
Homework 03 Solutions

2022-09-15

36-617: Applied Linear Models
Fall 2022
Solutions

library(arm) ## includes lme4, MASS, Matrix
library(ggplot2); theme_set(theme_bw())
library(gridExtra) ## to arrange ggplots...
library(GGally) ## for ggpairs...

Problem 1: Sheather, Ch 3 (yes!), pp. 109 ff., #5. % cars04.csv

cars04 <- read.csv("cars04.csv",header=T)
lm.3.10 <- lm(SuggestedRetailPrice ~ DealerCost,data=cars04)
summary(lm.3.10)

##
## Call:
## lm(formula = SuggestedRetailPrice ~ DealerCost, data = cars04)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1743.52 -262.59 74.92 265.98 2912.72
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -61.904248 81.801381 -0.757 0.45
## DealerCost 1.088841 0.002638 412.768 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 587 on 232 degrees of freedom
## Multiple R-squared: 0.9986, Adjusted R-squared: 0.9986
## F-statistic: 1.704e+05 on 1 and 232 DF, p-value: < 2.2e-16

Problem 1(a)
Based on the above output for model lm.3.10, the analyst concluded the following: Since the model explains
just more than 99.8% of the variability in Suggested Retail Price and the coefficient of Dealer Cost has a
t-value greater than 412, the model lm.3.10 is a highly effective model for producing prediction intervals for
Suggested Retail Price.\[0.6em] % Provide a detailed critique of this conclusion.

Although the regression output in the summary of model lm.3.10 above looks good, there are several volations
of the modeling assumptions revealed in following diagnostic plots:
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• SuggestedRetailPrice, DealerCost and the residuals, are all skewed right

• The residuals have nonconstant variance

• The aggregation of the data around different lines in the plot suggests that some predictor variable(s)
may be missing from the model

Violations of the modeling assumptions undermine the validity of inferences we can make from the
summary(lm.3.10) output.

Problem 1(b)
Carefully describe all the shortcomings evident in model lm.3.10. For each shortcoming, describe the steps
needed to overcome the shortcoming.

Here are four possible shortcomings (you may have found others! Name any two legitimate criticisms, and
ways to fix them, for full credit) :

• The “SuggestedRetailPrice vs DealerCost”, “Standardized Residuals vs DealerCost”, and
“Sqrt(|Standardized Residuals|) vs DealerCost” plots all show that Dealer Cost is substantially right-
skewed. Right skewing tends to create high-leverage points in the data. A transformation of DealerCost
to reduce the skewing would help: usually a fractional power, or a logarithm are good fixes for this.

• The Normal QQ Plot shows that the residuals are also right-skewed. The same sort of transformation
(log or fractional power) of SuggestedRetailPrice will help to reduce this skewing.
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• Both the Standardized Residuals plot and the “Sqrt(|Standardized Residuals|) vs DealerCost” plot show
that the residuals have non-constant variance. You could suggest a variance-stabilizing transformation,
or a log or power transformation, to help fix this problem.

• The Standardized Residual plot shows the data clustering along several different lines, suggesting that
perhaps different vehicle types or brands have different relationships between SuggestedRetailPrice and
DealerCost. One could explore this idea by considering an ANCOVA model, which we will talk about in
later lectures.

Problem 1(c)
Is model lm.3.11 below an improvement over model lm.3.10 in terms of predicting Suggested Retail Price?
If so, please describe all the ways in which it is an improvement.
lm.3.11 <- lm(log(SuggestedRetailPrice) ~ log(DealerCost),data=cars04)
summary(lm.3.11)

##
## Call:
## lm(formula = log(SuggestedRetailPrice) ~ log(DealerCost), data = cars04)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.062920 -0.008694 0.000624 0.010621 0.048798
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.069459 0.026459 -2.625 0.00924 **
## log(DealerCost) 1.014836 0.002616 387.942 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01865 on 232 degrees of freedom
## Multiple R-squared: 0.9985, Adjusted R-squared: 0.9985
## F-statistic: 1.505e+05 on 1 and 232 DF, p-value: < 2.2e-16

lm.3.11 is definitely an improvement over lm.3.10. The regression output for both models is about the same,
so the differences are in diagnostic plots below. Here are some ways in which the plots are better for lm.3.11
than for lm.3.10 (You may have found other reasons. Name any two legitimate reasons for full credit).

