
Homework 07 Solutions

2022-11-04

library(lme4)
library(ggplot2)

Problem 1.
Problem 1a.
On July 23, 2006, the Houston Chronicle published an article entitled “Reading: First-grade standard too
tough for many”. The article claimed in part that “more students (across Texas) are having to repeat first
grade. Experts attribute the increase partially to an increase in poverty.” The data in the file houston.txt
is derived from this study. Here is a quick look:
houston <- read.table("houston.txt",header=T)

attach(houston)
houston$y <- Pct.Repeating.1st.Grade
houston$x <- Pct.Low.income.students
houston$Year <- factor(Year)
detach()

summary(houston)

## District Pct.Repeating.1st.Grade Pct.Low.income.students Year
## Length:122 Min. : 0.000 Min. : 3.20 1994:61
## Class :character 1st Qu.: 2.825 1st Qu.:27.15 2004:61
## Mode :character Median : 5.050 Median :41.35
## Mean : 5.993 Mean :41.88
## 3rd Qu.: 8.475 3rd Qu.:53.02
## Max. :17.800 Max. :98.10
## County y x
## Length:122 Min. : 0.000 Min. : 3.20
## Class :character 1st Qu.: 2.825 1st Qu.:27.15
## Mode :character Median : 5.050 Median :41.35
## Mean : 5.993 Mean :41.88
## 3rd Qu.: 8.475 3rd Qu.:53.02
## Max. :17.800 Max. :98.10

Here, I use ordinary linear models to this data with lm() to answer each question. There is code below to
make plots, but they are not very informative, so I commented them out to save space. Basically the residuals
for each of the models are a bit right-skewed, but not enough to motivate me to make a transformation and
complicate interpretation of the models.

Problem 1a.
Is an increase in the percentage of low income students associated with an increase in the percentage of
students repeating first grade?
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We just have to regress y on x and see if the coefficient on x is significantly different from zero.
summary(lm.1 <- lm(y ~ x, data=houston))

##
## Call:
## lm(formula = y ~ x, data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6458 -2.5077 -0.5413 1.7291 11.1484
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.99929 0.85959 3.489 0.000678 ***
## x 0.07147 0.01870 3.823 0.000211 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.918 on 120 degrees of freedom
## Multiple R-squared: 0.1086, Adjusted R-squared: 0.1011
## F-statistic: 14.61 on 1 and 120 DF, p-value: 0.0002106
## par(mfrow=c(2,2))
## plot(lm.1)

From the summary we see that the coefficient on x is significantly different from zero, which suggests that
there is an association between the percentage of low income students and the percentage of students repeating
first grade.

Problem 1b.
Has there been an increase in the percentage of students repeating first grade between 1994–1995 and
2004—2005?

Similar to part (a), we regress on the categorical variable Year and check for a significant coefficient.
summary(lm.2 <- lm(y ~ Year, data=houston))

##
## Call:
## lm(formula = y ~ Year, data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.608 -3.108 -0.377 2.390 11.823
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.3770 0.5253 10.236 <2e-16 ***
## Year2004 1.2311 0.7429 1.657 0.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.103 on 120 degrees of freedom
## Multiple R-squared: 0.02238, Adjusted R-squared: 0.01423
## F-statistic: 2.747 on 1 and 120 DF, p-value: 0.1001
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## par(mfrow=c(2,2))
## plot(lm.2)

The coefficient on the Year2004 dummy variable is not significantly different from zero, so it does not look like
there is a real increase in the percentage of students repeating first grade between 1994–1995 and 2004—2005.

Problem 1c.
Is the association (if any) between the percentage of students repeating first grade and the percentage of
low-income students different between 1994–1995 and 2004–2005?

The association is quantified by the slope of the regression line between y and x. To see if the association
changes, we should see if there is a significant difference in the slopes of the regression lines for the two
years. We can do this by putting an interaction between Year and x in the model, and checking to see if the
coefficient on the interaction is significantly different from zero (since that coefficient will be the difference in
slopes between the two years.)
summary(lm.3 <- lm(y ~ x*Year, data=houston))

##
## Call:
## lm(formula = y ~ x * Year, data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.7671 -2.4825 -0.4808 1.7034 11.0178
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27778 1.25429 2.613 0.0101 *
## x 0.05797 0.03171 1.828 0.0700 .
## Year2004 -0.19035 1.80545 -0.105 0.9162
## x:Year2004 0.01607 0.04048 0.397 0.6921
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.942 on 118 degrees of freedom
## Multiple R-squared: 0.1126, Adjusted R-squared: 0.09006
## F-statistic: 4.992 on 3 and 118 DF, p-value: 0.002698
## par(mfrow=c(2,2))
## plot(lm.3)

We can see from the summary that the coefficient for the interaction is not significantly different from zero,
so the slope doesn’t change significantly from 1994 to 2004. Actually the main effect for Year2004 is not
significant either, so it doesn’t even look like the intercept changes between years.

