
36-617: Applied Linear Models
Fall 2022

HW02 – Due Mon Sept 12, 11:59pm

• Please turn the homework in online in our course webspace at canvas.cmu.edu.

– There is a link to Gradescope in the description of this assignment on Canvas.

– You should submit a single pdf to Gradescope. If you need help with this, please see
https://www.cmu.edu/teaching/gradescope/index.html. Also, allow yourself some extra time to create the
pdf & upload it in Gradescope.

– Don’t forget to identify which pages each (part of each) problem appears on in your solitions. Gradescope
allows the TA to grade all the problem 1’s together, then all the problem 2’s, and so forth. This leads to
more consistent grading and better comments for you.

– Remember to list who you worked with, on this and every assignment.

• Reading:

– For next week: Sheather Ch 6 (supplemental: ISLR 3.3.3; G&H Ch 4)

• There are three exercises below. No IMRAD this week; that will appear on HW03.

Exercises
1. Let y = Xβ + ε, where y = (y1, . . . , yn)T is an n × 1 column vector, X is an n × (p + 1) matrix whose first column

is all 1’s, β = (β0, . . . , βp)T is a (p + 1) × 1 column vector, and ε = (ε1, . . . , εn)T ∼ N(0, σ2I) is an n × 1 random
column vector, following a multivariate Normal distribution with mean vector 0 and variance-covariance matrix
σ2I, where I is the n × n identity matrix.

(a) Let

U =


1
1
...
1


be an n × 1 column of all 1’s.

i. Using the definition of the hat matrix H, show HX = X
ii. Using your result in (i), show HU = U

(b) Use properties of the hat matrix H = X(XT X)−1XT to show that the column vector

y − ŷ =


y1 − ŷ1
y2 − ŷ2

...
yn − ŷn


can be written as y − ŷ = (I − H)y.
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(c) For any n × 1 column vector

a =


a1
a2
...

an


we know that aT U =

∑n
i=1 ai. Use this fact, together with your results in (a) and (b), to show that

n∑
i=1

(yi − ŷi) = 0.

Aside: Hence y and ŷ have the same sample mean y, and the residuals vs fitted plot should always be
“balanced”, in some sense, around the horizontal line at ê = 0.

2. Let y = Xβ + ε, where y = (y1, . . . , yn)T is an n × 1 column vector, X is an n × (p + 1) matrix whose first column
is all 1’s, β = (β0, . . . , βp)T is a (p + 1) × 1 column vector, and ε = (ε1, . . . , εn)T ∼ N(0, σ2I) is an n × 1 random
column vector, following a multivariate Normal distribution with mean vector 0 and variance-covariance matrix
σ2I, where I is the n × n identity matrix.

(a) Use properties of the hat matrix H = X(XT X)−1XT and the multivariate Normal distribution as discussed
in class, to show1

ê ∼ N(0, (I − H)σ2)

where ê is the column vector ê = y − ŷ.
(b) Let H be the hat matrix for the multivariate regression model y = Xβ + ε as in part (a), and let H1 be the

hat matrix for the intercept-only model y = β0 + ε.
i. Show that the fitted values ŷ for the intercept-only model is an n×1 column vector, all of whose entries

are y, that is,

ŷ =


ŷ1
...

ŷn

 =


y
...
y

 (∗)

(where the first “=” is the definition of ŷ and the second “=” is what I want you to show).
ii. Find a simple expression, in terms of (some or all of) y, I, H and H1, for the sample covariance

Cov(y, ŷ) =
1
n

∑n

i=1
(yi − y)(ŷi − y).

(Hint: We can rewrite Cov(y, ŷ) = 1
n (y − y)T (ŷ − y), where ŷ is the column vector of fitted values from

y = Xβ + ε and, abusing notation slightly, y is the column vector in (∗) above, i.e. the fitted values
from the intercept-only model y = β0 + ε.)

iii. Continue along the lines of the calculations in part (ii) to show that the sample correlation between y
and ŷ can be written as

Corr(y, ŷ) =

√
S S reg

S S T

and hence R2 for the regression model y = Xβ + ε really is the squared correlation between y and ŷ:

R2 = Corr(y, ŷ)2 .

1Very similar to problem 1(b).
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(c) Show that ê and ŷ have sample correlation 0, and hence a scatter plot of ê vs ŷ should show no increasing
or decreasing overall trend.

Aside: It is interesting to note that the results of problem #1 (c) and problem #2 (b) and (c) did not depend at all
on the normality assumption, or even on whether the model fits the data well or not. In other words, even if the
fit is terrible, it will still be true that the sum of ê is zero, R2 = [Corr(y, ŷ)]2, and the sample correlation between
ê and ŷ is zero. The only thing that matters is that the model have an intercept, i.e. the X matrix should have a
column of 1’s.

3. [Based on Gelman & Hill. Ch 3, #1, p. 49] The file pyth.dat, in the same folder as this hw, contains outcome
y and inputs x1, x2 for 40 data points, with a further 20 points with the inputs but no observed outcome (for this
problem we will ignore these last 20 points). Save the file to your working directory and read it into R using the
read.table() function.

(a) Fit the two models

M1 : y = β0 + β1x1 + ε

M2 : y = β0 + β1x2 + ε

Which model provides a better fit for y? Why?

(b) Construct new variables y2 = y2, x12 = x12, and x22 = x22 and fit the models

M3 : y2 = β0 + β1x12 + ε

M4 : y2 = β0 + β1x22 + ε

Compare the fits of these two models to the models in part (a). Which fits best? Why?

(c) Fit both of the models

M5 : y = β0 + β1x1 + β2x2 + ε

M6 : y2 = β0 + β1x12 + β2x22 + ε

Compare these to the earlier models. Which fits best? Why?

(d) Can you find a simple, recognizable function x3 = (something involving both x1 and x2), so
that

M7 : y = β0 + β1x3 + ε

provides a fit comparable to the best fitting models above? What is going on?
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