

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 27, 2021

Smoothing Splines and Rank Structured Matrices: Revisiting the Spline Kernel

Andersen, Martin S.; Chen, Tianshi

Published in:
SIAM Journal on Matrix Analysis and Applications

Link to article, DOI:
10.1137/19m1267349

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Andersen, M. S., & Chen, T. (2020). Smoothing Splines and Rank Structured Matrices: Revisiting the Spline
Kernel. SIAM Journal on Matrix Analysis and Applications, 41(2), 389-412. https://doi.org/10.1137/19m1267349

https://doi.org/10.1137/19m1267349
https://orbit.dtu.dk/en/publications/abeeb354-99a1-4f7a-9573-97f926d742d1
https://doi.org/10.1137/19m1267349

Smoothing Splines and Rank Structured Matrices: Revisiting the

Spline Kernel

Martin S. Andersen∗ and Tianshi Chen†

April 2020

Abstract

We show that the spline kernel of order p is a so-called semiseparable function with
semiseparability rank p. A consequence of this is that kernel matrices generated by the
spline kernel are rank structured matrices that can be stored and factorized efficiently. We
use this insight to derive new recursive algorithms with linear complexity in the number of
knots for various kernel matrix computations. We also discuss applications of these algo-
rithms, including smoothing spline regression, Gaussian process regression, and some related
hyperparameter estimation problems.

1 Introduction

Spline functions play a key role in many areas of applied mathematics. They are flexible and
have good approximation properties, and they arise naturally, e.g., in the so-called smoothing
spline regression problem

minimize J (f) ≡ 1

n

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a
|f (p)(x)|2 dx . (1)

The vector y = (y1, . . . , yn) and a < x1 < x2 < · · · < xn < b are given, λ ≥ 0 is a parameter, p
is a natural number less than or equal to n, and the pth derivative of f is assumed to be square
integrable. The second term of the functional J (f) may be viewed as a roughness penalty.
Schoenberg [15] showed that the solution to (1) is a so-called natural spline of order 2p with
knots x1, . . . , xn. The set of such splines form a vector space of dimension n, and hence the
variational problem (1) can be cast as an equivalent finite-dimensional problem by introducing a
suitable set of basis functions; see, e.g., [16] for an introduction to spline functions. Alternatively,
the solution to (1) can be found by solving a convex quadratic optimization problem of the form
[20]

minimize
1

n
‖y − (Σα+ Fβ)‖22 + λαTΣα (2)

with variables α ∈ Rn and β ∈ Rp. The matrix Σ is symmetric and positive semidefinite of
order n with entries generated by the so-called spline kernel, and F ∈ Rn×p is a Vandermonde
matrix. Given an optimal solution (α?, β?) to (2), the natural spline of order 2p that interpolates
(x1, ŷ1), . . . , (xn, ŷn) with ŷ = Σα? +Fβ? is the unique optimal solution to (1). It can be shown

∗Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens
Lyngby, Denmark. Email: mskan@dtu.dk
†School of Science and Engineering and Shenzhen Research Institute of Big Data, The Chinese University of

Hong Kong, Shenzhen, China. Email: tschen@cuhk.edu.cn

1

from the optimality condition associated with (2) that there exists a solution (α?, β?) that
satisfies the system of equations [

Σ + nλI F
F T 0

] [
α?

β?

]
=

[
y
0

]
. (3)

Forming this system explicitly requires O(n2) memory, and solving it using a standard, general-
purpose method requires O(n3) floating-point operations (flops).

The main purpose of this paper is to show that the spline kernel is a so-called p-semiseparable
function, and as a consequence, the matrix Σ is a rank structured matrix. Specifically, we show
that Σ is a so-called extended generator representable p-semiseparable matrix (see definition 2).
In other words, the lower-triangular part of Σ, which we will denote by tril(Σ), is generated by
a rank p matrix, i.e., it can be expressed as

tril(Σ) = tril(UV T), U, V ∈ Rn×p.

We show this in section 3, and it has two important consequences: (i) the matrix Σ admits an
implicit representation (in terms of its generators U and V) that only requires O(pn) memory,
and (ii) the system (3) can be solved in O(p2n) flops. As a second contribution, we show in
section 4 that key computations that involve Σ can be carried out efficiently (e.g., in O(p2n)
flops rather than O(n3) flops) by exploiting the inherent structure. Specifically, we show that
positive definite matrices of the form Σ+diag(d) may be factorized as LLT where L is lower tri-
angular and, like Σ, it has a memory-efficient implicit representation. We also derive an implicit
representation of L−1 that we use to construct efficient recursive algorithms for computing the di-
agonal elements of matrices of the form (Σ+diag(d))−1 and the trace of, e.g., (Σ+diag(d))−1Σ.
This is useful for model selection based on generalized cross validation (GCV) or generalized
maximum likelihood (GML) estimation, e.g., in the context of smoothing spline regression. We
provide a brief review of theory pertaining to smoothing spline regression in the next section,
and in section 5, we discuss how the algorithms that we derive in section 4 can be applied to
smoothing spline regression and Gaussian process regression. Finally, we provide a numerical
example in section 6 that demonstrates the computational efficiency of some of the algorithms
presented in section 4, and we conclude the paper in section 7.

2 Background and related work

Before we present our main results in sections 3 and 4, we briefly introduce notation, recall some
results from the literature about splines and smoothing spline regression, and discuss related
work. Interested readers may find a comprehensive introduction to smoothing spline regression
in, e.g., the monographs by Wahba [20] and Schumaker [16].

2.1 Notation

We denote by Rn
+ the set of elementwise nonnegative vectors in Rn, and Rn

++ = int Rn
+ denotes

its interior (i.e., elementwise positive vectors). Given n real numbers x1, . . . , xn, we define
x = (x1, . . . , xn) to be a column vector in Rn. The identity matrix of order n is denoted In; we
will simply use I when the order can be inferred from its context. The vector ek denotes the unit
vector whose kth element is equal to 1, and 1 is the vector of ones. Given a square matrix A
of order n, tril(A) denotes the lower-triangular matrix obtained from A by setting all elements
above the main diagonal to zero, and tril(A, k) is obtained from A by setting all elements above
the kth superdiagonal to zero (k > 0 corresponds to a superdiagonal, k < 0 corresponds to a
subdiagonal, and tril(A, 0) = tril(A)). Similarly, triu(A) denotes the upper triangular part
of A and triu(A, k) = tril(AT ,−k)T . Given a vector x ∈ Rn, diag(x) is a diagonal matrix
of order n with the elements of x as its diagonal entries. Finally, L2[a, b] denotes the space of
square integrable functions defined on the interval [a, b].

2

2.2 Splines and smoothing spline regression

We start by recalling the definition of a univariate polynomial spline. Given a set of n simple
knots {x1, . . . , xn} and an interval [a, b] such that a = x0 < x1 < x2 < · · · < xn < xn+1 = b,
a polynomial spline g(x) of order r is a real-valued function, defined on [a, b], that satisfies the
following conditions:

(i) g is a polynomial of degree at most r − 1 on any subinterval [xj , xj+1] (j = 0, . . . , n)

(ii) g has r − 2 continuous derivatives (i.e., g ∈ Cr−2).

We will denote the set of polynomial splines by Sr(∆) where ∆ = {x0, x1, . . . , xn+1}. The set of
functions that satisfy the first condition has dimension (n+ 1)r, and since the second condition
imposes r − 1 constraints for each of the n knots, the dimension of Sr(∆) is n+ r.

The set of natural polynomial splines of order r = 2p, which we will denote S2pnat(∆), is the
n dimensional subset of S2p(∆) that is obtained by imposing the additional condition that

(iii) g is a polynomial of degree at most p− 1 on each of the subintervals [a, x1] and [xn, b].

As mentioned in the introduction, Schoenberg [15] showed that the solution to the smoothing
spline regression problem (1) is a natural polynomial spline of order 2p.

