
Homework 08 Solutions

11/10/2021

library(tidyverse)
library(pander)
library(nlme)
library(janitor)

Problem 1

data_mat <- matrix(c(
1, 300, 0, 0, 4, 6,
2, 300, 1, 0, 4, 6,
3, 500, 0, 1, 4, 6,
4, 500, 1, 1, 4, 6,
5, 200, 0, 0, 10, 12,
6, 200, 1, 0, 10, 12,
7, 200, 0, 1, 10, 12,
8, 200, 1, 1, 10, 12), byrow = TRUE, nrow = 8)

colnames(data_mat) <- c("Category", "num", "x",
"T", "y_0", "y_1")

df <- data.frame(data_mat)

(a)

N <- sum(df$num)
ace <- 1/N*sum(df$num * (df$y_1 - df$y_0))
ace

## [1] 2

We can actually directly see that for each individual, the difference between y1 and y0 is 2 (which means the
average is also this value), but the above equation also shows us the the ACE is 2.

(b)
If we only view x as the only pre-treatment predictor (as suggested in the beginning of the problem), then we
can observe that there T and x appear to be independent - aka P (T = t,X = x) = P (T = t)P (X = x), this
is explored specifically in part (d), but the below tables show this through showing that P (T = t) = P (T =
t|x = x) for x ∈ {0, 1}.
tab_info <- df %>%
mutate(T = paste0("T",T)) %>%
group_by(x,T) %>% summarise(count = sum(num)) %>%
tidyr::pivot_wider(id_cols = x, names_from = T, values_from = count) %>%
janitor::adorn_totals(where = c("row", "col"))
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## `summarise()` has grouped output by 'x'. You can override using the `.groups` argument.
tab_info

## x T0 T1 Total
## 0 500 700 1200
## 1 500 700 1200
## Total 1000 1400 2400
tab_info %>%
janitor::adorn_percentages()

## x T0 T1 Total
## 0 0.4166667 0.5833333 1
## 1 0.4166667 0.5833333 1
## Total 0.4166667 0.5833333 1

With our full fiew of the data we can see that (y0, y1) pairing actually differ between the first four categories
and the last four categories. Given that x doesn’t capture this different it wouldn’t be too crazy to suggest
that there are actually more pre-treatment predictors of the outcome. If one just defines another grouping
variable x2 to be (1, 1, 1, 1, 0, 0, 0, 0) to capture this we can see that x2 and T are not independent of each
other. None-the-less this goes beyond the problem description.

(c)

N_T <- sum(df$num[df$T == 1])
N_not_T <- sum(df$num[df$T == 0])

1/N_T * sum((df$num * df$y_1)[df$T == 1]) -
1/N_not_T * sum((df$num * df$y_0)[df$T == 0])

## [1] 1.314286

If there was no other confounders we’d expect this value to approximate the ACE. Interestingly it does not,
but that seems to be related to the second commentary we had in part (b), which showed that the proportion
those in the treatment group where x2 = 1 was larger than the proportion of those in the treatment group
where x2 = 0, and this relateds to the smaller value we see for the treatment effect as those in the x2 = 1
group had smaller outcomes under both treatments than the x2 = 0 group.

(d)

prob_T <-sum(df$num * (df$T == 1)) / sum(df$num)

prob_T

## [1] 0.5833333
prob_T_given_x1 <- sum(df$num * (df$x == 1) * (df$T == 1)) /
sum(df$num * (df$x == 1))

prob_T_given_x1

## [1] 0.5833333

We find that, in the above population, P (T = 1) = 0.5833, which is the same as P (T = 1|x = 1).
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(e)
Below are 2 approaches to estimate the desired coefficient and se. Note that the coefficient values for the
intercept and T directly related to parts of the calculation in part (c). The intercept being the mean(y[T=0])
and the coefficient of T being the difference between mean(y[T=1]) - mean(y[T=0]).

Weighted regression approach

A weighted regression solution is faster that expanding out the full dataset, but requires a correct ion for the
model’s degrees of freedom. See this blogpost for more comments.
df <- df %>%
mutate(y = ifelse(T, y_1, y_0))

wls <- lm(y ~ T + x, data = df, weights = num)
wls$df.residual <- sum(df$num) - length(wls$coefficients)
#ˆ correction for number of observations / degrees of freedom

summ_w <- summary(wls)

## Warning in summary.lm(wls): residual degrees of freedom in object suggest this
## is not an "lm" fit
summ_w

##
## Call:
## lm(formula = y ~ T + x, data = df, weights = num)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -41.57 -39.14 6.29 53.34 60.61
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.4000 0.1058 60.51 <2e-16 ***
## T 1.3143 0.1163 11.30 <2e-16 ***
## x 0.0000 0.1147 0.00 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.81 on 2397 degrees of freedom
## Multiple R-squared: 0.05055, Adjusted R-squared: 0.9972
## F-statistic: 63.81 on 2 and 2397 DF, p-value: < 2.2e-16
coef(summ_w)[2,]

