
Homework 02 Solutions

2022-09-08

36-617: Applied Linear Models
Fall 2022
Solutions

library(arm) ## includes lme4, MASS, Matrix
library(ggplot2); theme_set(theme_bw())
library(gridExtra) ## to arrange ggplots...

Problem 1
Let y = Xβ + ε, where y = (y1, . . . , yn)T is an n × 1 column vector, X is an n × (p + 1) matrix whose
first column is all 1’s, β = (β0, . . . , βp)T is a (p + 1) × 1 column vector, and ε = (ε1, . . . , εn)T ∼ N(0, σ2I)
is an n × 1 random column vector, following a multivariate Normal distribution with mean vector 0 and
variance-covariance matrix σ2I, where I is the n× n identity matrix.

Problem 1(a)
Let

U =


1
1
...
1


be an n× 1 column of all 1’s.

i Using the definition of the hat matrix H, show HX = X

ii Using your result in (i), show HU = U

Part (i)

HX = [X(XTX)−1XT ]X = X(XTX)−1(XTX) = X

Part (ii)

Two ways to think about it:

• In words: Since HX = X we know that all of the columns of X are unchanged when we premultiply X
by H. In particular, since the first column of X is U , we know U will be unchanged when we premultiply
by H: HU = U .

• In math: Let

E1 =


1
0
0
...
0

 ,
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the n× 1 column vector with a 1 in the first row and 0’s in the remaining n− 1 rows. Since the first
column of X is U , we know XE1 = U . Therefore,

HU = H(XE1) = (HX)E1 = XE1 = U

Problem 1(b)
Use properties of the hat matrix H = X(XTX)−1XT to show that the column vector

y − ŷ =


y1 − ŷ1
y2 − ŷ2

...
yn − ŷn


can be written as y − ŷ = (I −H)y.

Since Hy = ŷ and Iy = y,
y − ŷ = Iy −Hy = (I −H)y

Problem 1(c)
For any n× 1 column vector

a =


a1
a2
...
an


we know that aTU =

∑n
i=1 ai. Use this fact, together with your results in (a) and (b), to show that

n∑
i=1

(yi − ŷi) = 0.

n∑
i=1

(yi − ŷi) = (y − ŷ)T︸ ︷︷ ︸
1×n

U︸︷︷︸
n×1

= [(I −H)y]T︸ ︷︷ ︸
1×n

U︸︷︷︸
n×1

= yT︸︷︷︸
1×n

(I −H)︸ ︷︷ ︸
n×n

U︸︷︷︸
n×1

= yT︸︷︷︸
1×n

(U − U)︸ ︷︷ ︸
n×1

= Y T︸︷︷︸
1×n

0︸︷︷︸
n×1

= 0︸︷︷︸
1×1

Aside: Hence y and ŷ have the same sample mean y, and the residuals vs fitted plot should always be
“balanced”, in some sense, around the horizontal line at ê = 0.

Problem 2
Let y = Xβ + ε, where y = (y1, . . . , yn)T is an n × 1 column vector, X is an n × (p + 1) matrix whose
first column is all 1’s, β = (β0, . . . , βp)T is a (p + 1) × 1 column vector, and ε = (ε1, . . . , εn)T ∼ N(0, σ2I)
is an n × 1 random column vector, following a multivariate Normal distribution with mean vector 0 and
variance-covariance matrix σ2I, where I is the n× n identity matrix.

Problem 2(a)
Use properties of the hat matrix H = X(XTX)−1XT and the multivariate Normal distribution as discussed
in class, to show1

ê ∼ N(0, (I −H)σ2)
1Very similar to problem 1(b).
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where ê is the column vector ê = y − ŷ.

We will use several facts from lecture. First, let W ∼ N(µ,Σ) be an arbitrary multivariate normal random
vector and A a matrix whose second dimension is the same as the length of W , so that AW is defined. Then
we have

AW ∼ N(Aµ,AΣAT ) (1)

Additionally, we have from lecture that

HXβ = Xβ (2)
(I −H)(I −H)T = (I −H)(I −H) = (I −H) (3)
y ∼ N(Xβ, σ2I) (4)

Let ŷ be the n× 1 column vector of fitted values.