• Both DealerCost and SuggestedRetailPrice exhibit less right-skewing in lm.3.11 than in 3.10.

• While there are still outliers in the residual vs fitted plot for 3.11, they are less extreme than for 3.10.

• In addition to less right-skew, the normal QQ plot suggests more nearly-normal residuals for 3.11 than
for 3.10. We have pushed some values out into the left tail, but there are fewer of these in the QQ plot
for 3.11 than there are for 3.10.
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Problem 1(d)
Interpret the estimated coefficient of log(Dealer Cost) in lm.3.11.

As we know from the text, or from the handout “log xform and percent interpretation.pdf’ ’ in the week03
folder in the files area, β1 is the expected percent change in y for a 1% change in x. Since β̂1 = 1.015 in
summary(lm.3.11), there is about a 1% change in SuggestedRetailPrice for every 1% change in DealerCost,
according to the fitted model.

Problem 1(e)
List any weaknesses apparent in lm.3.11.

Here are some weaknesses we can see in the diagnostic plots (you may have discovered others; list any two
legitimate weaknesses to get full credit):

• From the QQ plot, both tails of the residual distribution are a bit long. Although the deviation is more
impressive in the lower tail, there are more data points in the upper tail.

• The scale-location plot suggests that the variance of residuals may increase as DealerCost increases.

• Although it is not as evident in the diagnostic plots for lm.3.11 as it is in the plots for lm.3.10, it
still looks like the data aggregates along definable curves, which suggests that perhaps different car types
have different relationships between DealerCost and SuggestedRetailPrice.
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(Aside: If we were to successfully model different DealerCost vs. SuggestedRetailPrice relationships for different
car types, that might remove the other two problems above as well.)

Problem 2: Sheather, Ch 5, p. 147, #2.
We begin with a little exploration, and finding a good model.
houston <- read.csv("HoustonChronicle.csv",header=T)
str(houston)

## 'data.frame': 122 obs. of 5 variables:
## $ District : chr "Alvin" "Alvin" "Angleton" "Angleton" ...
## $ X.Repeating.1st.Grade: num 4.1 5.8 7.1 6.7 7.3 2.6 8.2 2.3 12.5 0 ...
## $ X.Low.income.students: num 49.7 41.1 44.2 30.2 49.4 33.7 45.6 29.7 71.7 37.6 ...
## $ Year : int 2004 1994 2004 1994 2004 1994 2004 1994 2004 1994 ...
## $ County : chr "Brazoria" "Brazoria" "Brazoria" "Brazoria" ...

cat("\n")

for (i in names(houston)) {
cat(i,"\n")
print(summary(houston[,i]))
cat("Number of unique values:",length(unique(houston[,i])),"\n\n")

}

## District
## Length Class Mode
## 122 character character
## Number of unique values: 61
##
## X.Repeating.1st.Grade
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 3.100 5.700 6.076 8.750 18.400
## Number of unique values: 77
##
## X.Low.income.students
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.20 27.15 41.35 41.88 53.02 98.10
## Number of unique values: 111
##
## Year
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1994 1994 1999 1999 2004 2004
## Number of unique values: 2
##
## County
## Length Class Mode
## 122 character character
## Number of unique values: 8

Apparently, there are only two “year” values: 1994 and 2004; so we will convert this to a factor variable, just
to make interpretation of the coefficients easier; and we make a scatterplot matrix (“pairs” plot) of all of the
variables except district. I’m also going to rename the two continuous variables to something more suggestive,
and re-order the variables, so that the “pairs” plot makes a little more sense.
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houston$Year <- as.factor(houston$Year)
names(houston)[c(2,3)] <- c("Pct.Repeating.1st.Grade", "Pct.Low.income.students")
houston <- houston[,c(1,3,2,4,5)]
ggpairs(houston[,-1]) # there are too many districts for the plot, so we omit it
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There is some evidence in the “pairs” plots for all three of the hypotheses in parts (a), (b) and (c), but we
now fit regression and ANCOVA models to see which effects are “significant” (i.e. large enough that they are
not likely just due to noise in the data).