We now turn our attention to the problem (1) and let the functional J (f) be defined on the
Sobolev space

W 2
p [a, b] =

{
f : f, f ′, . . . , f (p−1) absolutely continuous, f (p) ∈ L2[a, b]

}
endowed with the inner product

〈f, g〉 =

p−1∑
k=0

f (k)(a)g(k)(a) +

∫ b

a
f (p)(u)g(p)(u) du, f, g ∈W 2

p [a, b]. (4)

It follows from Taylor’s theorem that any f ∈W 2
p [a, b] can be expressed as

f(x) =

p−1∑
k=0

f (k)(a)

k!
(x− a)k +

∫ x

a

(x− u)p−1

(p− 1)!
f (p)(u) du (5)

where the last term is the integral form of the remainder. Furthermore, the inner product (4)
implies that the space W 2

p [a, b] can be decomposed as W 2
p [a, b] = H0⊕H1 where H0 and H1 are

orthogonal complements and defined as [20]

H0 = span {φ1, . . . , φp} , φk(x) =
(x− a)k−1

(k − 1)!
, k = 1, . . . , p

H1 =
{
f : f (k)(a) = 0, k = 0, . . . , p− 1, f (p) ∈ L2[a, b]

}
.

As a consequence, every f ∈ W 2
p [a, b] has a unique decomposition f = f0 + f1 where f0 ∈ H0

and f1 ∈ H1. It is easy to check that if f ∈ H0, then the remainder term in (5) is zero, and
similarly, if f ∈ H1, then only the remainder term can be nonzero. If we let P1f denote the
orthogonal projection of f onto H1, the roughness penalty in (1) can be expressed as

λ

∫ b

a
|f (p)(u)|2 du = λ〈P1f,P1f〉,

and hence it can be viewed as a penalty on the remainder term in the Taylor expansion (5).

3

Both H0 and H1 are reproducing kernel Hilbert spaces (RKHSs). Their corresponding
reproducing kernels (RKs) are

K0
p(s, t) =

p∑
k=1

φk(s)φk(t) (6)

K1
p(s, t) =

∫ b

a
Gp(s, u)Gp(t, u) du (7)

where Gp(s, u) = max(0, s−u)p−1/(p−1)! is the Green’s function for the problem Dpf = g with
f ∈ H1, g ∈ L2[a, b], and where the operator Dp is the pth derivative; we refer the interested
reader to [11] for an introduction to RKHSs. The kernel functions K0

p and K1
p are both positive

semidefinite, and H = H0 ⊕ H1 is itself a RKHS with RK K0
p + K1

p. We remark that K0
p(s, t)

consists of p multiplicatively separable terms, and, as we will show in section 3, K1
p(s, t) is a

so-called semiseparable function with semiseparability rank p.
Kimeldorf & Wahba [9] showed that the solution to (1) can be expressed as

f̂(x) =

p∑
k=1

β?k φk(x) +
n∑
j=1

α?j ξj(x) (8)

where ξj(x) = K1
p(xj , x) and where the parameter vectors α? and β? satisfy the system of

equations (3). The matrix F in (3) is of size n×p, and its (i, j) entry is Fij = φj(xi). Moreover,
Σ is a kernel matrix generated by the kernel function K1

p, i.e., the (i, j) entry is Σij = K1
p(xi, xj).

We will show in section 3 that the semiseparable structure of K1
p carries over to Σ.

It can be shown that functions of the form (8), parameterized by two vectors α and β instead
of α? and β?, are natural splines if F Tα = 0; see [20]. Finally, we note that our assumption that
a < x1 < x2 < · · · < xn < b implies that Σ is positive definite; more generally, if we were to
assume that a ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b, then Σ will be positive semidefinite but not necessarily
positive definite.

2.3 Stochastic processes

The smoothing spline regression problem (1) has strong ties to Bayesian estimation. Specifically,
suppose X(t) is a zero-mean Gaussian process defined on [a, b] and with covariance function K1

p,
and let

g(t) =

p∑
k=1

θkφk(t) + νX(t), t ∈ [a, b], (9a)

yi = g(ti) + εi, i = 1, 2, . . . , n (9b)

where θ ∈ N (0, γIp), ε ∼ N (0, σ2In), and θ and X(t) are assumed to be independent. Moreover,
if we let fλ denote the solution to (1) with λ = σ2/(nν2) and xi = ti, then the conditional
expectation of g(t) given the vector y is related to fλ through the limit [20, Thm. 1.5.3]

lim
γ→∞

E[g(t) | y] = fλ(t), t ∈ [a, b].

The function fλ(t) interpolates the points (ti, ŷi) where ŷ = (ŷ1, . . . , ŷn) can be expressed as
ŷ = H(λ)y and H(λ) is the so-called influence matrix

H(λ) = I − nλ(M−1λ −M
−1
λ F (F TM−1λ F)−1F TM−1λ), Mλ = Σ + nλI. (10)

In section 5, we explain how the semiseparable structure of K1
p can be exploited in computations

that involve H(λ) or matrices with similar structure. It can be shown that the covariance matrix
associated with ŷ is given by σ2H(λ), and the ith diagonal element of this covariance matrix
can be used to construct Bayesian credible intervals for g(ti). However, in practice, both σ and
ν must somehow be selected or estimated in order to construct such credible intervals, but only
the ratio λ = σ2/(nν2) is necessary to compute ŷ.

4

2.4 Parameter selection

We now briefly review two commonly used parameter selection criteria, namely generalized cross
validation (GCV) and generalized maximum likelihood (GML). GCV chooses the parameter λ
as a minimizer of

GCV(λ) =
1
n‖(I −H(λ))y‖22(
1
n tr(I −H(λ))

)2 . (11)

We show in section 5 that tr(I − H(λ)) can be computed in O(p2n) flops using the recursive
algorithms that we derive in section 4.

A GML estimate of λ is a maximizer of the likelihood function of λ given y, or equivalently,
a minimizer of

GML(λ) =
yTQ2(Q

T
2MλQ2)

−1QT2 y

det(QT2MλQ2)−1/(n−p)
(12)

where Q2 ∈ Rn×(n−p) is a matrix whose columns form an orthonormal basis for the nullspace of
F T , i.e., F TQ2 = 0 and QT2Q2 = I. Furthermore, the GML estimate of σ2 is

σ̂2 =
yT (I −H(λ̂))y

n− p

where λ̂ denotes the GML estimate of λ. An implicit representation of the matrix Q2 can be
computed by means of a QR factorization

F =
[
Q1 Q2

] [R1

0

]
(13)

which requires O(p2n) flops, but the cost of evaluating (12) by means of a Cholesky factorization
of QT2MλQ2 is O((n − p)3) flops. We return to the GML objective (12) in section 5 where we
show how it can be evaluated in O(p2n) flops by exploiting the structure of Mλ.

2.5 Related work

It is well known that for a given parameter λ, the smoothing spline regression problem (1) can be
solved in linear time. One of the earliest algorithms is due to Reinsch [13] who derived an O(n)
algorithm for the case where p = 2. This corresponds to f being a natural cubic spline, which is
a popular choice in practice. Reinsch’s method is based on a parameterization of natural cubic
splines that leads to a banded system of equations of order n−2 with bandwidth 5. The approach
can be generalized to other values of p, resulting in a system of equations with a banded matrix
of order n−p and bandwidth 2p+ 1, as shown by Reinsch in a follow-up paper [14]. Hutchinson
& de Hood [7] pointed out that only a partial inverse of this band matrix is needed to compute
a band of the influence matrix, and it can be computed in O(p2n) flops using the recursively
technique developed by Erisman & Tinney [3]. Reinsch’s approach can also be derived from a
stochastic perspective, as shown by Kohn & Ansley [10]. By applying a modified Kalman filter
and Kalman smoothing to a stochastic model by Wahba [19], they derived an O(n) algorithm
for smoothing spline regression and parameter estimation.

The algorithms that we present in section 4 draw upon an extensive body of literature on
semiseparable and rank structured matrices; see, e.g., the books by Vandebril et al. [18, 17] for a
comprehensive overview. We note that our algorithm for computing the Cholesky factorization of
Σ+diag(d), algorithm 3, is very similar to an algorithm proposed by Foreman–Mackey et al. [4]
which computes an LDL decomposition of an extended generator representable p-semiseparable
matrix that arises from the so-called celerite kernel. However, our results pertaining to the
implicit inverse of the Cholesky factor, theorem 2 and algorithm 4, appear to be new.

5

As a special case of the semiseparable structure of the spline kernel, Chen et al. [2] and
Carli et al. [1] pointed out that for p = 1, the stable spline kernel generates a kernel matrix that
has a tridiagonal inverse. The stable spline kernel is closely related to the spline kernel, and it
has applications in system identification. We briefly discuss how our results apply to the stable
spline kernel in section 5. Other stochastic processes with semiseparable covariance functions
include Brownian motion and the Brownian bridge, and Keiner & Waterhouse [8] exploited the
semiseparable structure of the covariance matrix associated with these processes to perform fast
principal component analysis.