ê = y − ŷ
= y −Hy
= (I −H)y
∼ N((I −H)Xβ, (I −H)σ2I(I −H)T ) (by facts (1) and (4))
= N(0, σ2(I −H)(I −H)T ) (by fact (2))
= N(0, σ2(I −H)) (by fact (3))

Problem 2(b)
Let H be the hat matrix for the multivariate regression model y = Xβ + ε as in part (a), and let H1 be the
hat matrix for the intercept-only model y = β0 + ε.

i Show that the fitted values ŷ for the intercept-only model is an n× 1 column vector, all of whose entries
are y, that is,

ŷ =

 ŷ1
...
ŷn

 =

 y
...
y

 (∗)

(where the first “=” is the definition of ŷ and the second “=” is what I want you to show).

ii Find a simple expression, in terms of (some or all of) y, I, H and H1, for the sample covariance

Cov(y, ŷ) = 1
n

∑n

i=1
(yi − y)(ŷi − y).

( Hint: We can rewrite Cov(y, ŷ) = 1
n (y− y)T (ŷ− y), where ŷ is the column vector of fitted values from

y = Xβ + ε and, abusing notation slightly, y is the column vector in (∗) above, i.e. the fitted values
from the intercept-only model y = β0 + ε.)

iii Continue along the lines of the calculations in part (ii) to show that the sample correlation between y
and ŷ can be written as

Corr(y, ŷ) =
√
SSreg

SST

and hence R2 for the regression model y = Xβ + ε really is the squared correlation between y and ŷ:

R2 = Corr(y, ŷ)2 .
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Part (i)

In the intercept-only model, the design matrix X is an n× 1 matrix in which each entry is 1. This can be
used to derive the hat matrix H1:

XTX = [n]1×1 (the 1× 1 matrix whose only entry is n)
=⇒ (XTX)−1 = [1/n]1×1 (the 1× 1 matrix whose only entry is 1/n)

=⇒ X(XTX)−1XT = 1
n
XXT

= 1
n

1 . . . 1
...

. . .
...

1 . . . 1


n×n

= H1 (by the definition of the hat matrix)

For any i in 1, 2, . . . , n, we derive ŷi by multiplying the ith row of H1 by the vector y. In other words, for the
intercept-only model, ŷi = 1

n

∑n
i=1 yi = y for all i.

Part (ii)

To avoid using y to denote both a scalar and a vector, let’s immediately use the fact that H1y is equal to the
n× 1 vector

[
y y . . . y

]T , as shown in the previous problem. Rewriting the covariance in vector form,
per the problem suggestion, we have:

Cov(y, ŷ) = 1
n

∑n

i=1
(yi − y)(ŷi − y)

= 1
n

(y −H1y)T (ŷ −H1y)

= 1
n

(y −H1y)T (Hy −H1y)

= 1
n

[(I −H1)y]T (H −H1)y

= 1
n
yT (I −H1)T (H −H1)y (since (AB)T = BTAT )

= 1
n
yT (H −H1 −HT

1 H +HT
1 H1)y

= 1
n
yT (H −H1H)y (since HT

1 = H1 and H1H1 = H1)

= 1
n
yT (H −H1)y (since H1H = HH1 = H1)
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Part (iii)

Recall that the sample correlation is the standardized sample covariance, defined as

widehatCorr(y, ŷ) =
ˆCov(y, ŷ)√
σ̂2

yσ̂
2
ŷ

=
∑n

i=1(yi − y)(ŷi − y)√∑n
i=1(yi − y)2∑n

i=1(ŷi − y)2

= (y −H1y)T (ŷ −H1y)√
(y −H1y)T (y −H1y)(ŷ −H1y)T (ŷ −H1y)

= yT (H −H1)y√
yT (I −H1)T (I −H1)yyT (H −H1)T (H −H1)y

(using the previous problem)

=
√
yT (H −H1)y√

yT (I −H1)T (I −H1)y

=
√
yT (H −H1)y√
yT (I −H1)y

(using a version of fact (3))

=
√
SSreg

SST

=
√
R2 (by the definition of R2)

And therefore, R2 = Ĉorr(y, ŷ)2.

Problem 2(c)
Show that ê and ŷ have sample correlation 0, and hence a scatter plot of ê vs ŷ should show no increasing or
decreasing overall trend.

The sample correlation is 0 iff the sample covariance is 0, so let’s just concern ourselves with the sample
covariance and not worry about the denominator in the correlation.

