
Homework 05 Solutions

2022-10-08

36-617: Applied Linear Models
Fall 2022
Solutions

library(arm) ## includes lme4, MASS, Matrix
library(ggplot2); theme_set(theme_bw())
library(gridExtra) ## to arrange ggplots...
library(GGally) ## for ggpairs...

library(leaps) ## regsubsets(), summary(), coef()
library(car) ## subsets(), mmps(), vif(), etc.

library(marginalmodelplots) ## because mmps doesn't work for glm's...
library(DHARMa) ## for better glm residual plots...

library(tidyverse) ## at last...

library(foreign) ## for "read.dta" for problem 3

Problem #1
Please do ISLR, #11, pp. 325–326. ({ Hint: You have seen me do a variation of part (a) many times in
class, for demonstrations! Some examples are in the lecture notes on omitted variable bias, for example.)
Among other things, this shows that backfitting (a method used to estimate GAM’s) is similar to iteratively
adjusting added variable plots(!). . .

GAMs are generally fit using a backfitting approach. The idea behind backfitting is actually quite simple. We
will now explore backfitting in the context of multiple linear regression.

Suppose that we would like to perform multiple linear regression, but we do not have software to do so.
Instead, we only have software to perform simple linear regression. Therefore, we take the following iterative
approach: we repeatedly hold all but one coefficient esti- mate fixed at its current value, and update only
that coefficient estimate using a simple linear regression. The process is continued un- til convergence—that
is, until the coefficient estimates stop changing.

We now try this out on a toy example.

Problem 1(a)
Generate a response y and two predictors x1 and X2, with n = 100.
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
y <- 1 + 2*x1 + 3*x2 + 4*rnorm(n)
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Problem 1(b)
Initialize β1 to take on a value of your choice. It does not matter what value you choose.
beta1 <- 10

Problem 1(c)
Keeping β1 fixed, fit the model

Y − β1X1 = β0 + β2X2 + ε.

You can do this as follows:
a <- y - beta1 * x1
print(beta2 <- lm(a ~ x2)$coef[2])

## x2
## 3.834889

Problem 1(d)
Keeping β2 fixed, fit the model

Y β2X2 = β0 + β1X1 + ε.

You can do this as follows:
a <- y - beta2 * x2
print(beta1 <- lm(a ~ x1)$coef[2])

## x1
## 1.995733

Problem 1(e)
Write a for loop to repeat (c) and (d) 1,000 times. Report the estimates of β0, β1, and β2 at each iteration of
the for loop. Create a plot in which each of these values is displayed, with β0, β1, and β2 each shown in a
different color.
beta0 <- lm(a ~ x1)$coef[1]
b1 <- beta1
b2 <- beta2

m <- 1000
for (r in 2:m) {
a <- y - b1 * x1
b2 <- lm(a ~ x2)$coef[2]
beta2 <- c(beta2,b2)

a <- y - b2 * x2
b1 <- lm(a ~ x1)$coef[2]
beta1 <- c(beta1,b1)

beta0 <- c(beta0,lm(a ~ x1)$coef[1])
}

plot(c(1,m),c(0,max(c(beta0,beta1,beta2))),type="n",
xlab="iteration",ylab="value")
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lines(1:m,beta0,col="blue")
lines(1:m,beta1,col="orange")
lines(1:m,beta2,col="red")

legend (800,0.5,legend=c("beta0","beta1","beta2"),col=c("blue","orange","red"),lty=1,cex=0.5)
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Problem 1(f)
Compare your answer in (e) to the results of simply performing multiple linear regression to predict Y using
X1 and X2. Use the abline() function to overlay those multiple linear regression coefficient estimates on the
plot obtained in (e).

Here are the final estiamtes from backfitting:
beta0[m]

## (Intercept)
## 1.025884
beta1[m]

## x1
## 1.615647
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beta2[m]

## x2
## 1.910236

And here’s a summary of the multiple regression:
summary(lm(y ~ x1 + x2))

##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.4317 -2.7209 0.1031 2.2216 11.4351
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0259 0.4052 2.532 0.013 *
## x1 1.6156 0.3888 4.155 7.01e-05 ***
## x2 1.9102 0.4192 4.557 1.51e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.019 on 97 degrees of freedom
## Multiple R-squared: 0.2445, Adjusted R-squared: 0.2289
## F-statistic: 15.69 on 2 and 97 DF, p-value: 1.245e-06

The coefficient estiamtes are practically identical!