Problem 2(a) Low income associated with repeating first grade?
Let’s start with a simple regression of repeating first grade on low income
summary(lm.2a <- lm(Pct.Repeating.1st.Grade ~ Pct.Low.income.students,data=houston))

##
## Call:
## lm(formula = Pct.Repeating.1st.Grade ~ Pct.Low.income.students,
## data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9845 -2.5072 -0.4184 1.8505 11.1067
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.91419 0.83836 3.476 0.000709 ***
## Pct.Low.income.students 0.07550 0.01823 4.141 6.47e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.821 on 120 degrees of freedom
## Multiple R-squared: 0.125, Adjusted R-squared: 0.1177
## F-statistic: 17.14 on 1 and 120 DF, p-value: 6.472e-05

par(mfrow=c(1,1))
plot(Pct.Repeating.1st.Grade ~ Pct.Low.income.students,data=houston)
abline(lm.2a)
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par(mfrow=c(2,2))
plot(lm.2a)
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This actually looks like a good regression; the summary shows a very significant increasing association between
percent of students repeating first grade and percent of students with low (family) incomes: the coefficient
on percent low income students is β̂1 = 0.07550, with SE(β̂1) = 0.01823. The effect seems rather small,
however—we expect an increase of only 0.08% of kids repeating first grade, for every 1% increase in kids in
poverty.

Problem 2(b) More students repeating first grade in 2004-2005 than in 1994-
1995?
For this question, we will just regress repeating first grade on year
summary(lm.2b <- lm(Pct.Repeating.1st.Grade ~ Year,data=houston))

##
## Call:
## lm(formula = Pct.Repeating.1st.Grade ~ Year, data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.6787 -2.6537 -0.6262 2.5750 12.9262
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4738 0.5172 10.584 <2e-16 ***

8



## Year2004 1.2049 0.7314 1.647 0.102
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.039 on 120 degrees of freedom
## Multiple R-squared: 0.02212, Adjusted R-squared: 0.01397
## F-statistic: 2.714 on 1 and 120 DF, p-value: 0.1021

par(mfrow=c(1,1))
jy <- jitter(as.numeric(houston$Year)-1)
plot(Pct.Repeating.1st.Grade ~ jy,data=houston,xlab="Year (jittered)")
abline(lm.2b)
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par(mfrow=c(2,2))
plot(lm.2b)
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Again, this looks like a good regression model, in the sense that the assumptions underlying linear regression
are approximately satisfied1. However, the estimated coefficient on Year, β̂1 = 1.2 with SE(β̂1) = 0.73 is not
statistically significantly different from zero. From this we would conclude that there really is not enough
evidence to say that there are more students repeating first grade in the 2004 school year than in 1994 school
year.

Problem 2(c) Difference in the relationship of income with repeating between
the two school years?
Now let’s fit the interactive ANCOVA model. This will both help answer question (2c), and help us to
understand whether our answers to questions (2a) and (2b) need any additional elaboration.
summary(lm.2c <- lm(Pct.Repeating.1st.Grade ~ Pct.Low.income.students*Year,data=houston))

##
## Call:
## lm(formula = Pct.Repeating.1st.Grade ~ Pct.Low.income.students *
## Year, data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.1606 -2.6121 -0.5576 1.7495 11.6014

1Remember, the clustering around different x values is just due to the fact that x is categorical. The important thing here is
that we don’t see any interesting patterns within or between those clusters.
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27194 1.22347 2.674 0.00855 **
## Pct.Low.income.students 0.06080 0.03093 1.966 0.05167 .
## Year2004 -0.38956 1.76109 -0.221 0.82532
## Pct.Low.income.students:Year2004 0.01903 0.03949 0.482 0.63066
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.845 on 118 degrees of freedom
## Multiple R-squared: 0.1288, Adjusted R-squared: 0.1066
## F-statistic: 5.813 on 3 and 118 DF, p-value: 0.0009689