Recall that the residuals sum to 0 by construction, which also means that their sample mean is 0. Hence:

ˆCov(ê, ŷ) = 1
n

n∑
i=1

(êi − 0)(ŷi − y)

= 1
n

(ê)T (ŷ − y)

= 1
n

(y − ŷ)T (ŷ − y)

= 1
n

[(I −H)y]T (H −H1)y

= 1
n
yT (I −H)(H −H1)y (since (I −H)T = (I −H))

= 1
n
yT (H −H1 −HH +HH1)y

= 1
n
yT (H −H1 −H +H1)y (since HH1 = H1)

= 0

Aside: It is interesting to note that the results of problem #1 (c) and problem #2 (b) and (c) did not depend
at all on the normality assumption, or even on whether the model fits the data well or not. In other words,
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even if the fit is terrible, it will still be true that the sum of ê is zero, R2 = [Corr(y, ŷ)]2, and the sample
correlation between ê and ŷ is zero. The only thing that matters is that the model have an intercept, i.e. the
X matrix should have a column of 1’s.

Problem 3
[Based on Gelman & Hill. Ch 3, #1, p. 49] The file pyth.dat, in the same folder as this hw, contains
outcome y and inputs x1, x2 for 40 data points, with a further 20 points with the inputs but no observed
outcome (for this problem we will ignore these last 20 points). Save the file to your working directory and
read it into R using the read.table() function.

Problem 3(a)
Fit the two models

M1: y = β0 + β1 x1 + ε

M2: y = β0 + β1 x2 + ε

Which model provides a better fit for y? Why?
gh.data <- read.table("pyth.dat",header=T)
gh.data <- gh.data[apply(gh.data,1,function(x) {!any(is.na(x))}),]
str(gh.data)

## 'data.frame': 40 obs. of 3 variables:
## $ y : num 15.68 6.18 18.1 9.07 17.97 ...
## $ x1: num 6.87 4.4 0.43 2.73 3.25 5.3 7.08 9.73 4.51 6.4 ...
## $ x2: num 14.09 4.35 18.09 8.65 17.68 ...
M1 <- lm(y ~ x1, data=gh.data)
M2 <- lm(y ~ x2, data=gh.data)

summary(M1)

##
## Call:
## lm(formula = y ~ x1, data = gh.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.7409 -4.5056 0.7114 4.3739 7.7547
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.0633 1.5526 6.481 1.25e-07 ***
## x1 0.6559 0.2499 2.625 0.0124 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.921 on 38 degrees of freedom
## Multiple R-squared: 0.1535, Adjusted R-squared: 0.1312
## F-statistic: 6.89 on 1 and 38 DF, p-value: 0.01242
summary(M2)

##
## Call:
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## lm(formula = y ~ x2, data = gh.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1751 -1.2352 -0.1867 1.0899 5.3755
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.78532 0.66037 5.732 1.33e-06 ***
## x2 0.83223 0.05017 16.589 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.863 on 38 degrees of freedom
## Multiple R-squared: 0.8787, Adjusted R-squared: 0.8755
## F-statistic: 275.2 on 1 and 38 DF, p-value: < 2.2e-16
##
par(mfrow=c(2,2))
plot(M1)
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The R2 is much lower for M1 (0.1535) than for M2 (0.8787). Neither set of residual diagnostic plots looks
great: the residual vs fitted and scale-location plots somewhat favor M1, and the QQ plots somewhat favor M2.
The Cook’s distances are a bit better for M1 also. For R2 and normality of residuals, I prefer M2.

Problem 3(b)
Construct new variables y2 = y2, x12 = x12, and x22 = x22 and fit the models

M3: y2 = β0 + β1 x12 + ε

M4: y2 = β0 + β1 x22 + ε

Compare the fits of these two models to the models in part (a). Which fits best? Why?
attach(gh.data)
y2 <- yˆ2
x12 <- x1ˆ2
x22 <- x2ˆ2
detach()
M3 <- lm(y2 ~ x12,data=gh.data)
M4 <- lm(y2 ~ x22,data=gh.data)

summary(M3)

##
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## Call:
## lm(formula = y2 ~ x12, data = gh.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -189.324 -125.674 4.988 131.052 214.089
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 161.7831 31.7873 5.090 1e-05 ***
## x12 1.2971 0.6242 2.078 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 131.1 on 38 degrees of freedom
## Multiple R-squared: 0.102, Adjusted R-squared: 0.07841
## F-statistic: 4.318 on 1 and 38 DF, p-value: 0.04452
summary(M4)