3 The spline kernel

In this section, we present our main results, namely that K1
p(s, t) is a p-semiseparable function

and that, as a consequence, kernel matrices generated by K1
p(s, t) are rank structured matrices

that possess a computationally favorable structure. We start with a formal definition of p-
semiseparable functions.

Definition 1. A real-valued function g(s, t) is said to be p-semiseparable (or semiseparable with
semiseparability rank p) if

g(s, t) =

{∑p
k=1 uk(s)vk(t) s ≥ t∑p
k=1 pk(s)qk(t) s < t

(14)

where uk, vk, pk, and qk, for k = 1, . . . , p, are univariate functions.

Remark. If the function g is symmetric (i.e., g(s, t) = g(t, s)), then qk = uk and pk = vk for
k = 1, . . . , p.

To simplify our notation, we will restrict our attention to a “standardized” version of the
spline kernel (7), defined on [0, 1]× [0, 1] and given by

κp(s, t) =

∫ 1

0
Gp(s, u)Gp(t, u) du, s, t ∈ [0, 1] (15)

where Gp(s, u) = max(0, s−u)p−1/(p−1)!. Using integration by substitution, it is easy to check
that K1

p, which is defined on [a, b]× [a, b], may be expressed in terms of κp as

K1
p(s, t) =

∫ b

a
Gp(s, u)Gp(t, u) du = (b− a)2p−1κp

(
s− a
b− a

,
t− a
b− a

)
, s, t ∈ [a, b].

We are now ready to state our first result.

Theorem 1. The spline kernel of order p can be expressed as

κp(s, t) =

p−1∑
k=0

(−1)k

(p− 1− k)!(p+ k)!
(st)p−1−k min(s, t)2k+1, s, t ∈ [0, 1]. (16)

The proof is provided in appendix A. As a corollary to theorem 1, we now show that κp is
p-semiseparable.

Corollary 1. The spline kernel κp(s, t) is symmetric and semiseparable with semiseparability
rank p.

Proof. Using theorem 1, we may express κp(s, t) as

κp(s, t) =

{∑p−1
k=0(−1)kφp−k(s)φp+1+k(t) s ≥ t∑p−1
k=0(−1)kφp−k(t)φp+1+k(s) s < t

6

where φk(t) = tk−1/(k − 1)! for k = 1, . . . , 2p. The desired result follows by observing that
this is of the form (14) with uk(s) = φp+1−k(s), vk(t) = (−1)k−1φp+k(t), pk(s) = vk(s), and
qk(t) = uk(t) for k = 1, . . . , p.

We now turn our attention to symmetric kernel matrices of the form

(Kp)ij = κp(xi, xj), i, j ∈ {1, . . . , n},

i.e., Kp is a symmetric matrix with entries that are generated by the spline kernel κp and a
sequence x1, . . . , xn. Recall that the kernel function κp is positive semidefinite, and as a conse-
quence Kp is always positive semidefinite. Moreover, as we will show next, the semiseparable
structure of the spline kernel carries over to the corresponding kernel matrices. We will need
the following definition before we state the result in corollary 2.

Definition 2. [18, p. 304] A square matrix A of order n is said to be extended {p, q}-generator
representable semiseparable, with natural numbers p ≥ 0 and q ≥ 0, if

tril(A) = tril(UV T) (17)

triu(A) = triu(PQT) (18)

where U, V ∈ Rn×p and P,Q ∈ Rn×q are so-called generators.

Remark. When A is symmetric (i.e., Q = U and P = V) we will use the shorthand notation
A = S(U, V) where

S(U, V) = tril(UV T) + triu(V UT , 1), U, V ∈ Rn×p,

and we will say that A is an extended generator representable p-semiseparable matrix, or equiv-
alently, A is an extended generator representable semiseparable matrix with semiseparability
rank p.

Corollary 2. The kernel matrix Kp generated by the spline kernel κp(s, t) and a monotonic
sequence x1, . . . , xn is an extended generator representable semiseparable matrix with semisepa-
rability rank p.

Proof. Let x = (x1, . . . , xn) and φk(x) = 1
(k−1)!(x

k−1
1 , . . . , xk−1n) for k = 1, . . . , 2p. We start by

assuming that x1, . . . , xn is monotonically increasing. This implies that for i ≥ j, we have

(xixj)
p−1−k min(xi, xj)

2k+1 = xp−1−ki xp+kj ,

and hence

tril(Kp) =

p−1∑
k=0

(−1)k tril(φp−k(x)φp+1+k(x)T).

Similarly, if x1, . . . , xn is decreasing, then for i ≥ j we have that

(xixj)
p−1−k min(xi, xj)

2k+1 = xp+ki xp−1−kj

and hence

tril(Kp) =

p−1∑
k=0

(−1)k tril(φp+1+k(x)φp−k(x)T).

It follows that Kp is a symmetric extended generator representable semiseparable matrix with
semiseparability rank p.

7

4 Algorithms

Corollary 2 establishes that the kernel matrix Kp is symmetric extended generator representable
semiseparable with semiseparability rank p, i.e., Kp may be expressed as S(U, V) for some
U, V ∈ Rn×p. To simplify notation, we will henceforth writeK instead ofKp when p is implied by
the column dimension of the generators U and V . We remark that the generator representation
is not unique: it is easy to verify from the definition of S(U, V) that S(U, V) = S(UC, V C−T)
for any nonsingular matrix C ∈ Rp×p. However, any such generator representation allows us to
store the matrix K implicitly using only O(np) memory.

The generator representation S(U, V) allows us to perform several operations such as the
matrix–vector product Kx in O(np) flops; see, e.g., [18]. To see this, note that the kth element
of Kx can be expressed as

eTkKx =

k∑
j=1

uTk vjxj +

n∑
j=k+1

vTk ujxj = uTk v̄k + vTk ūk

where uk = UT ek, vk = V T ek, ūk =
∑n

j=k+1 ujxj , and v̄k =
∑k

j=1 vjxj . Notice that ūk and v̄k
may be computed recursively as

ūk = ūk−1 − ukxk
v̄k = v̄k−1 + vkxk

}
k = 1, . . . , n

where we define ū0 = UTx and v̄0 = 0. Algorithm 1 exploits this recursive definition and
evaluates the matrix-vector product Kx in O(np) flops.

Algorithm 1 Matrix–vector product Kx

Input: U, V ∈ Rn×p such that K = S(U, V)
Output: Overwrites x by Kx

Initialization: v̄ ← 0, ū← UTx
for k = 1, . . . , n do
v̄ ← v̄ + vkxk
ū← ū− ukxk
xk ← uTk v̄ + vTk ū

end for

The technique behind the efficient algorithm for evaluating the matrix–vector product Kx
can be generalized to a number of other matrix operations. This, in turn, will allow us to
efficiently solve (3) and evaluate the GCV and GML parameter selection criteria. Before we
return to this in section 5, we now derive the necessary algorithms. Implementations of these
algorithms are available here: https://git.io/JvYbI.

We start by showing that if K = S(U, V) is positive definite, it has a Cholesky factorization
K = LLT where L has a generator representation of the form

L = tril(UW T), W ∈ Rn×p. (19)

A similar result was recently shown by Foreman–Mackey et al. [4] for kernel matrices generated
by the the so-called celerite kernel. We start by showing that the matrix W must satisfy the
equation LW = V . To see this, partition K, L, U , V , and W into conformable blocks, i.e.,[

K11 KT
21

K21 K22

]
=

[
L11 0
L21 L22

] [
LT11 LT21
0 LT22

]
, U =

[
U1

U2

]
, V =

[
V1
V2

]
, W =

[
W1

W2

]
.

