
Homework 01 Solutions

2022-09-02

36-617: Applied Linear Models
Fall 2022
Solutions

library(arm) ## includes lme4, MASS, Matrix
library(ggplot2); theme_set(theme_bw())
library(gridExtra) ## to arrange ggplots...

Problem 1: ISLR second Ed. p. 123 #8.

## You can use
##
## getCRANmirrors(all = FALSE, local.only = FALSE)
##
## to get a listing of all the CRAN mirrors from which you can get
## packages to install...

## install.packages("ISLR2",repos="https://cran.case.edu/") # only have to do this once...

library(ISLR2) ## do this once in every R session where you want to use this library.

## Warning: package 'ISLR2' was built under R version 4.1.3

1(a)
Use the lm() function to perform a simple linear regression with mpg as the response and horsepower as the
predictor. Use the summary() function to print the results. Comment on the output. For example:

i. Is there a relationship between the predictor and the response?

ii. How strong is the relationship between the predictor and the response?

iii. Is the relationship between the predictor and the response positive or negative?

iv. What is the predicted mpg associated with a horsepower of 98? What are the associated 95% confidence
and prediction intervals?

data(Auto)
str(Auto) ## get a quick "look" at the data...

## 'data.frame': 392 obs. of 9 variables:
## $ mpg : num 18 15 18 16 17 15 14 14 14 15 ...
## $ cylinders : int 8 8 8 8 8 8 8 8 8 8 ...
## $ displacement: num 307 350 318 304 302 429 454 440 455 390 ...
## $ horsepower : int 130 165 150 150 140 198 220 215 225 190 ...
## $ weight : int 3504 3693 3436 3433 3449 4341 4354 4312 4425 3850 ...
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## $ acceleration: num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
## $ year : int 70 70 70 70 70 70 70 70 70 70 ...
## $ origin : int 1 1 1 1 1 1 1 1 1 1 ...
## $ name : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161 141 54 223 241 2 ...
## - attr(*, "na.action")= 'omit' Named int [1:5] 33 127 331 337 355
## ..- attr(*, "names")= chr [1:5] "33" "127" "331" "337" ...
lm.0 <- lm(mpg ~ horsepower,data=Auto)

summary(lm.0)

##
## Call:
## lm(formula = mpg ~ horsepower, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.5710 -3.2592 -0.3435 2.7630 16.9240
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.935861 0.717499 55.66 <2e-16 ***
## horsepower -0.157845 0.006446 -24.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

The estimated coefficient on horsepower, β̂1, is highly significantly different from zero (p-value < 2 × 10−16

is very small!!), and the R2 value is moderately high, R2 = 0.6059, so there appears to be a moderately strong
relationship between the variables. Since β̂1 = −0.157845 < 0, the relationship is negative, i.e. mpg appears to
decrease as horsepower increases.

Using the code
new.data <- data.frame(mpg=0,horsepower=98)

predict(lm.0,newdata=new.data,interval="confidence")

## fit lwr upr
## 1 24.46708 23.97308 24.96108
predict(lm.0,newdata=new.data,interval="prediction")

## fit lwr upr
## 1 24.46708 14.8094 34.12476

we see that when horsepower = 98,

• The fitted mpg, ŷ, is 24.46708

• The 95% CI is (23.97308, 24.96108)

• The 95% PI is (14.8094, 34.12476)
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1(b)
Plot the response and the predictor. Use the abline() function to display the least squares regression line.
plot(mpg ~ horsepower,data=Auto)
abline(lm.0)
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Note that you can get a “prettier” plot with ggplot. . .
ggplot(data=Auto,aes(x=horsepower,y=mpg)) +
geom_point() +
geom_smooth(method='lm')
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(The shaded region around the regression line in the ggplot version is made by computing the 95%
confidence interval for mpg, ŷ, for every horsepower, x, in the figure. If you don’t want that in
the figure, you can specify se=FALSE as another argument to the geom_smooth function.)

It is always good to look at the data and compare it to the fitted model somehow. In this case, the plots confirm
that there is a reasonably strong negative relationship between horsepower and mpg, but it does not in fact
appear to be a linear relationship.

1(c)
Use the plot() function to produce diagnostic plots of the least squares regression fit. Comment on any
problems you see with the fit.
par(mfrow=c(2,2))

plot(lm.0)
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• In the Residual vs. Fitted plot we see that the data cloud of residuals is curved, reflecting the curvature
in the raw data in the plot we made before. We also see some fanning as ŷ increases, suggesting perhaps
that the error variance is not constant across all observations.

• The normal qq plot looks reasonably good, but we might like to see a blown-up version of it to investigate
possible outliers (obs 334 looks like an outlier in the residual vs. fitted plot for example).