Problem 1(g)
On this data set, how many backfitting iterations were required in order to obtain a “good” approximation to
the multiple re- gression coefficient estimates?

Very few—as little as 2–3, and certainly lesss than 5!
head(beta0)

## (Intercept) (Intercept) (Intercept) (Intercept) (Intercept) (Intercept)
## 0.8359923 1.0172755 1.0254936 1.0258662 1.0258830 1.0258838
head(beta1)

## x1 x1 x1 x1 x1 x1
## 1.995733 1.632877 1.616428 1.615682 1.615649 1.615647
head(beta2)

## x2 x2 x2 x2 x2 x2
## 3.834889 1.997485 1.914191 1.910415 1.910244 1.910236
m <- 10
plot(c(1,m),c(0,max(c(beta0,beta1,beta2))),type="n",

xlab="iteration",ylab="value")

lines(1:m,beta0[1:m],col="blue")
lines(1:m,beta1[1:m],col="orange")
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lines(1:m,beta2[1:m],col="red")

legend (8,0.5,legend=c("beta0","beta1","beta2"),col=c("blue","orange","red"),lty=1,cex=0.5)
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Problem #2
The warpbreaks data set included in R gives the results of an experiment to determine the the effect of
wool type (A or B) and tension (low, medium or high) on the number of warp breaks per loom. Data was
collected for nine looms for each combination of settings. You can get more information on this data set from
help(warpbreaks). Use View(warpbreaks) and xtabs(breaks ~ wool + tension, data=warpbreaks) to
familiarize yourself with the data. (You don’t have to turn in any of this initial exploration.)

Familiarizing with data (not to turn in!)
The below EDA shows us few things, but the plot visualization is clearest relative to future exploration we
will be doing. We can observe the neither the rows nor the columns inform the viewer of the full relationship
between such class structure and the number of breaks of the wool. Specifically note that Wool A appears to
break more with loose (L) tension (compared to Wool B), but that this structure (that Wool A breaks more
than Wool B) isn’t observed / as strong across all levels of tension.
xtabs(breaks ~ wool + tension, data = warpbreaks)

## tension
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## wool L M H
## A 401 216 221
## B 254 259 169
warpbreaks %>% head

## breaks wool tension
## 1 26 A L
## 2 30 A L
## 3 54 A L
## 4 25 A L
## 5 70 A L
## 6 52 A L
warpbreaks %>%
ggplot() +
geom_histogram(aes(x = breaks)) +
facet_wrap(wool ~ tension)
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Problem 2(a)
Fit the two Poisson regression models breaks ~ wool + tension and breaks ~ wool * tension (dont’t
forget family=poisson!). Consider summary()’s, plot()’s of the fitted glm’s, mmplot()’s and also
binnedplot()’s (from library(arm)) and/or plots from DHARMa, and any other plots you think are useful.
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Comment on the fits of each model, using the graphical evidence you have obtained (if you think some
plot(s) are not useful for this, please tell which ones & why).

2(a) No interaction term

Our anova model without an interaction term between wool and tension in predicting number of breaks doesn’t
fit the data to well. Although this anova model only provides us with (at most) 6 different fitted values for
54 observations, we can see that the lack of interaction terms impacts the our residual vs fitted plot, where
we find that the true average value for each of the Wool + tension combinations does not exactly equal the
predicted average (this can be seen by the smoothed regression line of the residual vs fitted not being 0 for all
fitted values). For this anova, it’s probably not the best to over-interpret the standard summary plots (due to
the 6 fitted values). A similar observation relative to the residuals vs fitted can be seen in marginal plot, where
the fitted curve doesn’t match the raw average of the number of breaks verse predicted number of breaks. Note
that the x-axis values are of the log(breaks) scale, whereas the y-axis is on the breaks scale.

Our “DHARMa” residual plots present a different way to see that our residuals still relationships with our
predicted values (aka the 6 classes between Wool and tension), suggesting that the model that we fit doesn’t
create / simulate residuals similar to the truely observed value. The over-dispersion seen in the QQ plot of the
ranks of the residuals makes sense and it suggests that the true residuals are more variable than the simulation
model would expect (which does make sense relative to our observation that the model doesn’t well capture the
mean of each group).