It follows from the (2, 1) block that K21 = L21L
T
11, or equivalently, using the fact that K21 =

U2V
T
1 , we arrive at the equation L21 = U2W

T
1 where W1 = L−111 V1. This has to hold for all

8

Algorithm 2 Cholesky factorization (K = LLT)

Input: U ∈ Rn×p, V ∈ Rn×p such that K = S(U, V) is positive definite
Output: W ∈ Rn×p such that L = tril(UW T)

Initialization: P ← 0
for k = 1, . . . , n do
wk ← vk − Puk
wk ← wk/

√
uTkwk

P ← P + wkw
T
k

end for

possible partitions, and since L11 = tril(U1W
T
1), we may compute W = L−1V recursively in

O(p2n) flops using algorithm 2. The generator representation of L may be used to compute
matrix-vector products with L, LT , L−1, and L−T in O(pn) flops. We will omit the details,
which can be found in [18], and note that the corresponding algorithms are special cases of the
more general algorithms included in appendix C. We now turn our attention to a somewhat
more general case.

4.1 Cholesky factorization

Suppose K+D is positive definite where K = S(U, V) is positive semidefinite and D = diag(d)
for some d ∈ Rn

+. The matrix K+D is a so-called quasiseparable matrix with quasiseparability
rank p, and the inverse of such a matrix is itself quasiseparable with quasiseparability rank p [18,
Thm. 8.46]. We start by deriving an efficient Cholesky factorization of K + D which requires
O(p2n) flops. Specifically, we will show that the Cholesky factorization K +D = LLT yields a
factor L that has a generator representation of the form

L = tril(UW T ,−1) + diag(c), W ∈ Rn×p, c ∈ Rn
++. (20)

To show this, we introduce the following conformable block partitions

U =

U1

uTk
U2

 , V =

V1vTk
V2

 , W =

W1

wTk
W2

 , L =

 L11 0 0
uTkW

T
1 ck 0

U2W
T
1 U2wk L22

 ,
where uTk , vTk , and wTk denote the kth row of U , V , and W , respectively. The first k columns of
the matrix equation K +D = LLT can then be expressed asK11 +D1 V T

1 uk
uTk V

T
1 uTk vk + dk

U2V
T
1 U2vk

 =

 L11L
T
11 L11W1uk

uTkW
T
1 L

T
11 uTkW

T
1 W1uk + c2k

U2W
T
1 L

T
11 U2(ckwk +W T

1 W1uk)


where D1 = diag(d1, . . . , dk−1) and W1 = L−111 V1. It follows from the kth diagonal entry that

ck =
(
uTk (vk −W T

1 W1uk) + dk
)1/2

, (21)

and from the entries below the kth diagonal entry, we obtain the equation

wk = (vk −W T
1 W1uk)/ck. (22)

Thus, we can compute W and c recursively by defining P0 = 0 and

Pk = Pk−1 + wkw
T
k , k = 1, . . . , n

such that W T
1 W1 = Pk−1. The resulting algorithm, algorithm 3, computes W = L−1V and c in

O(p2n) flops. As a special case, note that if K is positive definite and D = 0, then (21) and (22)
imply that ck = uTkwk, and hence L may also be expressed as (19). Finally, we note that the
generator representation (20) allows us to compute the matrix–vector products Lx, LTx, L−1x,
and L−Tx in O(pn) flops using algorithms 7 to 10, included in appendix C.

9

Algorithm 3 Cholesky factorization (K +D = LLT)

Input: U, V ∈ Rn×p and d ∈ Rn
+ such that K = S(U, V) and D = diag(d)

Output: W ∈ Rn×p and c ∈ Rn
++ such that L = tril(UW T ,−1) + diag(c)

Initialization: P ← 0
for k = 1, . . . , n do
wk ← vk − Puk
ck ← (uTkwk + dk)

1/2

wk ← wk/ck
P ← P + wkw

T
k

end for

4.2 Inverse of Cholesky factor

The Cholesky factor L = tril(UW T ,−1) + diag(c) is a {p, 0}-quasiseparable matrix, and it
follows from [18, Thm. 8.46] that L−1 is itself {p, 0}-quasiseparable. The following theorem
provides a generator representation of L−1 when K + D = LLT and D = diag(d) for some
d ∈ Rn

++.

Theorem 2. Let L = tril(UW T ,−1)+diag(c) be the Cholesky factor of K+diag(d) � 0 where
K = S(U, V) is positive semidefinite and d ∈ Rn

++. The inverse of L can then be expressed as

L−1 = tril(Y ZT ,−1) + diag(c)−1 (23)

where Y = L−1U and Z = L−TW (W TY − I)−T .

Proof. We start by showing that the assumption that d ∈ Rn
++ implies that W TY − I is non-

singular. Using Sylvester’s determinant identity, we may express det(I −W TY) as

det(I − L−1UW T) = det(L−1) det(L− UW T)

= det(L−1) det(diag(c)− triu(UW T))

=

(
n∏
i=1

c−1i

)(
n∏
k=1

(ck − uTkwk)

)
.

It now follows from (21) and (22) that c2k = uTkwkck + dk, or equivalently, ck − uTkwk = dk/ck
which implies that

det(I −W TY) =
n∏
k=1

dk
c2k
. (24)

Thus, W TY − I must be nonsingular since c, d ∈ Rn
++.

To show that the strictly lower-triangular part of L−1 is determined by Y and Z, we partition
L into blocks as

L =

[
L11 0
L21 L22

]
such that L11 and L22 are both square matrices. The inverse of L may then be expressed as

L−1 =

[
L−111 0

−L−122 U2W
T
1 L
−1
11 L−122

]
(25)

10

where we have used the fact that L21 = U2W
T
1 . Using conformable partitions of Y = L−1U and

Z = L−TW (W TY − I)−T , i.e.,[
Y1
Y2

]
=

[
L−111 U1

L−122 U2(I −W T
1 L
−1
11 U1)

]
,[

Z1

Z2

]
=

[
L−T11 W1(I − UT2 L

−T
22 W2)

L−T22 W2

]
(W TY − I)−T ,

we may express Y2Z
T
1 as

Y2Z
T
1 = L−122 U2(I −W T

1 L
−1
11 U1)(W

TY − I)−1(I −W T
2 L
−1
22 U2)W

T
1 L
−1
11 . (26)

It follows from the definition of Y that the matrix W TY − I may be expressed as

W TY − I =

[
W1

W2

]T [
L−111 0

−L−122 L21L
−1
11 L−122

] [
U1

U2

]
− I

= W T
1 L
−1
11 U1 +W T

2 L
−1
22 U2 −W T

2 L
−1
22 U2W

T
1 L
−1
11 U1 − I

= −(I −W T
2 L
−1
22 U2)(I −W T

1 L
−1
11 U1),

and hence the right-hand side of (26) reduces to the (2, 1) block of L−1 in (25). The (2, 1) block
of L−1 is therefore equal to Y2Z

T
1 . This holds for all block partitions of the form (25), and hence

we have that tril(L−1,−1) = tril(Y ZT ,−1). To complete the proof, we note that the diagonal
elements of L−1 are given by 1/L11, . . . , 1/Lnn (this readily follows from the diagonal of the
equation LL−1 = I), and hence L−1 may be expressed as (23).

Theorem 2 implies that L−1 has a generator representation (Y,Z, c) that only requires O(np)
memory, and this representation can be computed in O(p3n) flops using algorithm 4. As we will
show next, theorem 2 allows us to compute the diagonal elements of (K + D)−1 and the trace
of matrices of the form (K + D)−1(K̃ + D̃), where K̃ = S(Ũ , Ṽ) and D̃ = diag(d̃), in O(p3n)
flops.

Algorithm 4 Inverse of L = tril(UW T ,−1) + diag(c)

Input: U,W ∈ Rn×p, c ∈ Rn
++

Output: Y,Z ∈ Rn×p such that L−1 = tril(Y ZT ,−1) + diag(c)−1

Compute Y ← L−1U using algorithm 9
Compute Z ← L−TW using algorithm 10
Compute Z ← Z(UTZ − I)−1

Remark. The generator representation of the inverse Cholesky factor (23) requires that d is a
positive vector. If d = 0 and K = S(U, V) is positive definite, then the Cholesky factor of
K still has a generator representation of the form (20), but its inverse is no longer generator
representable of the form (23) sinceW TY −I is singular (see (24)). As a result, the representation
(23) may require high numerical precision to accurately compute all elements of L−1 from its
generators when one or more elements of d are small.

4.3 Additional algorithms

The kth diagonal element of (K + D)−1 can be expressed as eTk (K + D)−1ek = ‖L−1ek‖22
where K + D = LLT . We now show that given a generator representation of L−1, all the
diagonal elements of (K +D)−1 can be computed in O(p2n) flops. Indeed, using the generator
representation of L−1, we can express ‖L−1ek‖22 as

c−2k +
n∑

j=k+1

(yTj zk)
2 = c−2k + zTk Pkzk, Pk =

n∑
j=k+1

yjy
T
j , k = 1, . . . , n.