• The scale-location plot is exhibiting some of the same curvature as the residual vs. fitted plot, and the
nonparametric smooth (the red like) suggests perhaps some nonconstant variance. That’s not unusual: if
the functional form is wrong, it sometimes manifests itself as non-constant variance (since one part of
the true nonlinear relationship may be better fitted with a straight line than some other part).

• The Residuals vs. Leverage plot does not show any particularly bad points. Although there are some
data point in the NE corner of the plot, the residual is still modest so the leverage doesn’t come much
into play. No data points have Cook’s Distance above 0.5 (in fact, the level curve for Cook’s distance =
0.50 is outside the plotting range of the graph).

Problem 2. ISLR second Ed. p. 123–124, #9.
2(a)
Produce a scatterplot matrix which includes all of the variables in the data set.
## Note that I should remove the column "name" before making the scatterplot matrix,
## because it is not a numeric variable.

library(GGally)
ggpairs(Auto[,-grep("name",names(Auto))])
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## you can also make a simpler plot with
##
## pairs(Auto)
##

Note that this plot also gives us a nonparametric marginal density estimate (i.e. a smooth histogram) for
each variable, the correlations between the variables, and a crude set of p-values for the test of whether each
correlation is significantly different from zero.

2(b)
Compute the matrix of correlations between the variables using the function cor(). You will need to exclude
the name variable, cor() which is qualitative.

The correlations are already calculated above, but let’s do it again with the cor() function.
options(width=999)
round(cor(Auto[,-grep("name",names(Auto))]),2)

## mpg cylinders displacement horsepower weight acceleration year origin
## mpg 1.00 -0.78 -0.81 -0.78 -0.83 0.42 0.58 0.57
## cylinders -0.78 1.00 0.95 0.84 0.90 -0.50 -0.35 -0.57
## displacement -0.81 0.95 1.00 0.90 0.93 -0.54 -0.37 -0.61
## horsepower -0.78 0.84 0.90 1.00 0.86 -0.69 -0.42 -0.46
## weight -0.83 0.90 0.93 0.86 1.00 -0.42 -0.31 -0.59
## acceleration 0.42 -0.50 -0.54 -0.69 -0.42 1.00 0.29 0.21
## year 0.58 -0.35 -0.37 -0.42 -0.31 0.29 1.00 0.18
## origin 0.57 -0.57 -0.61 -0.46 -0.59 0.21 0.18 1.00
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2(c)
Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables
except name as the predictors. Use the summary() function to print the results. Comment on the output. For
instance:

i. Is there a relationship between the predictors and the response?

ii. Which predictors appear to have a statistically significant relationship to the response?

iii. What does the coefficient for the year variable suggest?
Nameless_Auto <- Auto[,-grep("name",names(Auto))]

lm.1 <- lm(mpg ~ . , data=Nameless_Auto)
## Note the use of "." to stand for "all the variables in the data frame
## except for the y-variable (mpg, in this case)"...

summary(lm.1)

##
## Call:
## lm(formula = mpg ~ ., data = Nameless_Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
## cylinders -0.493376 0.323282 -1.526 0.12780
## displacement 0.019896 0.007515 2.647 0.00844 **
## horsepower -0.016951 0.013787 -1.230 0.21963
## weight -0.006474 0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576 0.098845 0.815 0.41548
## year 0.750773 0.050973 14.729 < 2e-16 ***
## origin 1.426141 0.278136 5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16

There appears to be a relationship between the predictors and the response, mpg: 4 of the 7 predictors have
coefficients that appear to be significantly different from zero, and the R2 is a more respectable 0.8215.

The four predictors with an apparently statistically significant relationship with the response are:

• displacement

• weight

• year

• origin

The coefficient estimate 0.750773 for year is significantly different from zero, so it makes sense to try to
interpret it:
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The value 0.750773 suggests that the average miles per gallon (mpg) for cars has been going up by about 3/4
mile per gallon per year, over the years covered by this data set.

2(d)
Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems
you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify
any observations with unusually high leverage?
par(mfrow=c(2,2))

plot(lm.1)
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• The Residual vs. Fitted plot shows that the data cloud of residuals is still curved, suggesting that there
is some nonlinearity that simply adding more different variables to the regression did not fix. There is
still some fanning out of the data as ŷ increases, suggesting non-constant error variance. At least obs.
#334 no longer looks like an outlier.

• The normal qq plot looks reasonably good, much as it did before. There’s some suggestion thsat the
upper tail might be a bit long, but nothing really concerning.

• The scale-location plot still has some curvature in it, again suggesting some nonlinearity that we haven’t
fixed in our model, but the nonparametric smooth is fairly flat now, so we might not worry too much
about the fanning we saw in the residuals vs. fitted plot.

• The Residuals vs. Leverage plot looks fairly good. There is one data point #14, with relatively high
leverage, but a very modest residual so it probably is not affecting the fitted regression function very
much. Although one of the level curves for Cook’s Distance = 0.50 appears in the plot, there are no
points with Cook’s Distance above 0.5.
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2(e)
Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to
be statistically significant?