It should be noted that I did not use the binned residual plot as it would show almost the same information
as the regular residual vs fitted plot (relative to 6 bins). The binned residual plot may have captured the
information in the summary’s residual vs fitted and absolute residual vs fitted plots. We include the code to do
so below just in case that would be useful - just commented out.
p_glm1 <- glm(breaks~wool+tension, data = warpbreaks,

family = poisson)

summary(p_glm1)

##
## Call:
## glm(formula = breaks ~ wool + tension, family = poisson, data = warpbreaks)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.6871 -1.6503 -0.4269 1.1902 4.2616
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.69196 0.04541 81.302 < 2e-16 ***
## woolB -0.20599 0.05157 -3.994 6.49e-05 ***
## tensionM -0.32132 0.06027 -5.332 9.73e-08 ***
## tensionH -0.51849 0.06396 -8.107 5.21e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 297.37 on 53 degrees of freedom
## Residual deviance: 210.39 on 50 degrees of freedom
## AIC: 493.06
##
## Number of Fisher Scoring iterations: 4
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par(mfrow = c(2,2))
plot(p_glm1)
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mmplot(p_glm1, locfit.control=list(nn = "gcv"))
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sim_resid1 <- simulateResiduals(p_glm1)
plot(sim_resid1)
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DHARMa residual diagnostics

# library(arm)
binnedplot(predict(p_glm1), resid(p_glm1))
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2(a) Interaction term

For the model with an interaction term (who’s diagnostic plots are below), we find the model is able to capture
all the different groupings of wool an tensions mean (but design). This is seen in the residual vs fitted and the
fact that both smoothed fitted and true lines are very close to each other in overall marginal plot. Although this
TA would discourage from interpreting the standard summary plots too much, we can observe that distribution
of errors for the wool + tension group with average log(breaks) of 3.8 has a log-based residuals that are larger
than other wool + tension groups (as seen in the residual vs fitted and absolute residual vs fitted plots).
The difference between the variability of the residuals per each wool + tension group also seems to lead to
overdispersion of the residuals relative to simulations draw from out fitted models (visualized in the “DHARMa”
plots).
p_glm2 <- glm(breaks~wool*tension, data = warpbreaks,

family = poisson)

summary(p_glm2)

##
## Call:
## glm(formula = breaks ~ wool * tension, family = poisson, data = warpbreaks)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.3383 -1.4844 -0.1291 1.1725 3.5153
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##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.79674 0.04994 76.030 < 2e-16 ***
## woolB -0.45663 0.08019 -5.694 1.24e-08 ***
## tensionM -0.61868 0.08440 -7.330 2.30e-13 ***
## tensionH -0.59580 0.08378 -7.112 1.15e-12 ***
## woolB:tensionM 0.63818 0.12215 5.224 1.75e-07 ***
## woolB:tensionH 0.18836 0.12990 1.450 0.147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 297.37 on 53 degrees of freedom
## Residual deviance: 182.31 on 48 degrees of freedom
## AIC: 468.97
##
## Number of Fisher Scoring iterations: 4
anova(p_glm1, p_glm2)

## Analysis of Deviance Table
##
## Model 1: breaks ~ wool + tension
## Model 2: breaks ~ wool * tension
## Resid. Df Resid. Dev Df Deviance
## 1 50 210.39
## 2 48 182.31 2 28.087
par(mfrow = c(2,2))
plot(p_glm2)
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mmplot(p_glm2)
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#library(arm)
binnedplot(predict(p_glm2), resid(p_glm2))
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plot(simulateResiduals(p_glm2))
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Problem 2(b)
We would like to know whether the interaction between wool and tension is needed.

i. Compare AIC’s for the two models, and then compare BIC’s for the two models. Do AIC and BIC
choose the same model?

ii. Conduct a likelihood ratio test for including the interaction. Does the LR test choose the same model
as either AIC or BIC? (Hint/recipe: For the likelihood ratio test, use the logLik() function to obtain
the log-likelihood of the two models, compute −2 times the difference between the null and alternative
model log-liklihoods, and obtain a p-value from the tail of an appropriate χ2 distribution.)