11

Noting that Pn = 0 and Pk = Pk+1 + yiy
T
i for k = 1, . . . , n− 1, we can compute all the diagonal

elements of (K +D)−1 recursively in O(p2n) flops using algorithm 5. In section 5, we show how

Algorithm 5 Diagonal elements of (K +D)−1

Input: Y, Z ∈ Rn×p, c ∈ Rn
++ such that K +D = LLT and

L−1 = tril(Y ZT ,−1) + diag(c)−1

Output: b ∈ Rn such that bk = eTk (K +D)−1ek = ‖L−1ek‖22
Initialization: P ← 0
for k = n, . . . , 1 do
bk ← c−2k + zTk Pzk
P ← P + yky

T
k

end for

this algorithm can be used to efficiently compute the diagonal elements of matrices of the form
H(λ), defined in (10). This is useful for constructing Bayesian credible intervals, as mentioned
in section 2.3. We also show how algorithm 5 can be used to efficiently evaluate tr(I −H(λ)),
and hence also the GCV function (11).

Next we consider the problem of computing the trace of matrices of the form (K+D)−1(K̃+
D̃) where K̃ = S(Ũ , Ṽ) for some Ũ , Ṽ ∈ Rn×p̃ and D̃ = diag(d̃) for some d̃ ∈ Rn. In section 5,
we will see that this can be used to efficiently evaluate a partial derivative of a certain log-
likelihood function. Assuming that K + D = LLT with L = tril(UW T ,−1) + diag(c) and
c ∈ Rn

++, we have that

tr((K +D)−1(K̃ + D̃) =

n∑
k=1

eTkL
−1(K̃ + D̃)L−T ek.

The term eTkL
−1(K̃ + D̃)L−T ek only involves the first k elements of the vector L−T ek and the

leading principal minor of K̃ + D̃ of order k, i.e.,

eTkL
−1(K̃ + D̃)L−T ek =

[
Z1yk
c−1k

]T [
K̃11 + D̃1 Ṽ1ũk
ũTk Ṽ

T
1 ũTk ṽk + d̃k

] [
Z1yk
c−1k

]
= (ũTk ṽk + d̃k)c

−2
k + yTk Z

T
1 (K̃11 + D̃1)Z1yk + 2yTk Z

T
1 Ṽ1ũkc

−1
k

where K̃11 denotes the leading principal minor of K̃ of order k − 1, and Ṽ1 and Z1 denote the
first k−1 rows of Ṽ and Z, respectively. Now define Rk =

∑k
i=1 ziṽ

T
i , or equivalently, employing

a recursive definition,

Rk = Rk−1 + zkṽ
T
k , R0 = 0.

Similarly, we define Pk = ZTEkE
T
k (K̃ + D̃)EkE

T
k Z where Ek denotes the first k columns of the

identity matrix of order n. By expanding ZTEkE
T
k (K̃ + D̃)EkE

T
k Z, we can obtain a recursive

definition of Pk, i.e.,

Pk =

[
Z1

zTk

]T [
K̃11 + D̃1 Ṽ1ũk
ũTk Ṽ

T
1 ũTk ṽk + d̃k

] [
Z1

zTk

]
= Pk−1 + (ũTk ṽk + d̃k)zkz

T
k + zkũ

T
k Ṽ

T
1 Z1 + ZT1 Ṽ1ũkz

T
k

= Pk−1 + (ũTk ṽk + d̃k)zkz
T
k + zkũ

T
kR

T
k−1 +Rk−1ũkz

T
k

where we define P0 = 0. It follows that

eTkL
−1(K̃ + D̃)L−T ek = yTk Pk−1yk + 2yTk Rk−1ũkc

−1
k + (ũTk ṽk + d̃k)c

−2
k ,

12

and hence

tr((K +D)−1(K̃ + D̃)) =

n∑
k=1

(
yTk Pk−1yk + 2yTk Rk−1ũkc

−1
k + (ũTk ṽk + d̃k)c

−2
k

)
.

Algorithm 6 evaluates this in O(pp̃n) flops using the recursive definitions of Rk and Pk. As
a special case of this algorithm, we mention that letting K̃ = 0 and d̃ = 1 yields the trace of
(K+D)−1. However, we note that algorithm 6 cannot be used to compute the diagonal elements
of (K +D)−1, so it cannot replace algorithm 5.

Algorithm 6 Trace of L−1(K̃ + D̃)L−T

Input: Ũ , Ṽ ∈ Rn×p̃, d̃ ∈ Rn and Y, Z ∈ Rn×p, c ∈ Rn
++ such that

K̃ = S(Ũ , Ṽ), D̃ = diag(d̃), L−1 = tril(Y ZT ,−1) + diag(c)−1

Output: b ∈ R such that b = tr(L−1(K̃ + D̃)L−T)
Initialization: b← 0, P ← 0, R← 0
for k = 1, . . . , n do
b← b+ yTk Pyk + 2yTk Rũkc

−1
k + (ũTk ṽk + d̃k)c

−2
k

P ← P + (ũTk ṽk + d̃k)zkz
T
k + zk(Rũk)

T + (Rũk)z
T
k

R← R+ zkṽ
T
k

end for

5 Applications

We now discuss some applications of the algorithms introduced in section 4. We start by
revisiting the smoothing spline regression problem (1), and next we turn to applications in
Gaussian process regression.

5.1 Smoothing spline regression

Recall that the solution to the smoothing spline regression problem (1) can be expressed as (8)
where (α?, β?) is a solution to the system of equations (3). Rearranging (3) yields the equivalent
system of equations

F TM−1λ Fβ? = F TM−1λ y

Mλα
? = y − Fβ?.

The matrix Mλ = Σ + nλI can be factorized as Mλ = LLT using algorithm 3 in O(p2n) flops,
and we can also compute B = L−1F and the “thin” QR factorization B = QR, where Q ∈ Rn×p

and R ∈ Rp×p, in O(p2n) flops. This allows us to reduce (3) to

Rβ? = QTL−1y (27)

LTα? = (I −QQT)L−1y, (28)

and hence we can solve for (α?, β?) in O(p2n) flops. The resulting spline interpolates the points
(x1, ŷ1), . . . , (xn, ŷn) where ŷ = Σα? + Fβ? = y − nλα?.

The GCV objective (11) involves the matrix-vector product (I − H(λ))y and the trace of
I − H(λ) where H(λ) is the influence matrix (10). Using the factorizations Mλ = LLT and
L−1F = QR, we may rewrite I −H(λ) as

I −H(λ) = nλ(M−1λ −M
−1
λ F (F TM−1λ F)−1F TM−1λ)

= nλL−T (I −QQT)L−1. (29)

13

Moreover, (I −H(λ))y = nλα? and

tr(I −H(λ)) = nλ
(
tr(M−1λ)− ‖L−TQ‖2F

)
.

The term tr(M−1λ) can be evaluated in O(p3n) flops using algorithms 4 and 5, and it requires
O(p2n) flops to compute L−TQ and its Frobenius norm. We note that in finite precision,
algorithm 4 should be avoided when λ is small: the generator representation of the inverse
Cholesky factor becomes unfavorable from a numerical point of view when λ approaches zero
(see section 4.2). An alternative when λ is small is to compute tr(M−1λ) as

∑n
i=1 ‖L−1ei‖2 in

O(pn2) flops using algorithm 9.
To evaluate the GML objective (12), we note that it can be expressed as

GML(λ) =
yT (I −H(λ))y

nλ[det(Mλ)−1 det(F TM−1λ F)−1 det(F TF)]1/(n−p)

∝ yT (I −H(λ))y

nλdet(Mλ)−1/(n−p) det(F TM−1λ F)−1/(n−p)
, (30)

as shown in appendix B. Using the fact that (I −H(λ))y = nλα? and the factorizations Mλ =
LLT and L−1F = QR, the expression (30) can be simplified as

yTα? det(L)2/(n−p) det(R)2/(n−p) (31)

which is readily evaluated in O(n) flops.