We will learn about / review variable selection methods soon, but for now it suffices to fit a bunch of interactions
and see which ones have significant t-statistics. Here are a few useful things to know about the notation, before
we begin fitting things:

• We put the two-way interaction, or product, x1×x2 in the model with the model notation x1:x2

• We almost always want to include all lower-order terms with an interaction (this is called the
"hierarchy principle"), so it is better to say x1*x2, which expands to 1 + x1 + x2 + x1:x2

• If we try this with three variables, we get a three-way interaction, with all lower order terms: x1*x2*x3
expands to 1 + x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3.

• The notation (x1+x2+x3)^3 is equivalent to x1*x2*x3. The notation (x1+x2+x3)^2 is equivalent to
x1*x2 + x1*x3 + x2*x3, which is in turn equivalent to 1 + x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3
(i.e., all the two-way interactions, along with the corresponding lower-order terms.)

• Recall that . represents the additive model with all variables in the data frame except for the y-variable.
Hence .^2 is the model with all 2-way interactions (and all lower order terms), .^3 is the model with
all 3-way interactions (and all lower order terms), and similarly with .^4, .^5, etc.

• It is rare to see 4-way interactions in real data, and 3-way interactions are fairly uncommon. Often, it
suffices to look at main effects and 2-way interactions.

Let’s fit
lm.2 <- lm(mpg ~ .ˆ2, data=Nameless_Auto)

lm.3 <- lm(mpg ~ .ˆ3, data=Nameless_Auto)

From the summary for lm.2
summary(lm.2)

##
## Call:
## lm(formula = mpg ~ .^2, data = Nameless_Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6303 -1.4481 0.0596 1.2739 11.1386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.548e+01 5.314e+01 0.668 0.50475
## cylinders 6.989e+00 8.248e+00 0.847 0.39738
## displacement -4.785e-01 1.894e-01 -2.527 0.01192 *
## horsepower 5.034e-01 3.470e-01 1.451 0.14769
## weight 4.133e-03 1.759e-02 0.235 0.81442
## acceleration -5.859e+00 2.174e+00 -2.696 0.00735 **
## year 6.974e-01 6.097e-01 1.144 0.25340
## origin -2.090e+01 7.097e+00 -2.944 0.00345 **
## cylinders:displacement -3.383e-03 6.455e-03 -0.524 0.60051
## cylinders:horsepower 1.161e-02 2.420e-02 0.480 0.63157
## cylinders:weight 3.575e-04 8.955e-04 0.399 0.69000
## cylinders:acceleration 2.779e-01 1.664e-01 1.670 0.09584 .
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## cylinders:year -1.741e-01 9.714e-02 -1.793 0.07389 .
## cylinders:origin 4.022e-01 4.926e-01 0.816 0.41482
## displacement:horsepower -8.491e-05 2.885e-04 -0.294 0.76867
## displacement:weight 2.472e-05 1.470e-05 1.682 0.09342 .
## displacement:acceleration -3.479e-03 3.342e-03 -1.041 0.29853
## displacement:year 5.934e-03 2.391e-03 2.482 0.01352 *
## displacement:origin 2.398e-02 1.947e-02 1.232 0.21875
## horsepower:weight -1.968e-05 2.924e-05 -0.673 0.50124
## horsepower:acceleration -7.213e-03 3.719e-03 -1.939 0.05325 .
## horsepower:year -5.838e-03 3.938e-03 -1.482 0.13916
## horsepower:origin 2.233e-03 2.930e-02 0.076 0.93931
## weight:acceleration 2.346e-04 2.289e-04 1.025 0.30596
## weight:year -2.245e-04 2.127e-04 -1.056 0.29182
## weight:origin -5.789e-04 1.591e-03 -0.364 0.71623
## acceleration:year 5.562e-02 2.558e-02 2.174 0.03033 *
## acceleration:origin 4.583e-01 1.567e-01 2.926 0.00365 **
## year:origin 1.393e-01 7.399e-02 1.882 0.06062 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.695 on 363 degrees of freedom
## Multiple R-squared: 0.8893, Adjusted R-squared: 0.8808
## F-statistic: 104.2 on 28 and 363 DF, p-value: < 2.2e-16

we see (ignoring predictors that are only significant at the 0.10 level):

• displacement, accelleration and origin are all significant main effects.

• displacement:year, accelleration:year and accelleration:origin are all significant 2-way in-
teractions.