Problem 2
In the data for problem 1, it is plausible that there would be some variation among Counties in percentage of
students repeating first grade. We will use a multilevel model to explore the variation across counties, using
the 2004 data only.
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Problem 2a.
Extract from the file houston.txt a data frame containing just the data from 2004. Report the following for
the extracted data frame:
houston04 <- houston[houston$Year==2004,]

attach(houston04)

• Number of groups, J . (Each County is a group.)
cat("J =",J <- length(unique(County)))

## J = 8

• For each group j, number of observations nj .
nj <- c(table(County))
cat("nj =\n")

## nj =
nj

## Brazoria Chambers FortBend Galveston Harris Liberty Montgomery
## 8 3 5 9 20 7 6
## Waller
## 3

• Total number of observations, n. (Each District is an observation.)
cat("n =",n <- sum(nj))

## n = 61
detach()

Use only data from this data frame in the rest of this problem.

Problem 2b.
Use lmer() from library(lme4) to fit the multilevel model

yi = αj[i] + εi, εi
iid∼ N(0, σ2)

αj = β0 + ηj , ηj
iid∼ N(0, τ2)

}
(1)

where i indexes Districts, j indexes Counties, and yi is the percentage of students repeating first grade in the
ith District. Provide: a summary() of your model, and report the following quantities from your summary:
summary(lmer.1 <- lmer(y ~ 1 + (1|County), data=houston04))

## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ 1 + (1 | County)
## Data: houston04
##
## REML criterion at convergence: 335.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.68743 -0.69475 -0.07737 0.48252 2.72625
##
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## Random effects:
## Groups Name Variance Std.Dev.
## County (Intercept) 1.028 1.014
## Residual 14.068 3.751
## Number of obs: 61, groups: County, 8
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.7283 0.6252 10.76

We can read these values off the summary:

• σ̂2 = 14.068;

• τ̂2 = 1.028;

• β̂0 = 6.7283.

Problem 2c.
Use library(ggplot2) (or another R package if you prefer) to make a facet plot of y=Pct.Repeating.1st.Grade
vs x=Pct.Low.income.students, with a different facet for each County. Add to the facets

• A black horizontal line indicating the average of y in the whole data set (ignoring groups)
• A red horizontal line indicating the average of y in each County
• A green horizontal line indicating the “random effect” estimates α̂j = η̂j + β̂0 for each County, as

indicated in equation (1).

and submit your plot. (Does your plot illustrate the “shrinkage” phenomenon of MLM’s?)

Here’s the code to make the plot...
params <- with(houston04,

data.frame(
sort(unique(County)),
rep(mean(y),J),
0,
sapply(split(y,County),mean),
0,
coef(lmer.1)$County[,1], ## gives \beta_0 + \eta_j
0

)
)

names(params) = c("County","int0","slo0","int1","slo1","int2","slo2")

g <- ggplot(houston04,aes(x=x,y=y)) +
facet_wrap( ~ County) +
geom_point()

g + geom_abline(data=params,aes(intercept=int0,slope=slo0),color="black") +
geom_abline(data=params,aes(intercept=int1,slope=slo1),color="red") +
geom_abline(data=params,aes(intercept=int2,slope=slo2),color="green")
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The facet plot does indeed show the "shrinkage" phenomenon: The fitted county means from the MLM (the
green lines) are between the grand mean (the black lines) that would be estimated from lm(y ~ 1) and the
raw county means (the red lines) that would be estimated from lm(y ~ County).

Problem 2d.
Fit the ordinary linear model lm(y ~ County), where the coefficients on the County dummy variables are
constrained to sum to zero. Provide the summary() of your model, and decide from the output whether we
need to keep the County variable in the model (this is also an informal way to decide whether to keep the
multilevel model that you fitted in part (a)).
cty <- as.factor(houston04$County)
contrasts(cty) <- contr.sum(J)

summary(lm.1.04 <- lm(y ~ cty,data=houston04))

##
## Call:
## lm(formula = y ~ cty, data = houston04)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.722 -2.529 -0.260 1.875 8.571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.66656 0.56261 11.849 <2e-16 ***
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## cty1 -0.04156 1.27094 -0.033 0.9740
## cty2 -0.09989 1.94419 -0.051 0.9592
## cty3 1.99344 1.54743 1.288 0.2033
## cty4 -0.94434 1.21284 -0.779 0.4397
## cty5 -0.98656 0.91435 -1.079 0.2855
## cty6 2.56201 1.34195 1.909 0.0617 .
## cty7 1.61678 1.43116 1.130 0.2637
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.722 on 53 degrees of freedom
## Multiple R-squared: 0.1782, Adjusted R-squared: 0.06971
## F-statistic: 1.642 on 7 and 53 DF, p-value: 0.1439

Only one of the County coefficients is even close to significantly different from zero.