5.2 Gaussian process regression

The semiseparable structure of Σ also has applications in Gaussian process regression. As an
example, we consider the following generalization of the observation model (9)

g(t) =

p∑
k=1

θkφk(t) + νX(t), t ∈ [a, b], (32a)

yi = Lig + εi, i = 1, . . . ,m, (32b)

where X(t) is a zero-mean Gaussian process with covariance function K1
p, the functionals

L1, . . . ,Lm are bounded and linear, and θ ∼ N (0, γI) and ε ∼ N (0, σ2I). Moreover, we will
assume that θ and X(t) are independent. It is easy to see that the model (9) is obtained as a
special case of (32) if we let m = n and define Lig = g(ti) for i = 1, . . . , n. We note that the
model (32) is closely related to the so-called general smoothing spline regression problem [20]

minimize J̃ (f) ≡ 1

m

n∑
i=1

(yi − Lif)2 + λ

∫ b

a
|f (p)(t)|2 dt

where the functional J̃ is defined on W 2
p [a, b].

As a special case of (32), we will focus on an observation model with γ = 0 (implying that
θ = 0) and discrete observations

Lig =

n∑
j=1

Aijg(tj), i = 1, . . . ,m,

where tj ∈ [a, b] for j = 1, . . . , n, and Aij is the (i, j) entry of a given matrix A ∈ Rm×n. The
vector of observations can then be expressed as

y = Ax+ ε (33)

14

where the jth entry of x ∈ Rn is xj = g(tj), and hence x ∼ N (0, ν2Σ) where the (i, j) entry of
Σ is given by K1

p(ti, tj). It follows that the posterior distribution of x is given by

x | y, σ, ν ∼ N (σ−2Σw|yA
T y,Σw|y)

where Σw|y = (ν−2Σ−1 + σ−2ATA)−1. The posterior mean σ−2Σw|yA
T y can also be expressed

as x̂ = ν2Σα? where

α? = (σ2I + ν2AΣAT)−1y. (34)

Moreover, the covariance function K1
p is a reproducing kernel for H1, and the function

ĝ(t) = ν2
n∑
i=1

α?iK1
p(ti, t), t ∈ [a, b],

interpolates the points (ti, x̂i) for i = 1, . . . , n.
The hyperparameters ν and σ can be estimated by maximizing the likelihood function asso-

ciated with the marginal distribution

y | σ, ν ∼ N (0, σ2I + ν2AΣAT).

Expressing the covariance matrix as ν2(AΣAT + mλI) with λ = σ2/(mν2), the negative log-
likelihood (up to an additive constant) may be expressed as

ψ(λ, ν | y) = ν−2yT (AΣAT +mλI)−1y + log det(AΣAT +mλI)−m log(ν−2) (35)

with domain domψ = R++×R++. Note that ψ(λ, ν | y) is strictly convex with respect to ν−2.
Taking the derivative with respect to ν−2 and setting it equal to zero yields

ν2 =
yT (AΣAT +mλI)−1y

m
,

and by substituting this expression for ν2 in (35), we obtain the univariate function

ψ̃(λ | y) = m log(yT (AΣAT +mλI)−1y) + log det(AΣAT +mλI) +m. (36)

Minimizing (36) yields an estimate of λ, and a local minimum can be found using, e.g., Newton’s
method or a derivative-free method such as golden section search. We note that the positivity
condition λ > 0 can be handled implicitly by means of a change of variables, e.g., by substituting
eµ for λ with µ ∈ R.

We now discuss how the semiseparable structure of Σ can be used to reduce the computational
cost of estimating the hyperparameters (λ, ν) and the cost of computing α?. We will assume
that a < t1 < t2 < · · · < tn < b such that Σ is positive definite and can be factorized as Σ = LLT

in O(p2n) flops using algorithm 2. We will also assume that the rank of A is r = min(m,n),
i.e., A has full rank. In the special case where A = I, the estimation problem can be solved
in O(p3n) flops using the algorithms from section 4, as outlined in section 5.1. More generally,
the matrix B = AL can be computed in O(mnp) flops by exploting the structure of L, and
a “thin” singular value decomposition B = USV T can be computed in O(max(m,n)r2) flops
where U ∈ Rm×r, S = diag(σ1, . . . , σr), and V ∈ Rn×r; see, e.g., [6]. We start by considering
the case where m ≤ n. This implies that r = m and

AΣAT +mλI = BBT + rλI = U(S2 + rλI)UT . (37)

Letting ỹ = UT y, which can be computed in O(r2) flops, we can express (36) as

ψ̃(λ | y) = r log

(
r∑
i=1

ỹ2i
σ2i + rλ

)
+

r∑
i=1

log(σ2i + rλ) + r, (38)

15

and hence the complexity of evaluating ψ̃ is O(r). Furthermore, using (37), we have that

ν2 =
ỹT (S2 + rλI)2ỹ

r
, α? =

1

ν2
U(S2 + rλI)−1ỹ.

Interestingly, minimizing (38) can be viewed as minimizing the ratio of the geometric mean (GM)
to the harmonic mean (HM) of the sequence (σ2i + rλ)/ỹ2i for i = 1, . . . , r, i.e., (38) satisfies

exp
(
ψ̃(λ | y)

)
∝

(∏r
i=1

σ2
i +rλ

ỹ2i

)1/r
(∑r

i=1
ỹ2i

σ2
i +rλ

)−1 ,
provided that ỹi 6= 0 for i = 1, . . . , n. The GM-HM inequality implies that the GM-to-HM ratio
is greater than or equal to 1. Moreover, the arithmetic mean of a positive sequence is an upper
bound on its GM, and this leads to the following upper bound(∏r

i=1
σ2
i +rλ

ỹ2i

)1/r
(∑r

i=1
ỹ2i

σ2
i +rλ

)−1 ≤ ∑r
i=1(σ

2
i + rλ)/ỹ2i

r
(∑r

i=1
ỹ2i

σ2
i +rλ

)−1 . (39)

The harmonic mean is a concave function on Rn
++, and hence the upper bound is a quasiconvex

function of λ. However, it is not clear if the left-hand side of (39) is itself a quasiconvex function
of λ.

Next, we consider the case where m ≥ n. We then have r = n and

(AΣAT +mλI)−1 =
1

mλ
(I −B(mλI +BTB)−1BT)

=
1

mλ
(I − US(mλI + S2)−1SUT) (40)

which follows from the Woodbury identity and the decomposition B = USV T . Letting ỹ = UT y,
which can be computed in O(mn) flops, we can express (36) as

ψ̃(λ | y) = m log

(
‖y‖22 −

r∑
i=1

ỹ2i σ
2
i

σ2i +mλ

)
−

r∑
i=1

log

(
mλ

σ2i +mλ

)
+m

which has evaluation complexity O(r). Finally, using (40), we arrive at

ν2 =
‖y‖22 − ỹTS(mλ+ S2)−1Sỹ

m2λ
, α? =

1

mλν2
(y − US(mλI + S2)−1Sỹ).

Thus, the computational cost of estimating the hyperparameters and computing α? is there-
fore at most O(max(m,n)r2), regardless of m and n. Note that without exploiting the struc-
ture of Σ, the computational bottleneck is either forming and factorizing AΣAT (which costs
O(rmax(m,n)2 + m3) flops) or forming and factorizing B = AL (which costs O(n3 + mn2 +
max(m,n)r2) flops). Consequently, if the semiseparable structure of Σ is ignored, the computa-
tional cost is O(mn2) instead of O(r2 max(m,n)).

5.3 Kernel warping

New kernel functions can be constructed from the spline kernel κp by means of a technique
known as kernel warping. Specifically, by introducing a transformation η : I → [0, 1] where I is
a subset of R, we can construct a new kernel as

K̃(s, t) = κp(η(s), η(t)), s, t ∈ I.

16

An example of such a transformation is the monotonic transformation η(t) = e−ρt, defined on
I = [0,∞) and with parameter ρ > 0, which yields the so-called stable spline kernel [12]

κssp (s, t; ρ) = κp(e
−ρs, e−ρt), s, t ∈ [0,∞). (41)

The stable spline kernel was introduced in the context of system identification as a way to
construct a prior that ensures stability of a dynamic system. Corollary 2, combined with the
monotonicity of the transformation t 7→ e−ρt, implies that the kernel matrix Kss

p (ρ) gener-
ated by the stable spline kernel κssp (s, t; ρ) and a monotonic sequence t1, . . . , tn inherits the
semiseparable structure of the spline kernel. In other words, Kss

p (ρ) is an extended generator
representable semiseparable matrix with semiseparability rank p, and hence Kss

p (ρ) = S(U, V)
for some U, V ∈ Rn×p. We note that for a general transformation η (not necessarily monotonic)
and a sequence t1, . . . , tn, the warped kernel K̃ generates an extended generator representable
matrix with semiseparability rank p up to a symmetric permutation. We note that a recent
example of the use of kernel warping to derive new kernels from the spline kernel can be found
in [5].