So initially the model we would think of would be

mpg ~ displacement + accelleration + origin + displacement:year + accelleration:year +
accelleration:origin

but, following the “hierarchy principle” that any interaction should bring with it all of its lower-order
interactions, we should really be looking at

mpg ~ displacement + accelleration + origin + year + displacement:year +
accelleration:year + accelleration:origin

or, more succinctly,

mpg ~ displacement*year + accelleration*year + accelleration*origin (1)

From the summary for lm.3
summary(lm.3)

##
## Call:
## lm(formula = mpg ~ .^3, data = Nameless_Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3263 -1.3084 -0.0916 1.2427 10.3972
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) -2.151e+02 4.506e+02 -0.477 0.633414
## cylinders 3.804e+01 1.132e+02 0.336 0.737101
## displacement -2.159e-01 2.595e+00 -0.083 0.933729
## horsepower -5.629e+00 3.435e+00 -1.638 0.102305
## weight 3.354e-01 2.376e-01 1.412 0.159037
## acceleration -1.253e+01 1.937e+01 -0.647 0.518227
## year 5.025e+00 5.202e+00 0.966 0.334697
## origin -9.470e+01 9.183e+01 -1.031 0.303204
## cylinders:displacement -8.647e-03 1.680e-01 -0.051 0.958977
## cylinders:horsepower -6.153e-01 6.333e-01 -0.971 0.332017
## cylinders:weight 1.888e-02 2.613e-02 0.723 0.470493
## cylinders:acceleration -9.031e-01 5.191e+00 -0.174 0.861998
## cylinders:year -6.801e-01 1.290e+00 -0.527 0.598503
## cylinders:origin 8.173e+00 1.591e+01 0.514 0.607746
## displacement:horsepower 1.929e-02 9.712e-03 1.986 0.047894 *
## displacement:weight -5.486e-04 4.648e-04 -1.180 0.238746
## displacement:acceleration -5.727e-02 1.038e-01 -0.552 0.581427
## displacement:year 1.027e-03 3.065e-02 0.034 0.973292
## displacement:origin 5.925e-01 5.692e-01 1.041 0.298704
## horsepower:weight -5.419e-04 1.008e-03 -0.537 0.591308
## horsepower:acceleration 3.994e-01 9.552e-02 4.181 3.73e-05 ***
## horsepower:year 4.337e-02 4.213e-02 1.030 0.303972
## horsepower:origin 2.643e+00 7.805e-01 3.386 0.000795 ***
## weight:acceleration -8.123e-03 8.288e-03 -0.980 0.327759
## weight:year -4.186e-03 2.823e-03 -1.483 0.139001
## weight:origin -1.260e-01 4.344e-02 -2.901 0.003965 **
## acceleration:year 1.348e-01 2.307e-01 0.584 0.559511
## acceleration:origin 7.782e+00 3.860e+00 2.016 0.044604 *
## year:origin 3.895e-01 1.024e+00 0.380 0.703859
## cylinders:displacement:horsepower 1.047e-04 3.498e-04 0.299 0.764857
## cylinders:displacement:weight -3.581e-06 7.703e-06 -0.465 0.642339
## cylinders:displacement:acceleration 2.952e-03 2.793e-03 1.057 0.291447
## cylinders:displacement:year 3.492e-04 2.309e-03 0.151 0.879857
## cylinders:displacement:origin -6.383e-02 2.110e-02 -3.025 0.002684 **
## cylinders:horsepower:weight -1.572e-05 4.080e-05 -0.385 0.700276
## cylinders:horsepower:acceleration -1.197e-02 7.002e-03 -1.710 0.088301 .
## cylinders:horsepower:year 1.231e-02 8.431e-03 1.461 0.145102
## cylinders:horsepower:origin -5.544e-02 5.930e-02 -0.935 0.350541
## cylinders:weight:acceleration 2.805e-04 3.855e-04 0.728 0.467370
## cylinders:weight:year -3.314e-04 3.417e-04 -0.970 0.332837
## cylinders:weight:origin 2.992e-03 2.797e-03 1.070 0.285530
## cylinders:acceleration:year 1.158e-02 6.050e-02 0.191 0.848333
## cylinders:acceleration:origin 7.960e-02 4.358e-01 0.183 0.855180
## cylinders:year:origin -3.052e-02 1.636e-01 -0.187 0.852118
## displacement:horsepower:weight 8.808e-08 3.359e-07 0.262 0.793332
## displacement:horsepower:acceleration 3.820e-05 1.079e-04 0.354 0.723541
## displacement:horsepower:year -2.941e-04 1.242e-04 -2.368 0.018460 *
## displacement:horsepower:origin 3.409e-04 1.859e-03 0.183 0.854575
## displacement:weight:acceleration -3.748e-06 6.354e-06 -0.590 0.555689
## displacement:weight:year 8.862e-06 6.045e-06 1.466 0.143610
## displacement:weight:origin -1.919e-05 4.168e-05 -0.460 0.645500
## displacement:acceleration:year 6.991e-04 1.236e-03 0.566 0.571951
## displacement:acceleration:origin -1.184e-02 1.288e-02 -0.919 0.358578
## displacement:year:origin -2.183e-03 6.107e-03 -0.357 0.720972