(i)

As can be seen in the below table, the second poisson model with interaction terms has a lower AIC and BIC
than the first model. If we remember that both of these score functions look like

−2 · (log likelihood) + constant · (number of parameters)

then we can conclude the both AIC and BIC recommend going with the poisson model with interaction terms
(aka lower AIC/BIC is better).
df_aic_info <- data.frame(AIC = c(AIC(p_glm1), AIC(p_glm2)),

BIC = c(BIC(p_glm1), BIC(p_glm2))) %>% t()
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colnames(df_aic_info) <- c("poisson model, no interaction",
"poisson model, interaction")

knitr::kable(df_aic_info)

poisson model, no interaction poisson model, interaction
AIC 493.0560 468.9692
BIC 501.0119 480.9031

(ii)

The LRT also suggests we should reject the null hypothesis that the model with an interaction only explains
as much information as the the model without the interaction term. This would lead us to select the second
model like AIC and BIC did.
diff_log_like <- -2 * (logLik(p_glm1) - logLik(p_glm2))
1-pchisq(diff_log_like, df = 4)

## 'log Lik.' 1.197798e-05 (df=4)

Problem 2(c)
For the best model from part (b), we would like to know if overdispersion is a problem. Use the Pearson
residuals to conduct a test of overdispersion (hint: follow the recipe from lecture #17.1). Does this agree with
the conclusion of testDispersion() from library(DHARMa)?

The below p-values suggest that the residuals in model 2 are over-dispersed and match the simulation test
from DHARMa.
n <- nrow(warpbreaks)

pp2 <- length(coef(p_glm2))

e_y_2 <- predict(p_glm2, type = "response")
z_2 <- (warpbreaks$breaks - e_y_2)/ sqrt(e_y_2)
test_stat_2 <- sum(z_2ˆ2)

pchisq(test_stat_2, n-pp2, lower.tail = F)

## [1] 2.926195e-17
testDispersion(p_glm2, alternative = "greater")
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##
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## dispersion = 3.9007, p-value < 2.2e-16
## alternative hypothesis: greater

Problem 2(d)
Refit the model from part (c) using family=quasipoisson, and note any differences in overdispersion
parameter, coefficient estimates, SE’s, etc. Are there any differences in which predictors are significant?
p_glm2d <- glm(breaks~wool*tension, data = warpbreaks,

family = quasipoisson)

summary(p_glm2d)

##
## Call:
## glm(formula = breaks ~ wool * tension, family = quasipoisson,
## data = warpbreaks)
##
## Deviance Residuals:
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## Min 1Q Median 3Q Max
## -3.3383 -1.4844 -0.1291 1.1725 3.5153
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.79674 0.09688 39.189 < 2e-16 ***
## woolB -0.45663 0.15558 -2.935 0.005105 **
## tensionM -0.61868 0.16374 -3.778 0.000436 ***
## tensionH -0.59580 0.16253 -3.666 0.000616 ***
## woolB:tensionM 0.63818 0.23699 2.693 0.009727 **
## woolB:tensionH 0.18836 0.25201 0.747 0.458436
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 3.76389)
##
## Null deviance: 297.37 on 53 degrees of freedom
## Residual deviance: 182.31 on 48 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 4

Fitting the second model using quasipoisson allows us to have a disperison parameter that is not 1. The new
model’s dispersion paramter is now 3.7639, which is much larger than 1 - which does suggest that we had a
problem with residuals being overdispersed in the original model.

Problem #3
[Based on some exercises in Gelman & Hill.] The data set nes5200_processed_voters_realideo.dta has
data from the National Election Survey in every congressional election year in the US from 1948 to 2002. You
can read it into R using the function read.dta() from library(foreign). We are interested in learning
whether some of the survey data is useful in predicting respondents’ vote for president.

Problem 3(a)
Extract from the full NES data set above a data frame with just data from the presidential election year
1976, and the following variables: ideo7, black, female, rep_pres_intent, presapprov, age, educ1,
urban, income, union and perfin1. The variable rep_pres_intent is 1 if the respondent intended to vote
for the Republican candidate (Gerald Ford, who assumed the presidency when Richard Nixon resigned amid
an impeachment investigation), and 0 if the respondent intended to vote for the Democratic candidate (Jimmy
Carter). Familiarize yourself with all of the variables by using summary() on your 1976 data frame1 to look
at the categories. You don’t have to turn anything in for this, but you should do it.