The summary shows that neither the main effect for Year, nor the interaction between low income and Year,
are significant in the model. This is illustrated in the scatterplot below: the regression lines for the two
categories (year=1994-1995 and year=2004-2005) are nearly identical. The residual diagnostic plots that
follow suggest that the modeling assumptions hold up fairly well here.
par(mfrow=c(1,1))
plot(Pct.Repeating.1st.Grade ~ Pct.Low.income.students,data=houston,

col=as.numeric(houston$Year))
coefs <- coefficients(lm.2c)
abline(a=coefs[1],b=coefs[2],col=1)
abline(a=coefs[1]+coefs[3],b=coefs[2]+coefs[4],col=2)
legend(78,18,legend=c("1994-1995","2004-2005"),pch=1,col=c(1,2),cex=0.5)
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par(mfrow=c(2,2))
plot(lm.2c)
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We can also apply an F test using the ANOVA function in R to compare the full ANCOVA model in part (c)
with the models in parts (a) and (b).
anova(lm.2a,lm.2c)

## Analysis of Variance Table
##
## Model 1: Pct.Repeating.1st.Grade ~ Pct.Low.income.students
## Model 2: Pct.Repeating.1st.Grade ~ Pct.Low.income.students * Year
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 120 1751.9
## 2 118 1744.4 2 7.512 0.2541 0.7761

Since the F statistic testing H0: Pct.Repeating.1st.Grade ∼ Pct.Low.income.students vs HA:
Pct.Repeating.1st.Grade ∼ Pct.Low.income.students ∗ Year is nonsignificant (F = 0.2541, p = 0.7761),
we cannot reject the simpler model in part (a): If we are starting with Pct.Repeating.1st.Grade ∼
Pct.Low.income.students, there is really no need to add Year (let alone an interaction with Year) to the
model.
anova(lm.2b,lm.2c)

## Analysis of Variance Table
##
## Model 1: Pct.Repeating.1st.Grade ~ Year
## Model 2: Pct.Repeating.1st.Grade ~ Pct.Low.income.students * Year
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## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 120 1957.9
## 2 118 1744.4 2 213.52 7.2221 0.001099 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here the F statistic testing H0: Pct.Repeating.1st.Grade ∼ Year vs HA: Pct.Repeating.1st.Grade ∼
Pct.Low.income.students ∗ Year is highly significant (F = 7.2221, p = 0.001099), so we would reject the
simpler model in part (b): starting with Pct.Repeating.1st.Grade ∼ Year, we really do get a better model
by adding Pct.Low.income.students to the model.

Note that we cannot perform an F test like anova(lm.2a, lm.2b) directly2, since these models
are not nested. We can infer, informally, from the above tests though, that of all three models,
Pct.Repeating.1st.Grade ∼ Pct.Low.income.students seems to be the best. Thus, there is no difference
between years in the way that low income is related to repeating first grade.

Problem 3: Sheather, Ch 6, pp. 224 ff., #5.
• For part (b), feel free to transform variables as needed so that (i) the assumptions of the linear regression

model are better satisfied; and (ii) the model is still “explainable” to non-statisticians.

• For part (e): We will discuss variable selection formally next week. For now, remember that the t
statistic for each column Xj of the X matrix tests whether the coefficient βj is significantly different
from zero, after including all other columns of X in the model.