11



## horsepower:weight:acceleration 2.583e-06 1.158e-05 0.223 0.823662
## horsepower:weight:year 9.295e-06 1.195e-05 0.778 0.437395
## horsepower:weight:origin -6.136e-05 9.824e-05 -0.625 0.532667
## horsepower:acceleration:year -3.915e-03 1.154e-03 -3.394 0.000774 ***
## horsepower:acceleration:origin -4.246e-02 1.074e-02 -3.952 9.49e-05 ***
## horsepower:year:origin -2.164e-02 9.107e-03 -2.376 0.018086 *
## weight:acceleration:year 7.719e-05 9.701e-05 0.796 0.426779
## weight:acceleration:origin 1.143e-03 7.779e-04 1.470 0.142583
## weight:year:origin 1.369e-03 4.798e-04 2.854 0.004589 **
## acceleration:year:origin -8.235e-02 4.289e-02 -1.920 0.055720 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.441 on 328 degrees of freedom
## Multiple R-squared: 0.9179, Adjusted R-squared: 0.9022
## F-statistic: 58.22 on 63 and 328 DF, p-value: < 2.2e-16

we see

• No significant main effects

• displacement:horsepower, horsepower:accelleration, horsepower:year, weight:origin, and
accelleration:origin are significant two-way interactions

• cylinder:horsepower:weight, displacement:horsepower:year, horsepower:accelleration:year,
horsepower:accelleration:origin, and weight:year:origin are all significant three-way interac-
tions.

which we could write (using * to make sure we are following the “hierarchy principle”) as

mpg ~ cylinder*horsepower*weight + displacement*horsepower*year +
horsepower*accelleration*year + horsepower*accelleration*origin +
weight*year*origin (2)

Note that all the two-way interactions listed above (and a few more) are included in this model, and all the
main effects cylinder, horsepower, weight, displacement, year, and accelleration are also included in
the model (even though they weren’t by themselves significant).

Just for kicks, I also looked at
summary(lm(mpg ~ .ˆ4, data=Nameless_Auto))

and it turns out that none of the 4-way interactions appear to be significant, so we will not pursue this, or
any higher-order models, any further.

Note that models (1) and (2) are rather different. This is in part because interactions share some variability
with their lower order terms, and the t-statistics measure the importance of a variable or interaction after all
other variables and interactions have been included in the model. If the t-statistic is for a variable that has
similar variability to something that is already in the model, then the t-statistic will undervalue its variable.

In general, t-statistics are good for an initial quick skim of the variables in a model, but they do not say
anything about overall fit, predictive power, etc., of the model.

2(f)
Try a few different transformations of the variables, such as log(X), sqrt(X), X^2, etc. Comment on your
findings.

We haven’t talked about a principled way to proceed with this in class yet (though you may remember some
principled approaches from your earlier work with regression models!). For now we will just try to build a
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little on the little bit of EDA we did in problem 2(a).

I will try two different ideas to guide transformations here:

• Remove asymmetry (skewing) in all variables that exhibit it, and see if that improves the casewise
diagnostic plots.

• Leave the y variable, mpg, alone, and try to transform some of the X variables so that the distribution
of ŷ more closely follows the distribution of y.

Here’s the first idea in action:

Scanning the density plots from problem 2(a), it looks like mpg, displacement, horsepower and weight are
the continuous variables with least symmetric distributions, and all of them are right skewed. (The other
variables are either not very skewed, or are discrete and so transformations are not appropriate.) We’ll quickly
try log() and sqrt() on each of them to see what improves their distributions more. . .
ggpairs(sqrt(Nameless_Auto[,c("mpg","displacement","horsepower","weight")]))

Corr:

−0.846***

Corr:

−0.827***

Corr:
0.886***

Corr:

−0.862***

Corr:
0.940***

Corr:

0.872***
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ggpairs(log(Nameless_Auto[,c("mpg","displacement","horsepower","weight")]))
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Corr:

−0.860***

Corr:

−0.850***

Corr:
0.872***

Corr:

−0.875***

Corr:
0.943***

Corr:

0.874***
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## it looks like sqrt() works well for mpg, and log() works reasonably well
## for displacement, horsepower and weight.

