A = 1077, and for each value of n, we
generated a problem instance with observations

i—1 . .
T = T y; = cos(2mx;) + 0.3sin(107z;) + €;, i=1,...,n,
n—
where €4, ..., ¢, are realizations of a zero-mean Gaussian random variable with standard devia-

tion 0.1. The results confirm that the complexity is linear in n for both algorithms, and while
our algorithm is roughly 3-5 times faster than Reinsch’s algorithm, we note that an implementa-
tion of Reinsch’s algorithm based on band storage and suitable LAPACK routines would likely
improve its performance.

n Reinsch  Semiseparable Ratio
1000 0.78 0.23 3.4
2000 1.59 0.39 4.0
4000 2.99 0.81 3.7
8000 7.29 1.54 4.7

16000  15.47 2.97 5.2
32000  32.55 6.15 5.3
64000  70.29 13.10 5.4

Table 1: Average execution time in milliseconds.

7 Conclusions

We have shown that the spline kernel of order p is a semiseparable function with semiseparability
rank p. Building on this result, we have constructed efficient, recursive algorithms for key
computations that arise in smoothing spline regression, Gaussian process regression, and related
hyperparameter estimation problems. The complexity of these algorithms grows linearly with
the number of knots, and hence they match the complexity of the best, known algorithms for
smoothing spline regression such as Reinsh’s algorithm [13, 14]. More importantly, theorem 2
and the algorithms derived in section 4 are not limited to kernel matrices generated by the spline
kernel, so their potential reach may extend beyond that of existing methods for smoothing spline
regression.

A natural next step would be to extend our results to tensor-product splines defined on
d-dimensional rectilinear grids. In two dimensions, a tensor-product spline would result in a
kernel matrix that can be expressed as a Kronecker product of two rank structured matrices.
A potential application of this is spatial-temporal modeling where it may be natural to assume
that that the spatial and temporal dimensions are separable.
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A Proof of Theorem 1

Proof. Recall the definition of the spline kernel (15). This can also be expressed as

min(s,t)
Kp(s,t) = / op(s;u)pp(t; u) du, s, t €10,1], (42)
0
where ¢y (t;u) = % for k integral and positive, and we define ¢1(¢;t) = 1. To simplify the

notation when u = 0, we define ¢ (t) = ¢ (¢;0).
We start by noting that for p = 1, we have ki(s,t) = min(s,t). For p > 2, we may use
integration by parts combined with the fact that

d ) k() k>2

to express (42) as

min(s,t)

min(s,t)
Fp(s,t) = [-%(8; w)bp1(t; U)] - /0 Pp—1(8; W) bp1 (8 u) du.

u=0

Expanding the integral on the right-hand side by repeated use of integration by parts, we arrive
at the expression

p—1 min(s,t)
(o) = (1 |- dpn(ss0pesattin)
k=0 u=0
which for s > t simplifies to
p—1
kp(s,t) = > (=1)Fpr(s)bppain(t), s>t
k=0

Using the fact that k,(s,t) = kp(t, s) and the definition of ¢y, we arrive at

1
— X (_1)k p=1=Fk
ol = kzo (p—1—k)(p+k) (st)’~'Fmin(s, t)* T, st €10,1], (43)

which holds for p > 1. O

B Generalized likelihood function

We now consider the stochastic process defined in section 2.3 and derive the generalized likelihood
function associated with the conditional distribution of y given the parameters A, v, and v. We
have that

Yy ‘ Av”v’YNN(OaVQMA"i_VFFT)a
and we are interested in the case where 7 — oo, corresponding to an improper prior on the

parameter vector . The negative log-likelihood function may be expressed as

1 1 n
vy y) = 5yt (M) y + Slogdet(v? My +yFFY) + o log(2m),

and it is easy to check that its limit as 7 — oo is unbounded. The standard approach to this
problem is to project y onto the nullspace of FT. Specifically, if we let w = ng, where Q9 is
obtained from the QR factorization (13), we may consider the conditional distribution

w |\ v~ N(0,2QE My Q2)
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and the corresponding negative log-likelihood function
v? _ 1
YA v w) = 7U)T(Q§MAQ2) fw + 5 log det(Q3 MxQ2)

. (44)