Problem 3(a) Transform PrizeMoney → log(PrizeMoney) but no other transfor-
mations?
From the ggpairs plot below, and possibly from futher analysis that you did for Quiz 2, only the variables
TigerWoods and PrizeMoney are strongly skewed. The variable TigerWoods is a dummy/indicator variable,
so we won’t transform that. Because of the strong skew in PrizeMoney, a log transformation makes sense for
this variable (Box-Cox would confirm that, by suggesting a power of PrizeMoney very close to zero).
golf <- read.csv("pgatour2006.csv",header=TRUE)
names(golf)

## [1] "Name" "TigerWoods" "PrizeMoney"
## [4] "AveDrivingDistance" "DrivingAccuracy" "GIR"
## [7] "PuttingAverage" "BirdieConversion" "SandSaves"
## [10] "Scrambling" "BounceBack" "PuttsPerRound"

ggpairs(golf[-1],upper = list(continuous = wrap("cor", size=2.5))) ## don't include golfer's name

2There are ways to compare non-nested models, e.g. cross-validation, AIC, BIC, etc., but it doesn’t work with F tests or
likelihood ratio tests.
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None of the other variables show strong skew visually, though Box-Cox might recommend various transforma-
tions for them. In the interest of being able to communicate clearly about any predictors in the model, and
since these predictors don’t exhibit much skew anyway, I’m going to leave them untransformed.

Problem 3(b) Develop a valid full regression model containing all seven potential
predictors (listed in the problem stmt), using log(PrizeMoney) as the response
variable
If we look at the data set directly
oldwidth <- options()$width
options(width=200)
head(golf)

## Name TigerWoods PrizeMoney AveDrivingDistance DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves Scrambling BounceBack PuttsPerRound
## 1 Aaron Baddeley 0 60661 288.3 60.73 58.26 1.745 31.36 54.80 59.37 19.30 27.96
## 2 Adam Scott 0 262045 301.1 62.00 69.12 1.767 30.39 53.61 57.94 19.35 29.28
## 3 Alex Aragon 0 3635 302.6 51.12 59.11 1.787 29.89 37.93 50.78 16.80 29.20
## 4 Alex Cejka 0 17516 288.8 66.40 67.70 1.777 29.33 45.13 54.82 17.05 29.46
## 5 Arjun Atwal 0 16683 287.7 63.24 64.04 1.761 29.32 52.44 57.07 18.21 28.93
## 6 Arron Oberholser 0 107294 285.0 62.53 69.27 1.775 29.20 47.20 57.67 20.00 29.56
options(width=oldwidth)

we see that each line is for one golfer, and each golfer has a different name. Thus, if we include Name in the
regression (a) the model will fit perfectly, but (b) we will get no information about the other predictors (try it!
it’s truly ugly!).

So I will remove Name from the data set and proceed from there. . .
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golf <- golf[,-1]

Really, nothing more than this model is required:
summary(lm.3.1 <- lm(log(PrizeMoney) ~ DrivingAccuracy + GIR + PuttingAverage

+ BirdieConversion + SandSaves + Scrambling + PuttsPerRound,
data=golf))

##
## Call:
## lm(formula = log(PrizeMoney) ~ DrivingAccuracy + GIR + PuttingAverage +
## BirdieConversion + SandSaves + Scrambling + PuttsPerRound,
## data = golf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.71949 -0.48608 -0.09172 0.44561 2.14013
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.194300 7.777129 0.025 0.980095
## DrivingAccuracy -0.003530 0.011773 -0.300 0.764636
## GIR 0.199311 0.043817 4.549 9.66e-06 ***
## PuttingAverage -0.466304 6.905698 -0.068 0.946236
## BirdieConversion 0.157341 0.040378 3.897 0.000136 ***
## SandSaves 0.015174 0.009862 1.539 0.125551
## Scrambling 0.051514 0.031788 1.621 0.106788
## PuttsPerRound -0.343131 0.473549 -0.725 0.469601
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6639 on 188 degrees of freedom
## Multiple R-squared: 0.5577, Adjusted R-squared: 0.5412
## F-statistic: 33.87 on 7 and 188 DF, p-value: < 2.2e-16

par(mfrow=c(2,2))
plot(lm.3.1)
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You can play with other transformations, but this is already a pretty good model, in terms of the casewise
diagnostic plots, and so I wouldn’t bother (this is easier to explain to a client or collaborator!):

• The residuals vs fitted values plot does not show any pattern other than smaller amounts of data for
very low or very high ŷ’s.