## it is possible to be fussier about the transformations, but then you have to
## figure out how to explain a very fussy transformation to your co-worker or
## client.

data_p1 <- Nameless_Auto

data_p1 <-data_p1[,-grep("mpg",names(data_p1))]
data_p1$sqrt_mpg <- sqrt(Nameless_Auto$mpg)

data_p1 <-data_p1[,-grep("displacement",names(data_p1))]
data_p1$log_displacement <- log(Nameless_Auto$displacement)

data_p1 <-data_p1[,-grep("horsepower",names(data_p1))]
data_p1$log_horsepower <- log(Nameless_Auto$horsepower)

data_p1 <-data_p1[,-grep("weight",names(data_p1))]
data_p1$log_weight <- log(Nameless_Auto$weight)

lm.p1.1 <- lm(sqrt_mpg ~ ., data=data_p1)
par(mfrow=c(2,2))
plot(lm.p1.1)
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lm.p1.2 <- lm(sqrt_mpg ~ .ˆ2, data=data_p1)
par(mfrow=c(2,2))
plot(lm.p1.2)
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lm.p1.3 <- lm(sqrt_mpg ~ .ˆ3, data=data_p1)
par(mfrow=c(2,2))
plot(lm.p1.3)
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There’s not a lot to distinguish these residual plots, and so I will invoke the “principle of parsimony” and just
choose to examine the first model more closely (although there are indeed slight improvments in the residuals
for the other models, perhaps especially the third one).

From the summary
summary(lm.p1.1)

##
## Call:
## lm(formula = sqrt_mpg ~ ., data = data_p1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.98033 -0.16427 -0.01022 0.15266 1.03773
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.826816 0.946114 14.614 < 2e-16 ***
## cylinders 0.005869 0.026620 0.220 0.82563
## acceleration -0.019796 0.009561 -2.070 0.03908 *
## year 0.072729 0.004384 16.588 < 2e-16 ***
## origin 0.069286 0.026064 2.658 0.00818 **
## log_displacement -0.071752 0.132478 -0.542 0.58840
## log_horsepower -0.587390 0.145739 -4.030 6.71e-05 ***
## log_weight -1.425817 0.204366 -6.977 1.33e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Residual standard error: 0.2865 on 384 degrees of freedom
## Multiple R-squared: 0.875, Adjusted R-squared: 0.8728
## F-statistic: 384.1 on 7 and 384 DF, p-value: < 2.2e-16

we see that all of the predictors except for cylinder and year and log_displacement are significant. The
model we would end up with, then, is

sqrt_mpg ~ accelleration + year + origin + log_horsepower + log_weight (3)

Here’s the second idea in action:

• Looking back at the scatter plots in problem 2(a), it looks like mpg has the most nonlinear relationships
with displacement, horsepower, and weight.

• Since sqrt(mpg) worked well before, I’m guessing that when we leave mpg alone, we should square the
predictors.

• A variation of the "hierarchy priniple" says that when you include a power of a predictor in a model
you should include all lower-order powers as well.

Here’s an initial model that implements these ideas:
data_p2 <- Nameless_Auto
data_p2$displacement2 <- (data_p2$displacement)ˆ2
data_p2$horsepower2 <- (data_p2$horsepower)ˆ2
data_p2$weight2 <- (data_p2$weight)ˆ2

lm.p2.1 <- lm(mpg ~ ., data=data_p2)
par(mfrow=c(2,2))
plot(lm.p2.1)
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These residual plots look about the same to me as the plots for lm.p1.1, so let’s see what predictors look
significant here:
summary(lm.p2.1)

##
## Call:
## lm(formula = mpg ~ ., data = data_p2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.2232 -1.5534 -0.0931 1.4304 11.9162
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.509e+00 4.789e+00 0.733 0.464247
## cylinders 4.113e-01 3.275e-01 1.256 0.209886
## displacement -3.513e-02 2.005e-02 -1.752 0.080556 .
## horsepower -1.915e-01 4.096e-02 -4.675 4.09e-06 ***
## weight -1.067e-02 2.590e-03 -4.122 4.62e-05 ***
## acceleration -1.735e-01 1.004e-01 -1.728 0.084870 .
## year 7.692e-01 4.512e-02 17.048 < 2e-16 ***
## origin 5.788e-01 2.668e-01 2.170 0.030643 *
## displacement2 6.324e-05 3.463e-05 1.826 0.068661 .
## horsepower2 5.268e-04 1.384e-04 3.807 0.000164 ***
## weight2 1.047e-06 3.488e-07 3.002 0.002862 **
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.902 on 381 degrees of freedom
## Multiple R-squared: 0.8653, Adjusted R-squared: 0.8618
## F-statistic: 244.8 on 10 and 381 DF, p-value: < 2.2e-16

The significant predictors here are horsepower, weight, year, origin, horsepower2 and weight2, so the
model we would get is

mpg ~ horsepower + weight + year + origin + horsepower2 + weight2 (4)

Aside:

The models (1), (2), (3) and (4) seem really different. How could we choose between them? There are basically
three perspectives on model choice:

Fit/Validity. Sheather’s textbook is dominated by this perspective. The two main questions are: Does the
model fit the data, and can we verify that the assumption of the model actually hold?

Predictive Accuracy. The ISLR book is dominated by this perspective. The main question is, regardless
of how well the model fits or how valid the assumptions are, does the model provide a good "machine"
for predicting future observations? This is where issues like the bias-variance tradeoff for mean-squared
prediction error come into play.