## Estimate Std. Error t value Pr(>|t|)
## 1.314286e+00 1.163413e-01 1.129682e+01 7.202413e-29

Individualized approach

Another way would just be to create an “individual” data frame (where each row represents one individual).
Below is a messy way to create the desired data.
df2 <- data.frame(x = unlist(sapply(1:nrow(df),

function(idx){rep(df$x[idx],
each = df$num[idx])})),
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T = unlist(sapply(1:nrow(df),
function(idx){rep(df$T[idx],

each = df$num[idx])})),
y = unlist(sapply(1:nrow(df),

function(idx){rep(df$y[idx],
each = df$num[idx])})))

ls_all_obs <- lm(y ~ T + x, data = df2)
summ <- summary(ls_all_obs)
summ

##
## Call:
## lm(formula = y ~ T + x, data = df2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.400 -1.886 -1.714 3.600 4.286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.400e+00 1.058e-01 60.51 <2e-16 ***
## T 1.314e+00 1.163e-01 11.30 <2e-16 ***
## x 2.901e-15 1.147e-01 0.00 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.81 on 2397 degrees of freedom
## Multiple R-squared: 0.05055, Adjusted R-squared: 0.04976
## F-statistic: 63.81 on 2 and 2397 DF, p-value: < 2.2e-16
coef(summ)[2,]

## Estimate Std. Error t value Pr(>|t|)
## 1.314286e+00 1.163413e-01 1.129682e+01 7.202413e-29

Problem 2.
(a)
The treatment variable is no longer randomized in the way intended by the researcher, because individuals
have selected their own level of treatment. This selection process is very likely confounded with the outcome
variable, meaning that there is some unobserved variable that is correlated with both the treatment variable
and the outcome.

For example, imagine that the therapy actually has no effect, but there is an “optimism” variable that
determines both how many sessions a person attends and their emotional state at the end of the study. In
other words, the people who engage the most with the treatment are those in the best state at the end of
the study, but not because of the therapy. Then the number of sessions attended will strongly predict the
outcome variable, but not because of an effect of the therapy.

An unobserved confounder could also obscure a real treatment effect. Suppose that instead of an optimism
variable, there is a variable representing emotional wellbeing that is inversely correlated with the number of
sessions attended. That is, those who start out the most depressed seek the most treatment, perhaps because
they feel that they have the most to gain. Suppose the treatment does have a beneficial effect that increases
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with the number of sessions attended, and suppose that everyone seeks out just enough treatment to get
them to roughly the same level of emotional wellbeing at the end of the study. Then a coefficient for number
of treatment sessions could end up being 0 even though there is a treatment effect!

In sum: whenever there is noncompliance in an experiment, there is potential for confounding due to selection
effects. Including a variable for the amount of treatment received does not address this and can lead to highly
misleading results.

(b)
This is perfectly set up for an Instrumental Variable analysis. The assignment variable (assignment to
treatment or control) is the instrument, and the number of sessions attended is the treatment variable.
The assignment variable almost certainly affects the treatment variable, but it should have no effect on the
outcome through other pathways. (That is, the mere fact of having been assigned to the treatment or control
group shouldn’t affect participants’ emotional wellbeing at the end of the study.) An experimental design
with noncompliance is almost always a good candidate for an IV analysis.

An analysis based on propensity score matching won’t work here unless we have variables with which to
construct the propensity score. The propensity score is the probability of receiving treatment as a function
of some set of covariates X. That is, the propensity score is a function π(x) := P (A = 1|X = x), where
A = 1 means that someone receives treatment. We can define it more broadly as the probability of receiving
a particular amount of treatment a: πa(x) = P (A = a|X = x). We want as rich a set of covariates X as
possible in order to perform matching. If the investigator collected these prior to the start of the study, then
this analysis may be possible.

Problem 3
(a)
A summary of the model is below. Diagnostic plots are in Figure 1, and the estimated autocorrelation
between the residuals is plotted in Figure 2.

The residuals are very roughly normally distributed, but they appear to show an increasing trend relative
to the fitted values. The scale-location plot also appears to show that the variance is increasing with fitted
values, and the autocorrelation plot shows large autocorrelations, all of which suggest that the linear model
with assumed independence between the residuals is not appropriate.
carlsen <- read.table("CarlsenQ.txt", header=TRUE)
m1 <- lm(Sales ~ . -Case - Time, data=carlsen)
pander(summary(m1), caption = "Problem 3a: Summary of ordinary linear model.")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4421 1235 3.58 0.00336

Temp 78.18 33.89 2.307 0.03817
Sun 2.585 1.556 1.661 0.1206
Q2 -879.7 1121 -0.7845 0.4468
Q3 -1552 1541 -1.007 0.3323
Q4 715.4 474.3 1.508 0.1554
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Table 2: Problem 3a: Summary of ordinary linear model.

Observations Residual Std. Error R2 Adjusted R2

19 287.2 0.9537 0.9359

# summary(m1)

par(mfrow = c(2, 2), mar = c(4, 5, 2, 1))
plot(m1)
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Figure 1: Problem 3a: Diagnostic plots for ordinary linear model.

acf(resid(m1), main = "")
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Figure 2: Problem 3a: acf plot for ordinary linear model residuals.