We now outline how the algorithms from section 4 can be useful for Gaussian process regres-
sion using a warped version of the spline kernel as covariance function. As an example, we will
consider an instance of the Gaussian linear model (33) where the covariance matrix associated
with x is ν2Kss

p (ρ) instead of ν2Σ. Moreover, we will treat the parameter ρ as an unknown that
should be estimated along with ν and λ. Eliminating ν from the likelihood function, we arrive
at

ψ̃(λ, ρ | y) = m log(yT (AKss
p (ρ)AT +mλI)−1y) + log det(AKss

p (ρ)AT +mλI) +m

which can be evaluated in O(max(m,n)r2) flops using the same approach as in section 5.2.
Moreover, the partial derivatives of ψ̃ with respect to λ and ρ can be expressed as

∂

∂λ
ψ̃(λ, ρ | y) = −m2 ‖c̃‖22

yT c̃
+m tr

(
C−1

)
∂

∂ρ
ψ̃(λ, ρ | y) = −m

c̃TA
dKss

p (ρ)

dρ AT c̃

yT c̃
+ tr

(
C−1

dKss
p (ρ)

dρ

)
where C = AKss

p (ρ)AT + mλI and c̃ = C−1y. The derivative of the stable spline kernel with
respect to the parameter ρ is itself a semiseparable function with semiseparability rank 2p− 1.
To see this, note that for s ≥ t, theorem 1 implies that

d

dρ
κssp (s, t; ρ) =

p−1∑
k=0

(−1)k

(p− 1− k)!(p+ k)!

d

dρ
e−ρ(p+k)se−ρ(p−1−k)t

= −
p−1∑
k=0

(−1)k((p+ k)s+ (p− 1− k)t)e−ρ(p+k)se−ρ(p−1−k)t

(p− 1− k)!(p+ k)!
.

It is easy to check that the right-hand side is a sum of 2p − 1 multiplicatively separable terms
(since (p− 1− k)t vanishes when k = p− 1), and by the symmetry of κssp , the derivative d

dρκ
ss
p

is therefore semiseparable with semiseparability rank at most 2p − 1. Consequently, d
dρK

ss
p (ρ)

may be represented as

d

dρ
Kss
p (ρ) = S(Ũ , Ṽ), Ũ , Ṽ ∈ Rn×(2p−1),

and hence tr
(
C−1

dKss
p (ρ)

dρ

)
can be computed in O(mnp) flops given a singular value decompo-

sition B = USV T where B = AL and Kss
p (ρ) = LLT . We note that in the special case where

A = I, algorithms 4 and 6 can be used to evaluate the trace of (Kss
p (ρ) + nλI)−1 d

dρK
ss
p (ρ) in

O(p3n) flops without forming the matrix product.

17

6 Numerical example

To illustrate the efficiency of the algorithms derived in this paper, we now compare the execution
time for solving (3) and computing ŷ when p = 2 using (i) Reinsch’s algorithm [13] and (ii)
the semiseparable structure of the spline kernel, as outlined in section 5.1. We implemented
both algorithms in MATLAB in an attempt to make a fair comparison. Our implementation
of Reinsch’s algorithm is based on sparse matrices and MATLAB’s built-in sparse Cholesky
factorization. The implementation of our algorithm is based on algorithms 3 and 9, both of
which we implemented as MATLAB MEX files written in C using a row-major representation
of the generators U , V , and W . Table 1 shows the average execution time in milliseconds as a
function of n and based on 107/n repetitions. We used λ = 10−9, and for each value of n, we
generated a problem instance with observations

xi =
i− 1

n− 1
, yi = cos(2πxi) + 0.3 sin(10πxi) + εi, i = 1, . . . , n,

where ε1, . . . , εn are realizations of a zero-mean Gaussian random variable with standard devia-
tion 0.1. The results confirm that the complexity is linear in n for both algorithms, and while
our algorithm is roughly 3-5 times faster than Reinsch’s algorithm, we note that an implementa-
tion of Reinsch’s algorithm based on band storage and suitable LAPACK routines would likely
improve its performance.

n Reinsch Semiseparable Ratio

1000 0.78 0.23 3.4
2000 1.59 0.39 4.0
4000 2.99 0.81 3.7
8000 7.29 1.54 4.7

16000 15.47 2.97 5.2
32000 32.55 6.15 5.3
64000 70.29 13.10 5.4

Table 1: Average execution time in milliseconds.

7 Conclusions

We have shown that the spline kernel of order p is a semiseparable function with semiseparability
rank p. Building on this result, we have constructed efficient, recursive algorithms for key
computations that arise in smoothing spline regression, Gaussian process regression, and related
hyperparameter estimation problems. The complexity of these algorithms grows linearly with
the number of knots, and hence they match the complexity of the best, known algorithms for
smoothing spline regression such as Reinsh’s algorithm [13, 14]. More importantly, theorem 2
and the algorithms derived in section 4 are not limited to kernel matrices generated by the spline
kernel, so their potential reach may extend beyond that of existing methods for smoothing spline
regression.

A natural next step would be to extend our results to tensor-product splines defined on
d-dimensional rectilinear grids. In two dimensions, a tensor-product spline would result in a
kernel matrix that can be expressed as a Kronecker product of two rank structured matrices.
A potential application of this is spatial–temporal modeling where it may be natural to assume
that that the spatial and temporal dimensions are separable.

18

A Proof of Theorem 1

Proof. Recall the definition of the spline kernel (15). This can also be expressed as

κp(s, t) =

∫ min(s,t)

0
φp(s;u)φp(t;u) du, s, t ∈ [0, 1], (42)

where φk(t;u) = (t−u)k−1

(k−1)! for k integral and positive, and we define φ1(t; t) = 1. To simplify the

notation when u = 0, we define φk(t) = φk(t; 0).
We start by noting that for p = 1, we have κ1(s, t) = min(s, t). For p ≥ 2, we may use

integration by parts combined with the fact that

d

du
φk(t;u) =

{
−φk−1(t;u) k ≥ 2

0 k = 1

to express (42) as

κp(s, t) =

[
−φp(s;u)φp+1(t;u)

]min(s,t)

u=0

−
∫ min(s,t)

0
φp−1(s;u)φp+1(t;u) du .

Expanding the integral on the right-hand side by repeated use of integration by parts, we arrive
at the expression

κp(s, t) =

p−1∑
k=0

(−1)k
[
−φp−k(s;u)φp+1+k(t;u)

]min(s,t)

u=0

which for s ≥ t simplifies to

κp(s, t) =

p−1∑
k=0

(−1)kφp−k(s)φp+1+k(t), s ≥ t.

Using the fact that κp(s, t) = κp(t, s) and the definition of φk, we arrive at

κp(s, t) =

p−1∑
k=0

(−1)k

(p− 1− k)!(p+ k)!
(st)p−1−k min(s, t)2k+1, s, t ∈ [0, 1], (43)

which holds for p ≥ 1.

B Generalized likelihood function

We now consider the stochastic process defined in section 2.3 and derive the generalized likelihood
function associated with the conditional distribution of y given the parameters λ, ν, and γ. We
have that

y | λ, ν, γ ∼ N (0, ν2Mλ + γFF T),

and we are interested in the case where γ → ∞, corresponding to an improper prior on the
parameter vector θ. The negative log-likelihood function may be expressed as

ψ(λ, ν, γ | y) =
1

2
yT (ν2Mλ + γFF T)−1y +

1

2
log det(ν2Mλ + γFF T) +

n

2
log(2π),

and it is easy to check that its limit as γ → ∞ is unbounded. The standard approach to this
problem is to project y onto the nullspace of F T . Specifically, if we let w = QT2 y, where Q2 is
obtained from the QR factorization (13), we may consider the conditional distribution

w | λ, ν2 ∼ N (0, ν2QT2MλQ2)

19

and the corresponding negative log-likelihood function

ψ(λ, ν | w) =
ν−2

2
wT (QT2MλQ2)

−1w +
1

2
log det(QT2MλQ2)

+
n− p

2
log(ν2) +

n

2
log(2π).