Scientific/Policy Usefulness. The Gelman-Hill book is dominated by this perspective. Does the model
agree with or improve on existing theory for how the data is generated? Is it useful for making new
scientific inferences and/or new social policy decisions, etc.?

Notice that I say each book is “dominated” by a particular perspective. No good statistician only approaches
modeling and inference from just one perspective, and neither do these books. You can find some of each
perspective in all three books, and you will find it useful to approach your work from combinations of these
perspectives as well. But each book tends to emphasize one perspective over the others, as I have indicated
above.

Problem 3.
Problem 3(a)
The kidiq.csv file is in the same directory as this assigment. Read it into a data frame in R with a command
like kidiq <- read.csv("kidiq.csv",header=TRUE). Use the cbind() command to create:

• y = a column vector (matrix with one column), from the column kid.score in kidiq.

• X = a matrix with (a) the first column containing all 1’s; (b) the second column containing the column
mom.hs from kidiq; and (c) the third colummn containing the column mom.iq from kidiq.

Use dim() to verify that y is 434 × 1, and X is 434 × 3. Use the head() command to print out the first few
rows of y and X, and turn the results of the dim() and head() commands in.
kidiq <- read.csv("kidiq.csv",header=TRUE)
str(kidiq)

## 'data.frame': 434 obs. of 6 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ kid.score: int 65 98 85 83 115 98 69 106 102 95 ...
## $ mom.hs : int 1 1 1 1 1 0 1 1 1 1 ...
## $ mom.iq : num 121.1 89.4 115.4 99.4 92.7 ...
## $ mom.work : int 4 4 4 3 4 1 4 3 1 1 ...
## $ mom.age : int 27 25 27 25 27 18 20 23 24 19 ...
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y <- cbind(kidiq$kid.score)
X <- cbind(1, with(kidiq, cbind(mom.hs,mom.iq)))

dim(y)

## [1] 434 1
dim(X)

## [1] 434 3
head(y)

## [,1]
## [1,] 65
## [2,] 98
## [3,] 85
## [4,] 83
## [5,] 115
## [6,] 98
head(X)

## mom.hs mom.iq
## [1,] 1 1 121.11753
## [2,] 1 1 89.36188
## [3,] 1 1 115.44316
## [4,] 1 1 99.44964
## [5,] 1 1 92.74571
## [6,] 1 0 107.90184

Problem 3(b)
Compute V = (XTX)−1 in R, and show the result (V should be a 3 × 3 matrix; why?).
V <- solve(t(X) %*% X)
print(V)

## mom.hs mom.iq
## 0.1049491626 -0.0001705848 -1.025110e-03
## mom.hs -0.0001705848 0.0148740410 -1.151616e-04
## mom.iq -0.0010251098 -0.0001151616 1.115594e-05

X is 434 × 3, so t(X) is 3 × 434. Therefore t(X)%*%X multiplies a 3 × 434 matrix with a 434 × 3 matrix; the
inner dimensions cancel and the result has the outer dimensions, 3 × 3. Finally the inverse of a square matrix
has the same dimensions as the original matrix, 3 × 3 in this case.

Problem 3(c)
Compute β̂ = (XTX)−1XT y in R, and show the result.
beta.hat <- V %*% t(X) %*% y
print(beta.hat)

## [,1]
## 25.731538
## mom.hs 5.950117
## mom.iq 0.563906
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Problem 3(d)
Calculate the residual vector y − Xβ̂ in R, and use the result to compute the residual variance s2 (don’t
forget to divide by n− k; what are n and k here?). Show the resulting s2.
n <- dim(X)[1]
k <- dim(X)[2]
res.var <- t(y - X%*%beta.hat) %*% (y - X%*%beta.hat) / (n-k)
print(res.var)

## [,1]
## [1,] 328.9028
## this is sˆ2

Problem 3(e)
Calculate the matrix Var(β̂) = (XTX)−1s2 in R, and extract the square roots of the diagonal elements of
this matrix. These are the standard errors SE(β̂0), SE(β̂1), and SE(β̂2).
var.beta <- V * c(res.var)
beta0.sd <- sqrt(var.beta[1,1])
beta1.sd <- sqrt(var.beta[2,2])
beta2.sd <- sqrt(var.beta[3,3])

cbind(beta.hat, c(beta0.sd, beta1.sd, beta2.sd))

## [,1] [,2]
## 25.731538 5.87520802
## mom.hs 5.950117 2.21181218
## mom.iq 0.563906 0.06057408
res.sd <- sqrt(res.var)
print(res.sd)

## [,1]
## [1,] 18.13568
## This is s, the residual SE.

Problem 3(f)
Compare your values for β̂0, β̂1, β̂2 (from part ), and their standard errors (from part ) with the result of
running

summary(lm(kid.score ~ mom.hs + mom.iq, data=kidiq))