• Tne normal QQ plot looks very good except for a slight hint of a bit of a long tail to the right, but this
is very minor and probably can be ignored.

• The Scale-Location plot is almost a perfect example of constant variance, with just a little bit of
small-sample bias for larger ŷ where there is very little data

• The residuals vs leverage plot shows no concerning points in the northeast or southeast corners of the
plot.

Given that the model lm.3.1 seems to satisfy the assumptions of linear regression well, we can use the overall
F test to see that regressing on these variables is better than the intercept-only model (F = 33.872 on 7 and
188 df, p < 2.2× 10−16). Here R2 is a fairly modest 0.66, and only two of the seven predictors have significant
t statistics.

Problem 3(c) Identify any points that should be investigated. Give one or more
reasons to support each point chosen.
One point in the casewise diagnostic plots seems to have a high fitted value and high leverage. One way to
find that point is this (sorry for the small type; trying to make a row of the data frame fit on one line). . .
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oldwidth <- options()$width
options(width=200)

max.fitted.val <- max(fitted(lm.3.1))
golf[fitted(lm.3.1)==max.fitted.val,]

## TigerWoods PrizeMoney AveDrivingDistance DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves Scrambling BounceBack PuttsPerRound
## 178 1 662771 306.4 60.71 74.15 1.756 35.26 55.17 62.81 24.77 29.38
max.leverage <- max(hatvalues(lm.3.1))
golf[hatvalues(lm.3.1)==max.leverage,]

## TigerWoods PrizeMoney AveDrivingDistance DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves Scrambling BounceBack PuttsPerRound
## 178 1 662771 306.4 60.71 74.15 1.756 35.26 55.17 62.81 24.77 29.38
options(width=oldwidth)

. . . and we find that the unusual data point belongs to Tiger Woods! We already know there is a special
indicator variable for Tiger Woods, which is perhaps not surprising since he was far and away the top prize
money earner in golf in 2006:
attach(golf)
tw <- PrizeMoney[178]
hist(PrizeMoney)
abline(v=tw,col="red")
text(tw-160000,50,"Tiger Woods' Prize Money",col="red")
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detach(golf)
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Problem 3(d) Describe any weaknesses in your model.
As shown above, the model seems to satisfy the assumptions of linear regression, so the overall fit seems good.
Weaknesses of the model include:

• R2 = 0.66 so only 66% of the variation in log(PrizeMoney) is explained by the predictors.

• Only two of the seven predictors (GIR and BirdieConversion) have coefficients significantly different
from zero, according to the t statistics.

Problem 3(e) The golf fan wants to remove all predictors with insignificant t
-values from the full model in a single step. Explain why you would not recom-
mend this approach.
The t-test for a predictor is the numerical equivalent of the added-variable plot: it shows the importance of
that predictor, after other predictors have been added to the model. Indeed, t2 = F , the partial F statistic for
adding that predictor, after all other predictors have been added to the model.

If two or more predictors are co-linear, the t statistics for any of them—even for all of them—can be
nonsignificant, even though they contribute significantly to explaining y.

Thus, removing all the predictors with non-significant t-statistics at once can remove important variables in
the model. As seen in the ggpairs plot in part (a), some predictors are highly correlated with one another,
and linear combinations of them may be even more highly correlated with one another.

If we are going to use t statistics to eliminate variables, it is better to eliminate one-at-a-time, starting with
the t statistics closest to zero (unless our client or collaborator wants to eliminate something else first). Each
time we eliminate a variable, we would re-fit the model and discover that all the remaining t-statistics have
changed, and we would use the new t-statistics to select the next predictor to eliminate.

This recipe is easy to follow but it does not necessarily lead to a great model, because (a) it is “greedy” in that
it only looks at the “worst” variable at each step, rather than considering other orders in which to eliminate
variables, and (b) it re-uses the data many times, and so is vulnerability to “capitalization on chance”: t
statistics in subsequent models after removing one or more predictors do not have the “textbook” distributions,
and we may be making severe errors by relying on them for variable selection.