Nothing is required to be turned in here.
nes_all <- read.dta("nes5200_processed_voters_realideo.dta")
#attr(nes_all, "var.labels")

nes_1976 <- nes_all %>% filter(year == "1976") %>%
dplyr::select(ideo7, black, female,

rep_pres_intent,
presapprov, age,
educ1, urban, income, union,

1A command like attr(nes_data,"var.labels") on the full data set will give you brief definitions of all of the variables.
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perfin1)
#summary(nes)

Problem 3(b)
Fit a logistic regression predicting rep_pres_intent from the other variables, for 1976. Assess the fit using
appropriate graphical methods. Interpret the results: which variables seem to matter for predicting voters’
preference for president? How do they affect the odds of voting for the Republican candidate?
l_glm_1976 <- glm(rep_pres_intent ~ ., data = nes_1976, family = "binomial")

3(b) Fit assessment

For standard logistic regression, where the data are assumed to be Bernoulli random variables (aka 0/1),
the standard summary plots are not very helpful in letting us understand the fit. The summary does suggest
that the model captures some of the variability that we see. Interestly, the binned residual plot we see that the
average logit predicted value is less extreme than it should be at either end the spectrum (extremely likely to
vote Democrat or Republican). At the same time, the DHARMa residual diagnostics suggest that the ranking
and ranking conditional on model predictions fit simulation expectations well.
binnedplot(predict(l_glm_1976), resid(l_glm_1976))
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library(DHARMa)
plot(simulateResiduals(l_glm_1976))
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3(b) model interpretation

oldwidth <- options()$width
options(width=200)
summary(l_glm_1976)

##
## Call:
## glm(formula = rep_pres_intent ~ ., family = "binomial", data = nes_1976)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.9003 -0.2796 0.2682 0.5318 2.6967
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.830985 1.026176 0.810 0.418062
## ideo72. liberal -2.327337 0.845434 -2.753 0.005908 **
## ideo73. slightly liberal -2.886738 0.811851 -3.556 0.000377 ***
## ideo74. moderate, middle of the road -1.833549 0.772496 -2.374 0.017619 *
## ideo75. slightly conservative -0.531175 0.777492 -0.683 0.494487
## ideo76. conservative 0.023279 0.791822 0.029 0.976546
## ideo77. extremely conservative 0.892863 1.171559 0.762 0.445991
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## black -2.021512 0.692902 -2.917 0.003529 **
## female 0.343980 0.215341 1.597 0.110182
## presapprov2. disapprove -3.940278 0.295717 -13.324 < 2e-16 ***
## age 0.004966 0.007755 0.640 0.521980
## educ12. high school (12 grades or fewer, incl 1.019021 0.435615 2.339 0.019322 *
## educ13. some college(13 grades or more,but no 1.077248 0.471817 2.283 0.022419 *
## educ14. college or advanced degree (no cases 1.288787 0.485539 2.654 0.007946 **
## urban2. suburban areas 0.500890 0.273666 1.830 0.067205 .
## urban3. rural, small towns, outlying and adja 0.074872 0.284912 0.263 0.792714
## income2. 17 to 33 percentile 0.253838 0.534507 0.475 0.634858
## income3. 34 to 67 percentile -0.113254 0.497111 -0.228 0.819783
## income4. 68 to 95 percentile 0.027157 0.495444 0.055 0.956287
## income5. 96 to 100 percentile 0.354393 0.603023 0.588 0.556738
## union2. no, no one in the household belongs t 0.602304 0.248466 2.424 0.015347 *
## perfin12. same -0.075231 0.271044 -0.278 0.781350
## perfin13. worse now -0.314517 0.262847 -1.197 0.231471
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1245.55 on 908 degrees of freedom
## Residual deviance: 597.62 on 886 degrees of freedom
## (903 observations deleted due to missingness)
## AIC: 643.62
##
## Number of Fisher Scoring iterations: 6
options(width=oldwidth)

To predict if a voter with vote for a Republican (or Democrat) we see some interesting trends. First, holding
all other features equal, if an individual is black (not white), we should expect eβblack (0.132455) multiplicative
decrease in the odds ratio of voting for a Republican over a Democrat. Similarly, but in reverse, not having
any household member being in a union (instead of the reverse) is observed as increasing the odds ratio
of voting for a Republican over a Democrat by 1.8263209. Not surprisingly, given that the current president
is a Republican, if one disapproves of the current president (as opposed to approving of the current
president), would lead to a multiplicative decrease in the odds ratio of voting for a Republican over a Democrat
by multiplication by 0.0194428.