(b)
Note that the model can be estimated with either Maximum Likelihood (ML) or Restricted Maximum
Likelihood (REML). I have used the default, which is REML, but either one is fine. They will produce
different estimates. The code should look like one of the following:
model <- gls(Sales ~ . -Case - Time, data=carlsen, correlation=corAR1())
model <- gls(Sales ~ . -Case - Time, data=carlsen, correlation=corAR1(),

method = "ML")

i. A summary of this model is below. From this summary, the estimated value of ρ, the lag-1 autocorrelation
parameter, is 0.87. (If you use ML for estimation, the estimate is 0.79).

ii. The coefficient values have changed in magnitude, though not in sign. The estimated standard errors
in the AR1 model are much smaller than in the ordinary linear model, which is to be expected if the
model is properly accounting for correlation among the residuals. As a result, both Sun and Q4 are
significant in the AR1 model but not in the ordinary linear model at conventional thresholds.

m2 <- gls(Sales ~ . -Case - Time, data=carlsen, correlation=corAR1())
cat("Problem 3b: Summary of AR1 model:"); summary(m2)

## Problem 3b: Summary of AR1 model:

## Generalized least squares fit by REML
## Model: Sales ~ . - Case - Time
## Data: carlsen
## AIC BIC logLik
## 212.9427 217.4623 -98.47134
##
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## Correlation Structure: AR(1)
## Formula: ~1
## Parameter estimate(s):
## Phi
## 0.8688414
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 5215.269 747.4869 6.977071 0.0000
## Temp 55.545 22.7958 2.436611 0.0300
## Sun 2.192 0.7802 2.809438 0.0148
## Q2 -36.255 662.9242 -0.054690 0.9572
## Q3 -371.191 941.7222 -0.394162 0.6999
## Q4 946.075 295.3927 3.202772 0.0069
##
## Correlation:
## (Intr) Temp Sun Q2 Q3
## Temp -0.870
## Sun 0.005 -0.357
## Q2 0.914 -0.938 0.033
## Q3 0.912 -0.960 0.100 0.992
## Q4 0.747 -0.937 0.485 0.840 0.876
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.1843635 -0.2908069 0.4983337 0.5709198 1.1275844
##
## Residual standard error: 409.3627
## Degrees of freedom: 19 total; 13 residual

(c)

T <- -2*(as.numeric(logLik(m1)) - as.numeric(logLik(m2)))
pval <- pchisq(T, df = 1, lower.tail = FALSE)

The log likelihoods are -131 for the ordinary linear model and -98 for the AR1 mode. The difference in
degrees of freedom is 1, so we compare the statistic −2(−131− (−98)) = 66 to a χ2

(1) distribution. The pvalue
is 8.0841612× 10−16, so we reject the null hypothesis and conclude that the autocorrelation is not 0.

(d)
A summary of the model is below. Diagnostic plots are in Figure 3, and the autocorrelation plot of the
residuals is in Figure 4.

The diagnostic plots suggest problems with the fit. The residuals are not very close to normally distributed,
and the scale-location plot appears to show a relationship between the fitted values and the variance. The
autocorrelation plot, however, shows much reduced autocorrelation among the residuals, as hoped for.

The likelihood of the model is -130, as compared to -98 for the model in 3c. It appears to be more effective
to estimate the autocorrelation simultaneously with estimating the model, as in 2c, rather than following a
two-stage estimation procedure.
r <- resid(m1)
rho <- cor(r[-1], r[-length(r)])
Sigma <- diag(nrow(carlsen))
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Sigma <- rhoˆabs(row(Sigma) - col(Sigma))
S <- chol(Sigma)
S_inv <- solve(t(S))

Xstar <- S_inv %*% model.matrix(m1)
ystar <- S_inv %*% carlsen$Sales

m3 <- lm(ystar ~ Xstar - 1)
pander(summary(m3),

caption = paste("Problem 2d: Summary of ordinary linear model",
"with transformed variables."))

Estimate Std. Error t value Pr(>|t|)
Xstar(Intercept) 5090 793.5 6.415 2.29e-05

XstarTemp 61.01 24.64 2.476 0.02781
XstarSun 2.196 0.8827 2.488 0.02722
XstarQ2 -214.5 725.8 -0.2956 0.7722
XstarQ3 -631.1 1026 -0.6148 0.5493
XstarQ4 879.1 322.7 2.724 0.01738

Table 4: Problem 2d: Summary of ordinary linear model with
transformed variables.

Observations Residual Std. Error R2 Adjusted R2

19 277.7 0.9979 0.9969

par(mfrow = c(2, 2), mar = c(4, 4.5, 2, 1))
plot(m3)

acf(resid(m3), main = "")
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Figure 3: Problem 3d: diagnostic plots.
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Figure 4: Problem 3d: acf plot for ordinary linear model residuals.
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