In Chapter 7 and related readings, we will look at better ways to do variable selection.

Problem 4
In the folder for this hw assignment you will find a pdf called “COVID breakthrough rates in England”. This
is a recent article from the medical journal The Lancet. Note that the article is exactly in IMRAD format,
with sections labelled “Introduction”, “Methods”, “Results” and {“Discussion”.

The Abstract for this paper has a special form, called a “structured abstract”, in which there is a short,
labelled, paragraph corresponding to each section of the paper. We will not be writing structured abstracts in
our class, but it is good to see the additional information that a structured abstract can contain. In our class,
we will be writing shorter abstracts, consisting of approximately one sentence per section of the paper (so,
4–5 sentences for a paper with 4 sections). Each sentence highlights the main point of each section, possibly
with one extra sentence giving the main resul of the paper.

Problem 4(a)
Write a one-paragraph abstract with exactly four sentences, one for each section of the paper: Introduction,
Methods, Results and Discussion. Each sentence should highlight the main point of each section, and together
the four sentences should tell the story of the paper. The last sentence should include the main result of the
paper (or, if you need a fifth sentence to give the main result, that is fine too).
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(For most of this abstract I simply copied or merged sentences from the structured abstract on p. 1 of the article
[you could of course write your own sentences summarizing each part of the article]. I thought it would be helpful
if I added a footnote for the place I got each sentence [you do not have to do this for your answer].)

This study aimed to identify risk factors for post-vaccination SARS-CoV-2 infection and describe the charac-
teristics of post-vaccination illness3. We used univariate logistic regression models (adjusted for age, BMI,
and sex) to analyse the associations between risk factors and post-vaccination infection, and the associations
of individual symptoms, overall disease duration, and disease severity with vaccination status, in self-report
data from UK-based, adult (≥ 18 years) users of the COVID Symptom Study mobile phone app4. Vaccination
(compared with no vaccination) was associated with reduced odds of hospitalisation or having more than
five symptoms in the first week of illness following the first or second dose, and long-duration (≥ 28 days)
symptoms following the second dose; following first dose only, older adults, individuals living in deprived
areas, and obese individuals all experienced higher risk of breakthrough infection5. Our findings might support
caution around relaxing physical distancing and other personal protective measures in the post-vaccination era,
particularly around frail older adults and individuals living in more deprived areas, even if these individuals
are vaccinated, and might have implications for strategies such as booster vaccinations6.

Problem 4(b)
Does the paper appropriately address each of the parts of an IMRAD paper as described the “IMRAD: What
goes into each section” pdf? (in the hw01 folder in the files area of our Canvas site.)

For each section below, either say “yes this section has the right content”, or say “no” and describe what is
missing and/or what needs to be moved to another section of the paper or deleted.

Note: I give one possible set of answers below. You do not have to give the same answers, as long as the
answers you give are thoughtful.

• Your “yes” and “no” answers do not have to match mine.

• If you say “yes the content in this section is fine” you do not have to give examples (even though I do
below)

• If you say “no” then we want to see thoughtful examples/discussion of what is missing or what needs to
be moved elsewhere, etc.

Introduction: Yes this section has the right content (you do not need to give examples; I did just so you
could see where some of the elements are)

• Supplies sufficient background information, e.g.:

“Vaccination against SARS-CoV-2 is a leading strategy to change the course of the
COVID-19 pandemic worldwide. . . ”

“A previous analysis of community-based individuals in the COVID Symptom Study showed
a significant reduction in infection post-vaccination from 12 days after the first dose. . . ”

“Nonetheless, some people still contract COVID-19 after vaccination, and further virus
variants could evolve. . . ”

• Shows Define lacunae and shortcomings in current state of knowledge & Rationale for the study,
e.g.:

Individuals with COVID-19 have differing symptoms and clinical needs.20 Elucidating
symptom profiles in individuals with COVID-19 after vaccination has clinical utility,

3Last sentence of summary paragraph, p. 1
4Combining first and last sentences of Methods paragraph, p. 1
5Second-to-last sentence of Findings paragraph, combined with a summary of the risk factor analysis.
6Last sentence of Interpretation paragraph, p. 1
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facilitating the identification of risk groups for intervention, predicting medical resource
requirements, and informing appropriate testing guidelines. Additionally, some unvacci-
nated individuals with COVID-19 have prolonged illness duration (so-called long COVID)
and whether vaccination reduces the risk of long COVID is currently unknown.