+

n
log(v?) + 5 log(2m).
Setting the derivative with respect to v=2 equal to zero and solving for v? yields the optimality

condition - )
2_v (Q3 MyQ2) " w
n—p
and using this expression in (44), we arrive at the one-dimensional profile

9

5 Prog(w” (QFMyQy) " w) + ¢ (45)

GO ) = 3 Togdet(@F My Q) + "

where ( is a constant. It is easy to check that the function GML(\), defined in (12), is propor-
tional to exp(Y (A | w)).
The function (45) may be rewritten as

n —

S log Ay (I = HO)y) +C (46)

- 1
V(A | y) = 5 logdet (M) det(FT M1 F) +

where C is a constant. To see this, first note that Schur’s determinant identity implies that

2
det ([V_% WFIID = det(v2M,) det(y T+ v 2FT M 'F). (47)

Now, by applying the similarity transformation

T VPQIMN\Q1 QI MyQ2 Ry

Q 0" M, F ][Q O ! 1
|:0 T —FY%\ ,7—1_[ 0 I = V2Q%1M)\Ql VQQgMAQQ 0
—R{ 0 v

where @) = [Ql QQ] is the QR factorization (13) of F', we obtain an equivalent expression by
applying Schur’s determinant identity to the (2,2) block of the right-hand side, i.e.,

det ([”_21% 7F1[D = det (12QT M,\Qs) det ([_%T ’YR%I]>
= det(?QY M\Q2) det(C) det(y T + RFC™IR)) (48)
where
C = Q1 MyQ1 — v’ Q1 MyQa(Q3 MaQ2) ™' Q3 MyQ1.
Equating (47) and (48), and taking the limit as v — oo, we arrive at
det(QF M)\Q2) = det(My) det(FT M ' F) det(FTF)™* (49)

where det(FTF) = det(RT Ry). Finally, to show that w’ (Q¥ MyQ2) 'w oc A™2yT(I — H(\))y,
first note that the Woodbury identity implies that

(WVPMy +~FFD) =0 2(M 7 = MUY PPy, + FT MO F) P FT MY,
and hence

71320(1/21\@ +yFF) =y 2 (M - MO P(FT MO R T MY
V_2
= — (I —HW). 50
o (A) (50)
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Moreover, it is staightforward (but tedious) to show that

. T/ 2 -1 —2 |0 0
WILH;O(Q (V MA+7FF )Q) =V 0 (QgM)\QQ)_l )
and this implies that
lim Q(Q" (v My +~vFF")Q)™'Q" = v2Q2(QF MrQ2) ™' Q5. (51)

y—+00

Combining (50) and (51), we conclude that

w! (Qy MaQ2)"tw = (nX) "'y (I = H(N))y.

C Additional algorithms

Given the Cholesky factorization K + D = LLT where L = tril(UW7, —1) + diag(c) with
UW € R and c € R, , the matrix-vector products Lz, LTz, L7 'z, and L= "z can be
evaluated in O(pn) flops using algorithms 7 to 10.

Algorithm 7 Triangular product (Lz)
Input: z € R", U,W € R"?, and c € R"} | such that L = tril[UWT, —1) 4 diag(c)
Output: y = Lx
Initialization: z < 0
for k=1,...,ndo
Yg < CpTk + ufkrz
24— Z + WETk
end for

Algorithm 8 Adjoint triangular product (Lz)
Input: x € R", U,W € R"?, and ¢ € R"} | such that L = tril([UWT, —1) 4 diag(c)
Output: y = LTz
Initialization: z <+ 0
for k=n,...,1do
Yk < CxTk + wgz
24— Z+ URpTg
end for

Algorithm 9 Forward substitution (solve Lz = b)
Input: b € R", U, W € R"P, and ¢ € R}, such that L = tril(UWT, —1) + diag(c)
Output: z =L 'b
Initialization: z < 0
for k=1,....,ndo
zp (b —ul2)/ck
24— 2+ WETg
end for
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Algorithm 10 Backward substitution (solve LTz = b)

Input: b € R", U, W € R™P?, and ¢ € R"}, such that L = tril(UW7T, —1) + diag(c)
Output: z =L Tb

Initialization: z < 0

for k=n,...,1do

xg < (b — wgz)/ck
24— 2+ ULy

end for
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