The F statistic, 1.642 on 7 and 53 df, tests the fitted model against the intercept-only model lm(y ~ 1) The
p-value is 0.1439, which suggests there is not enough evidence in the data to reject the intercept-only model
and keep County in the model.

We would get exactly the same result comparing the models directly with the anova() function:
lm.0.04 <- lm(y ~ 1, data=houston04)
anova(lm.0.04,lm.1.04)

## Analysis of Variance Table
##
## Model 1: y ~ 1
## Model 2: y ~ cty
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 60 893.49
## 2 53 734.23 7 159.25 1.6423 0.1439

Problem 3.
In the multilevel model (∗) for data yi, i = 1, . . . , n, arranged into J groups, j = 1, . . . , J , where each group j
has nj observations,

yi = αj[i] + εi, εi
iid∼ N(0, σ2)

αj = β0 + ηj , ηj
iid∼ N(0, τ2)

}
, (*)

we also assume that the ε’s and η’s are independent of each other.

Problem 3a.
We calculate

Cov(yi, yi′) = Cov(β0 + ηj[i] + εi, β0 + ηj[i′] + εi′) (2)
= Cov(ηj[i] + εi, ηj[i′] + εi′) (3)
= Cov(ηj[i], ηj[i′]) + Cov(ηj[i], εi′) + Cov(εi, ηj[i′]) + Cov(εi, εi′) (4)
= Cov(ηj[i], ηj[i′]) + 0 + 0 + 0 (5)

where (3) follows because adding the constant β0 does not change the covariance, and (5) follows because the
ε’s are independent of each other and the η’s are independent of the ε’s.

If j[i] 6= j[i′] then Cov(ηj[i], ηj[i′]) = 0 too, because different η’s are also independent of each other, and so
Corr(ηj[i], ηj[i′]) = 0 also.
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Problem 3b.
If j[i] = j[i′] in (4), then the η’s in (5) are the same and so

Cov(ηj[i], ηj[i′]) + 0 + 0 + 0 = Var(ηj[i]) + 0 + 0 + 0 (6)
= τ2 (7)

Finally, when j[i] = j[i′],

Corr(yi, yi′) = Cov(yi, yi′)√
σ2

yi
σ2

yi′

(8)

= τ2√
(σ2 + τ2)(σ2 + τ2)

(9)

= τ2

σ2 + τ2 (10)

where the numerator in (9) comes from (7) and the terms in the denominator follows from

Var(yi) = Var(β0 + ηj [i] + εi) (11)
= 0 + τ2 + σ2 (12)

Problem 3c.

1
nj

∑
{i:j[i]=j}

Yi = 1
nj

 ∑
{i:j[i]=j}

β0 +
∑

{i:j[i]=j}

ηj +
∑

{i:j[i]=j}

εi

 (13)

= β0 + ηj + 1
nj

∑
{i:j[i]=j}

εi (14)

which means

Var(ȳj) = Var(ηj) + 1
n2

j

∑
{i:j[i]=j}

Var(εi) (15)

= τ2 + σ2

nj
(16)

Problem 3d.
Using the same kinds of ideas as above, we can calculate

Var(ȳj) = τ2 + σ2

nj
(from (16)) (17)

Var(ȳ∗j ) = τ2 + σ2

nj
(from (16) again) (18)

Cov(ȳj , ȳ
∗
j ) = Cov

β0 + ηj + 1
nj

∑
{i:j[i]=j}

εi, β0 + ηj + 1
nj

∑
{i:j[i]=j}

ε∗i

 (19)

= τ2 (similarly to (7)) (20)
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and therefore

Corr(ȳj , ȳ
∗
j ) =

Cov(ȳj , ȳ
∗
j )√

Var(ȳj) Var(ȳ∗j )
(21)

= τ2√
(τ2 + σ2/nj)(τ2 + σ2/nj)

(22)

= τ2

τ2 + σ2/nj
(23)
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