Comment on any similarities or differences.
summary(lm(kid.score ~ mom.hs + mom.iq, data=kidiq))

##
## Call:
## lm(formula = kid.score ~ mom.hs + mom.iq, data = kidiq)
##
## Residuals:
## Min 1Q Median 3Q Max
## -52.873 -12.663 2.404 11.356 49.545
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.73154 5.87521 4.380 1.49e-05 ***
## mom.hs 5.95012 2.21181 2.690 0.00742 **
## mom.iq 0.56391 0.06057 9.309 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.14 on 431 degrees of freedom
## Multiple R-squared: 0.2141, Adjusted R-squared: 0.2105
## F-statistic: 58.72 on 2 and 431 DF, p-value: < 2.2e-16

The estimated β̂’s, SE(β̂)’s, and s, are identical with the results of the raw matrix calculations, to as many
displayed decimal places as they have in common.

Problem 4.
In the folder for this hw assignment you will find a pdf called “An IMRAD paper on wine”, based on Example
1.2.4 in Sheather. This paper is based only on EDA, not on any more sophisticated methods.

Problem 4(a)
Read the slides “IMRAD: What goes into each section”, a pdf of which is in the same folder as this assignment.
(There is nothing to turn in for this part).

Problem 4(b)
Does the paper appropriately address each of the parts of an IMRAD paper as described the “IMRAD: What
goes into each section” pdf?

For each section below, either say “yes this section has the right content”, or say “no” and describe what is
missing and/or what needs to be moved to another section of the paper or deleted.

• Abstract

• Introduction

• Methods

• Results

• Discussion

Later we will see (and write) more complex versions of IMRAD and IDMRAD papers; this is just a first taste!

Here are some possible “good” answers. Your answers may be a bit different, but as long as they are thoughtful
and take into account some of the important features of each section of an IMRAD paper (as described in the
slides I asked you to read), you should be fine.

• Abstract
Yes, this section has the right content.

The slides on IMRAD don’t discuss Abstracts, but a good rule of thumb is that the abstract should have
about as many sentences as there are main sections in the paper; each sentence gives the “highlight” for
the corresponding section of the paper. In this case, the first sentence summarizes the intrduction; the
second and third sentences summarize the methods section; Sentences 4-7 summarize the results; and
sentence 8 summarizes the discussion. (It is a little awkward because the answer to the main question of
the paper, that Parker’s ratings have a bigger impact than Coates’, comes in the middle of the abstract
instead of toward the end where the summary of the discussion is, but otherwise it seems fine.)
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• Introduction
Yes, it mostly does a good job.

◦ + Provides a rationale and aim for the study (“determine whether Parker or Coates has a grweater
effect on wine prices”)

◦ + Supplies sufficient background (pretty much the whole first paragraph)

◦ − Doesn’t do much lit review (What would previous literature be like, for this article? Would it be
about wine? Would it be about the reliability and accuracy of wine critics? Would it be on what
makes a critic or “influencer” believable?)

◦ + Brief, clear to the point, and in present tense

◦ Doesn’t address some of the “optional” items, like study design, main results, etc.

• Methods
Yes, this is not too bad, and is fairly typical of the methods section of a “data analysis”
paper.

◦ + It adequately addresses “Who? What? When? Where? How? Why?”.

◦ + It says where the data came from.

◦ − It does not describe study design (how each wine was selected for the study, how it was extracted
from Parker’s and Coates’ publications, etc.).

◦ + It does describe all the variables in the study, and therefore also describes how the effect (Parker
vs Coates) was measured.

◦ + It describes the data analysis method (pure EDA in this case)!

◦ − It would probably be better if the graphs themselves appeared in the Results section, since the
Methods section should not contain any Results or Discussion material.

◦ For this paper there do not appear to be any ethical considerations to discuss, but for other
papers there would be, such as ethical aspects of data collection & study design, confidentiality of
individuals’ data, etc.

• Results
Yes this section has the right content, for such a short simple paper.

Because the methods are so simple and the EDA was already shown in the Methods section (it really
didn’t belong there, it should have been here in the Methods section), so what we have here is a description
of how the EDA was used to get results for each research question, and the reasoning behind each of the
results.

There is one paragraph for each research question announced in the Introduction (in a paper with
more involved analyses, there might be one subsection for each research question, rather than just one
paragraph, with corresponding subsections back in the Methods section). The paragraphs summarize
the analyses and give appropriate conclusions (in a paper with more involved analyses, e.g. regression
analysis etc., there might also be tables listing coefficient estimates & standard errors, graphs showing
predicted values, etc.).

• Discussion
Not quite the right content.

The first paragraph should summarize the main results of the paper. The first paragraph here is a
mixture of new results (should be in the results section!) and study limitations (should come later in
the discussion!). The first sentence of the last paragraph would be better as the first sentence of the
Discussion. The remaining text describes further limitations and other considerations, which is fine.
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