• States aim of the study, e.g.:

Therefore, we aimed to (1) describe individual risk factors associated with SARS-CoV-2
infection at least 14 days after first vaccination or 7 days after second vaccination, and
(2) assess illness duration, severity, and symptom profile in individuals with SARS-CoV-2
infection after their first and second vaccinations, compared with unvaccinated individuals
with SARS-CoV-2 infection.

Methods: Yes this section has the right content (again, you do not need to give examples; I did just so
you could see where some of the elements are)

• Broken down into subsection (may not be necessary for all papers, but nice here):

– Study design and participants

– Risk factor variable definitions

– Disease severity, duration, and symptom definitions

– Statistical analysis

– Role of the funding source

These sections provide all of the elements recommended by the slides on what goes into an IMRAD
paper (study design, variable definitions, how outcomes are measured, analysis and statistical
methods).

Notes:

1. In an IDMRAD (Introduction, Data, Methods, Results, and Discussion) paper (which we will
be writing later in the course, instead of IMRAD papers), the first three bullets above (study
design, variable defintions) would be moved into the Data section of the paper, between the
Introduction and Methods sections of the paper.

2. The subsection “Role of the funding source” would not be needed in our papers, but it is needed
in papers where the author needs to show that their research was not unduly influenced by
who funded the work. This is actually an aspect of addressing ethics in the study. (Other
aspects of ethics include: how fairly and respectfully did the researchers treat human subjecs;
whether invidually-identifiable results were kept confidential, whether related research by other
researchers was fairly credited and cited in the paper, etc.)

3. If the paper is intended to answer more than one research question, another way to organize
the Methods section would be to have one subsection for each research question. The Results
section would then have the same subsections. Since this study had two major questions — (1)
describe individual risk factors associated with SARS-CoV-2 infection at least 14 days after
first vaccination or 7 days after second vaccination; and (2) assess illness duration, severity,
and symptom profile in individuals with SARS-CoV-2 infection after their first and second
vaccinations, compared with unvaccinated individuals with SARS-CoV-2 infection — another
way to organize this paper would have been to have two subsections, one for each question, in
the Methods section, and in the Results section. Organizing these sections by research question
makes it more skimmable by readers who are in a hurry (and most readers are!).

Results: Yes this section has the right content, BUT I thought this was the weakest section of the paper
(again, you do not need to give examples; I did just so you could see where some of the elements are)
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• The first part of the discussion talks about the results of the experiment/data collection, which was
good.

• The next several paragraphs discuss statistical analyses in a natural order, but they are not very
good at helping the reader remember which of the two major questions each analysis goes with

• Here, subsections labelled with each research question would be really helpful.

• Tables 1 and 2 and Figures 1,2,3,4 are very helpful in answering the first research question (if the
reader can remember what it was!) but there doesn’t seem to be an easily identifiable summary of
results for the second research question (results for the second question are discussed at the end of
p. 7 and the first column of page 9, in text form only).

A good rule is: if the reader has to work too hard to find what they are looking for in the paper, then the
paper really should be better written or organized!

Discussion: Yes this section has the right content (you do not need to give examples; I did just so you
could see where some of the elements are)

• A summary (recapitulation) of the study and its major findings appears on pp 8–10.

• Limitations and strengths of the study are discussed on p. 11

• Broader implications are discussed in the last paragraph of the paper.

• It might have been nice for the authors to indicate ideas for future research building on this work,
as well.
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