There are also some non-binary variable that were significant, but they require more nuanced interpretations.
For different ideological views we see impacts on whether the individual will vote Republican or Democrat. In
this case, the base case is “extremely liberal” and interestedly we see that if one is moves from “extremely liberal
to “liberal or “slightly liberal” we’d expect a multiplicative decrease in the odds ratio of voting for a Republican
over a Democrat by 0.0975551 or 0.0557578 respectively. We don’t observe significant differences (holding
all other variables equal) between the odds ratio between “extremely liberal” vs any time of conservative. In
context this is surprising, but one could hypothesis that this may be related to the fact that certain differences
between “extremely liberal” and “conservatives” are already captured in other variables. Another significant
categorical variable is maximum education level attained, where the base case is only some grade school
(0-8 grades). Compared with this base level we do see that as we increase education levels the estimated
coefficient for voting Republican over Democrat increases. We can’t directly use the p-values of the higher
education levels to test if a high school education vs college education significantly impacts a voter’s likelihood
of voting for a Republican, but looking at the difference of the coefficients and the standard error we might
guess (without directly doing the test) that they are not given the standard error for each β value is larger
than the difference between the β values.
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Problem 3(c)
Make a new data frame by converting all of the variables in the 1976 data frame to numeric variables, using
as.numeric(). Repeat part (b), using this new data frame.
nes_1976_numeric <- nes_1976 %>% sapply(as.numeric) %>% data.frame
l_glm_1976_numeric <- glm(rep_pres_intent ~ ideo7 + black + female + presapprov + age +

educ1 + urban + income + union + perfin1,
data = nes_1976_numeric, family=binomial)

3(c) Fit assessment

The fit of the above model is worse (in terms of shrinking the residual deviance). From the marginal plot, this
may be related to the less optimal fit relative to ideology and age. Other than that - it does look like a similar
fit to the factor based model.
binnedplot(predict(l_glm_1976_numeric), resid(l_glm_1976_numeric))
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plot(simulateResiduals(l_glm_1976_numeric))
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mmplot(l_glm_1976_numeric,exclude = c(2,3,4,7,9,10))
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3(c) model interpretation

This numerical model suggests similar parameters are useful. A similar interpretation of black (vs white), not
having any household member being in a union (instead of the reverse) and presidental approval exists
for this model as the last. Specifically, holding all other features equal, if an individual is black (not white),
we should expect eβblack (0.1258773) multiplicative decrease in the odds ratio of voting for a Republican over a
Democrat, not having any household member being in a union (instead of the reverse) is observed as
increasing the odds ratio of voting for a Republican over a Democrat by a multiplication of 1.814176, and if
one disapproves of the current president (as opposed to approving of the current president), would lead
to a decrease in the odds ratio of voting for a Republican over a Democrat by a multiplication of0.0268055.

We now can only fit a linear trend (that ranges from “extremely liberal” to “extremely conservative”), but it is
significant, a one “unit” increase (between the levels) of ideology towards conservatism, we should expect eβideo7

(2.0066553) multiplicative decrease in the odds ratio of voting for a Republican over a Democrat. Education
attainment is no longer a significant variable.
summary(l_glm_1976_numeric)

##
## Call:
## glm(formula = rep_pres_intent ~ ideo7 + black + female + presapprov +
## age + educ1 + urban + income + union + perfin1, family = binomial,
## data = nes_1976_numeric)
##
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## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.5791 -0.3257 0.3169 0.5721 3.1081
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.239570 1.281720 1.747 0.08058 .
## ideo7 0.696469 0.094070 7.404 1.32e-13 ***
## black -2.072448 0.669428 -3.096 0.00196 **
## female 0.288426 0.206065 1.400 0.16161
## presapprov -3.619149 0.267075 -13.551 < 2e-16 ***
## age 0.005650 0.006706 0.842 0.39952
## educ1 0.239311 0.123796 1.933 0.05322 .
## urban -0.067092 0.138109 -0.486 0.62712
## income 0.072922 0.110340 0.661 0.50868
## union 0.595631 0.236410 2.519 0.01175 *
## perfin1 -0.103289 0.127397 -0.811 0.41750
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1245.55 on 908 degrees of freedom
## Residual deviance: 630.72 on 898 degrees of freedom
## (903 observations deleted due to missingness)
## AIC: 652.72
##
## Number of Fisher Scoring iterations: 6

Problem 3(d)
Compare the results from parts (b) and (c}). How are they consistent? Inconsistent? In this case, would you
recommend converting all of the variables to numeric?