(44)

Setting the derivative with respect to ν−2 equal to zero and solving for ν2 yields the optimality
condition

ν2 =
wT (QT2MλQ2)

−1w

n− p
,

and using this expression in (44), we arrive at the one-dimensional profile

ψ̃(λ | w) =
1

2
log det(QT2MλQ2) +

n− p
2

log(wT (QT2MλQ2)
−1w) + ζ (45)

where ζ is a constant. It is easy to check that the function GML(λ), defined in (12), is propor-
tional to exp(ψ̃(λ | w)).

The function (45) may be rewritten as

ψ̃(λ | y) =
1

2
log det(Mλ) det(F TM−1λ F) +

n− p
2

log(λ−1yT (I −H(λ))y) + ζ̃ (46)

where ζ̃ is a constant. To see this, first note that Schur’s determinant identity implies that

det

([
ν2Mλ F
−F T γ−1I

])
= det(ν2Mλ) det(γ−1I + ν−2F TM−1λ F). (47)

Now, by applying the similarity transformation[
Q 0
0 I

]T [
ν2Mλ F
−F T γ−1I

] [
Q 0
0 I

]
=

ν2QT1MλQ1 ν2QT1MλQ2 R1

ν2QT2MλQ1 ν2QT2MλQ2 0
−RT1 0 γ−1I


where Q =

[
Q1 Q2

]
is the QR factorization (13) of F , we obtain an equivalent expression by

applying Schur’s determinant identity to the (2, 2) block of the right-hand side, i.e.,

det

([
ν2Mλ F
−F T γ−1I

])
= det(ν2QT2MλQ2) det

([
C R1

−RT1 γ−1I

])
= det(ν2QT2MλQ2) det(C) det(γ−1I +RT1 C

−1R1) (48)

where
C = ν2QT1MλQ1 − ν2QT1MλQ2(Q

T
2MλQ2)

−1QT2MλQ1.

Equating (47) and (48), and taking the limit as γ →∞, we arrive at

det(QT2MλQ2) = det(Mλ) det(F TM−1λ F) det(F TF)−1 (49)

where det(F TF) = det(RT1R1). Finally, to show that wT (QT2MλQ2)
−1w ∝ λ−1yT (I −H(λ))y,

first note that the Woodbury identity implies that

(ν2Mλ + γFF T)−1 = ν−2(M−1λ −M
−1
λ F (ν2γ−1Ip + F TM−1λ F)−1F TM−1λ),

and hence

lim
γ→∞

(ν2Mλ + γFF T)−1 = ν−2(M−1λ −M
−1
λ F (F TM−1λ F)−1F TM−1λ)

=
ν−2

nλ
(I −H(λ)). (50)

20

Moreover, it is staightforward (but tedious) to show that

lim
γ→∞

(QT (ν2Mλ + γFF T)Q)−1 = ν−2
[
0 0
0 (QT2MλQ2)

−1

]
,

and this implies that

lim
γ→∞

Q(QT (ν2Mλ + γFF T)Q)−1QT = ν−2Q2(Q
T
2MλQ2)

−1QT2 . (51)

Combining (50) and (51), we conclude that

wT (QT2MλQ2)
−1w = (nλ)−1yT (I −H(λ))y.

C Additional algorithms

Given the Cholesky factorization K + D = LLT where L = tril(UW T ,−1) + diag(c) with
U,W ∈ Rn×p and c ∈ Rn

++, the matrix–vector products Lx, LTx, L−1x, and L−Tx can be
evaluated in O(pn) flops using algorithms 7 to 10.

Algorithm 7 Triangular product (Lx)

Input: x ∈ Rn, U,W ∈ Rn×p, and c ∈ Rn
++ such that L = tril(UW T ,−1) + diag(c)

Output: y = Lx
Initialization: z ← 0
for k = 1, . . . , n do
yk ← ckxk + uTk z
z ← z + wkxk

end for

Algorithm 8 Adjoint triangular product (LTx)

Input: x ∈ Rn, U,W ∈ Rn×p, and c ∈ Rn
++ such that L = tril(UW T ,−1) + diag(c)

Output: y = LTx
Initialization: z ← 0
for k = n, . . . , 1 do
yk ← ckxk + wTk z
z ← z + ukxk

end for

Algorithm 9 Forward substitution (solve Lx = b)

Input: b ∈ Rn, U,W ∈ Rn×p, and c ∈ Rn
++ such that L = tril(UW T ,−1) + diag(c)

Output: x = L−1b
Initialization: z ← 0
for k = 1, . . . , n do
xk ← (bk − uTk z)/ck
z ← z + wkxk

end for

21

Algorithm 10 Backward substitution (solve LTx = b)

Input: b ∈ Rn, U,W ∈ Rn×p, and c ∈ Rn
++ such that L = tril(UW T ,−1) + diag(c)

Output: x = L−T b
Initialization: z ← 0
for k = n, . . . , 1 do
xk ← (bk − wTk z)/ck
z ← z + ukxk

end for

References

[1] F. P. Carli, T. Chen, and L. Ljung. Maximum entropy kernels for system identification.
IEEE Transactions on Automatic Control, 62(3):1471–1477, Mar. 2017.

[2] T. Chen, T. Ardeshiri, F. P. Carli, A. Chiuso, L. Ljung, and G. Pillonetto. Maximum
entropy properties of discrete-time first-order stable spline kernel. Automatica, 66:34–38,
Apr. 2016.

[3] A. M. Erisman and W. F. Tinney. On computing certain elements of the inverse of a sparse
matrix. Communications of the ACM, 18(3):177–179, Mar. 1975.

[4] D. Foreman-Mackey, E. Agol, S. Ambikasaran, and R. Angus. Fast and scalable Gaussian
process modeling with applications to astronomical time series. The Astronomical Journal,
154(6):220, nov 2017.

[5] Y. Fujimoto and T. Chen. On the coordinate change to the first-order spline kernel for
regularized impulse response estimation, 2019.

[6] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins University Press,
2013.

[7] M. F. Hutchinson and F. R. de Hoog. Smoothing noisy data with spline functions. Nu-
merische Mathematik, 47(1):99–106, Mar. 1985.

[8] J. Keiner and B. J. Waterhouse. Fast principal components analysis method for finance
problems with unequal time steps. In Monte Carlo and Quasi-Monte Carlo Methods 2008,
pages 455–465. Springer Berlin Heidelberg, 2009.

[9] G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal of
Mathematical Analysis and Applications, 33(1):82–95, Jan. 1971.

[10] R. Kohn and C. F. Ansley. A new algorithm for spline smoothing based on smoothing a
stochastic process. SIAM Journal on Scientific and Statistical Computing, 8(1):33–48, Jan.
1987.

[11] J. H. Manton and P.-O. Amblard. A primer on reproducing kernel Hilbert spaces. Foun-
dations and Trends in Signal Processing, 8(1-2):1–126, 2015.

[12] G. Pillonetto and G. De Nicolao. A new kernel-based approach for linear system identifi-
cation. Automatica, 46(1):81–93, Jan. 2010.

[13] C. H. Reinsch. Smoothing by spline functions. Numerische mathematik, 10(3):177–183,
1967.

[14] C. H. Reinsch. Smoothing by spline functions. II. Numerische Mathematik, 16(5):451–454,
Feb. 1971.

22

[15] I. J. Schoenberg. Spline functions and the problem of graduation. Proceedings of the
National Academy of Sciences, 52(4):947–950, Oct. 1964.

[16] L. Schumaker. Spline Functions: Basic Theory. Cambridge University Press, Sept. 2007.

[17] R. Vandebril, M. van Van Barel, and N. Mastronardi. Matrix Computations and Semisepara-
ble Matrices: Eigenvalue and Singular Value Methods, volume 2. Johns Hopkins University
Press, 2008.

[18] R. Vandebril, M. van Van Barel, and N. Mastronardi. Matrix Computations and Semisep-
arable Matrices: Linear Systems, volume 1. Johns Hopkins University Press, 2008.

[19] G. Wahba. Improper priors, spline smoothing and the problem of guarding against model
errors in regression. Journal of the Royal Statistical Society. Series B, 40(3):364–372, 1978.

[20] G. Wahba. Spline Models for Observational Data. SIAM, Jan. 1990.

23