##
## Call:
## lm(formula = y2 ~ x22, data = gh.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -41.280 -31.224 -7.463 25.422 59.571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.1583 9.0306 3.893 0.000387 ***
## x22 1.0198 0.0419 24.338 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33.96 on 38 degrees of freedom
## Multiple R-squared: 0.9397, Adjusted R-squared: 0.9381
## F-statistic: 592.3 on 1 and 38 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(M3)
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Model M4 has the highest R2 (0.9397), and has residuals vs fitted and scale-location plots that are at least as
good as any of the others; on the other hand, we seem to be losing normality of the residuals. Nevertheless I
prefer M4 so far.

problem 3(c)
Fit both of the models

M5: y = β0 + β1 x1 + β2 x2 + ε

M6: y2 = β0 + β1 x12 + β2 x22 + ε

Compare these to the earlier models. Which fits best? Why?
M5 <- lm(y ~ x1 + x2, data=gh.data)
M6 <- lm(y2 ~ x12 + x22, data=gh.data)

summary(M5)

##
## Call:
## lm(formula = y ~ x1 + x2, data = gh.data)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -0.9585 -0.5865 -0.3356 0.3973 2.8548
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.31513 0.38769 3.392 0.00166 **
## x1 0.51481 0.04590 11.216 1.84e-13 ***
## x2 0.80692 0.02434 33.148 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9 on 37 degrees of freedom
## Multiple R-squared: 0.9724, Adjusted R-squared: 0.9709
## F-statistic: 652.4 on 2 and 37 DF, p-value: < 2.2e-16
summary(M6)

##
## Call:
## lm(formula = y2 ~ x12 + x22, data = gh.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.26020 -0.05391 -0.00396 0.06367 0.35990
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0026691 0.0422669 0.063 0.95
## x12 0.9999672 0.0006419 1557.713 <2e-16 ***
## x22 0.9998685 0.0001663 6011.909 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1344 on 37 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.013e+07 on 2 and 37 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(M5)
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Putting both x1 and x2 in the model for y really improved the model: M5 has an R2 of 0.9724, and both
predictors are significant (have coefficient estimates significantly different from zero). However the residual
diagnostic plots don’t look great; in particular it seems like the residuals have a lot of right skew, and leverage
seems tio increase with the size of the standardized resduals.

M6 is really winning, though: R2 = 1, and the QQ plot shows good agreement between the residuals and the
normal distribution. There seems to be some evidence for non-constant variance though: the residuals vs fitted
plot fans out as the fitted valuess increase, and the scale-location plot tells a similar story. On the other hand,
only one data point seems to have a concerning Cook’s distance.

Based on all of this I like M6 best. Looking at the estimated coefficients for M6, I notice something interesting:
β̂0 is indistinguishable from 0, and both β̂1 and β̂2 equal 1, to at least two decimal places (even if we compute
the 95% CI’s!).

Problem 3(d)
Can you find a simple, recognizable function x3 = (something involving both x1 and x2), so that

M7: y = β0 + β1 x3 + ε

provides a fit comparable to the best fitting models above? What is going on?

In problem 3(c) we saw that the model M6 was very nearly

y2 = x12 + x22 + ε
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If we ignore ε, take square roots, and put ε and some “unknown’ ’ regression coefficients back in, we get a
model like

y = β0 + β1
√
x12 + x22 + ε

i.e., y is the distance to the origin from some points (x1, x2) in Cartesian space.

Let’s try fitting this model:
M7 <- lm(y ~ I(sqrt(x1ˆ2 + x2ˆ2)),data=gh.data)
summary(M7)

##
## Call:
## lm(formula = y ~ I(sqrt(x1^2 + x2^2)), data = gh.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0083283 -0.0027000 -0.0007907 0.0031643 0.0089809
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0018422 0.0019159 0.962 0.342
## I(sqrt(x1^2 + x2^2)) 0.9998313 0.0001316 7596.431 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.00434 on 38 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 5.771e+07 on 1 and 38 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(M7)
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This seems to confirm our suspicions! R2 = 1, the estimated regression coefficients are essentially β̂0 = 0 and
β̂1 = 1, and the diagnostic plots looks great:

• The residual vs fitted plot shows little vertical structure.

• The QQ plot shows good adherence to normality.

• The scale-location plot is consistent with constant-variance residuals.

• None of the data points has Cook’s distance above 0.5.
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