Both models contain similar information, and, in terms of significant variables, all variables that are significant
in the first model (except education) are significant in the second model as well. Naturally, the “linearizing”
of the ordered factor variables reduced the interpretability of the model. Additionally, although not significant,
the interpretation of the linearization of the levels of income is probably a worse assumption. Requiring any of
these ordered factors to be linear requires (1) a strictly increasing or decreasing trend, and (2) that the change
between levels should be the same. In the interpretation of the first model we saw (1) violated with ideological
levels and (2) violated with education levels. As such I wouldn’t recommend converting all the variables to
numeric in this case.

Problem 3(e)
NOT TO TURN IN. If you have time, it is interesting to repeat parts (a) through (d) for the presidential
election year 2000. In this year, the democratic candidate was Al Gore, who served as vice-president to Bill
Clinton, who was impeached but not removed from office. The Republican candidate was George Bush. How
are the results from 1976 and 2000 similar? How are they different?
nes_2000 <- nes_all %>% filter(year == "2000") %>%
dplyr::select(ideo7, black, female,

rep_pres_intent,
presapprov, age,
educ1, urban, income, union,
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perfin1)

l_glm_2000 <- glm(rep_pres_intent ~ ., data = nes_2000, family = "binomial")

3(e) Fitted assessment

Interestingly, this model (relative to the model for 1976) seems a bit better fitted. Most of the binned residuals
still fit in the expected variablity range, with much fewer bins (still at the extremes) that are under-estimated
in the extremes. Some of this may actually just be related to the fact that the 2000 sample has 1458 individuals
whereas the 1976 sample had more (1812).
binnedplot(predict(l_glm_2000), resid(l_glm_2000))
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plot(simulateResiduals(l_glm_2000))
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3(e) model interpretation

Some similarities exist between the two models (in terms of which variables are important), yet we see new
trends emerging and some naturally being reverse based on intuition.

For binary variables, black and previous president disapproval still is significant (though the impact
of previous president disapproval is not the reverse - favoring a vote for a Republican over a Democrat)2.
Specifically, holding all other features equal, if an individual is black (not white), we should expect eβblack

(0.2491609) multiplicative decrease in the odds ratio of voting for a Republican over a Democrat, and if one
disapproves of the current president (as opposed to approving of the current president), would lead to
an increase in the odds ratio of voting for a Republican over a Democrat by a multiplication of 13.0170957.

We see that ideology and education level is not longer a significant variable (and unlikely and comparison due
to the very high standard errors estimated for each β value). On the other hand, suburban (vs urban) looks
to cause a significant to a 2.5716781 multiplicative decline in the odds ratio of voting for a Republican over
a Democrat. We also find the age is now a significant variable (with a 1 year increase in age) related to a
0.9697891 multiplicative decrease in the odds ratio of voting for a Republican over a Democrat.
oldwidth=options()$width
options(width=200)
summary(l_glm_2000)

##
2This makes sense become the previous president is now a Democrat, while in 1976 it was a Republican.
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## Call:
## glm(formula = rep_pres_intent ~ ., family = "binomial", data = nes_2000)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1156 -0.6513 -0.2218 0.5124 2.4382
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -34.48395 2621.43463 -0.013 0.98950
## ideo72. liberal 15.01763 2248.12503 0.007 0.99467
## ideo73. slightly liberal 14.66998 2248.12505 0.007 0.99479
## ideo74. moderate, middle of the road 16.12093 2248.12496 0.007 0.99428
## ideo75. slightly conservative 16.20928 2248.12499 0.007 0.99425
## ideo76. conservative 17.36908 2248.12496 0.008 0.99384
## ideo77. extremely conservative 17.46256 2248.12534 0.008 0.99380
## black -1.38966 0.68005 -2.043 0.04101 *
## female -0.31696 0.38111 -0.832 0.40559
## presapprov2. disapprove 2.56626 0.43950 5.839 5.25e-09 ***
## age -0.03068 0.01223 -2.509 0.01211 *
## educ12. high school (12 grades or fewer, incl 16.58022 1348.27773 0.012 0.99019
## educ13. some college(13 grades or more,but no 16.97609 1348.27775 0.013 0.98995
## educ14. college or advanced degree (no cases 16.80642 1348.27776 0.012 0.99005
## urban2. suburban areas 0.94456 0.46955 2.012 0.04426 *
## urban3. rural, small towns, outlying and adja 0.82538 0.50495 1.635 0.10214
## income2. 17 to 33 percentile -0.05480 0.65949 -0.083 0.93378
## income3. 34 to 67 percentile 0.04054 0.60877 0.067 0.94691
## income4. 68 to 95 percentile 0.44415 0.64855 0.685 0.49345
## income5. 96 to 100 percentile 0.36119 0.97648 0.370 0.71146
## union2. no, no one in the household belongs t 0.79305 0.54209 1.463 0.14348
## perfin12. same 1.11384 0.41241 2.701 0.00692 **
## perfin13. worse now 0.51878 0.64879 0.800 0.42394
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 350.34 on 256 degrees of freedom
## Residual deviance: 210.09 on 234 degrees of freedom
## (1201 observations deleted due to missingness)
## AIC: 256.09
##
## Number of Fisher Scoring iterations: 16
options(width=oldwidth)

3(e) numeric

nes_2000_numeric <- nes_2000 %>% sapply(as.numeric) %>% data.frame
l_glm_2000_numeric <- glm(rep_pres_intent ~ ideo7 + black + female + presapprov + age +

educ1 + urban + income + union + perfin1,
data = nes_2000_numeric, family=binomial)
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3(e) numeric, fitted assessment Again, this model looks a bit worse than the non-linear transformation
of factor variables. We see at differences in education levels are not well captured, and maybe a bit suboptial
fit in the linearized ideological variable (via the marginal plot). Interestly, the binned residuals look like a
better fit (with only the most extreme bin for Republican voting to be highly underestimated).
binnedplot(predict(l_glm_2000_numeric), resid(l_glm_2000_numeric))
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plot(simulateResiduals(l_glm_2000_numeric))
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mmplot(l_glm_2000_numeric,exclude = c(2,3,4,7,9,10))
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3(e) numeric, model interpretation The TA leaves this up to the student to interpret, but we note that
ideology of the individual is now significant, and urban is no longer significant. Additionally similar comments
as in (d) relate to the linearized and factor based models.
summary(l_glm_2000_numeric)

##
## Call:
## glm(formula = rep_pres_intent ~ ideo7 + black + female + presapprov +
## age + educ1 + urban + income + union + perfin1, family = binomial,
## data = nes_2000_numeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2661 -0.6780 -0.3307 0.5783 2.3440
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -11.96238 2.55218 -4.687 2.77e-06 ***
## ideo7 0.56281 0.13832 4.069 4.72e-05 ***
## black -1.28042 0.63813 -2.007 0.04480 *
## female -0.43189 0.35270 -1.225 0.22075
## presapprov 2.42242 0.39637 6.112 9.87e-10 ***
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## age -0.02921 0.01088 -2.684 0.00727 **
## educ1 0.14627 0.22337 0.655 0.51258
## urban 0.39483 0.23649 1.670 0.09501 .
## income 0.11936 0.18156 0.657 0.51092
## union 0.45653 0.49674 0.919 0.35807
## perfin1 0.43815 0.27943 1.568 0.11688
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 350.34 on 256 degrees of freedom
## Residual deviance: 223.97 on 246 degrees of freedom
## (1201 observations deleted due to missingness)
## AIC: 245.97
##
## Number of Fisher Scoring iterations: 5

3(e) Overall. . .

This exercise suggests that different voter characteristics affected voter decisions across the years (although
some like previous president approval3 and race seem pretty constant). Additionally, ideology seems to have
some impact (but maybe not linear in all cases). Interestingly, the model fit on the 2000 data seems to better
conform with the linear model assumptions. The differences between the models fit on the different years relate
to the impact of education level (significant for 1976 but not 2000) and urban vs suburban (significant for
2000 but not 1976). As captured in the discussion about interested 1976 trend for ideology, we should make
sure not to claim causal structure related for voter preferences.

3With the party in power flip.
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