
Homework 03 Solutions

2022-02-16

library(arm) ## includes lme4, MASS, Matrix
library(ggplot2); theme_set(theme_bw())
library(gridExtra) ## to arrange ggplots...
library(HLMdiag)

## Warning: package 'HLMdiag' was built under R version 4.1.2
library(cAIC4)

## Warning: package 'cAIC4' was built under R version 4.1.2

Problem 1.
Return to the CD4 data from HW02, and consider the model

lmer.1 <- lmer(sqrt.CD4PCT ~ 1 + VISIT * treatmnt + (1 + VISIT | newpid),
data=cd4)

Bring together all the residuals (except random effects residuals) that we have talked about, using li-
brary(HLMdiag):
cd4 <- read.csv("allvar.csv",header=T)

## It's worth doing a little exploration of the data here,
## especially to look at missing values.

apply(cd4,2,function(x) mean(is.na(x)))

## VISIT newpid VDATE CD4PCT arv visage
## 0.000000000 0.000000000 0.000000000 0.142743222 0.103668262 0.109250399
## treatmnt CD4CNT baseage
## 0.000000000 0.146730463 0.007177033
## we only need the variables newpid, VISIT, visage, CD4PCT and treatmnt
## so let's get rid of some (but not all) missing data problems
## by deleting the other variables

cd4 <- with(cd4,data.frame(newpid=newpid,
VISIT=VISIT,
visage=visage,
CD4PCT=CD4PCT,
treatmnt=treatmnt))

## and since we still have some missing data, we will just
## delete the rows that continue to have NA's (not a great
## practice in general, but good enough for this exercise...)
cd4 <- cd4[!apply(cd4,1,function(x) any(is.na(x))),]
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## set up the sqrt of the response variable...
cd4$sqrt.CD4PCT <- sqrt(cd4$CD4PCT)

## and for coloring ggplot elements it will better if treatmnt is a factor...
cd4$treatmnt <- as.factor(cd4$treatmnt)

## select the first 12 kids...
first.12 <- (cd4$newpid <= 12)

## Fit the base model for this exercise...
display(lmer.1 <- lmer(sqrt.CD4PCT ~ 1 + VISIT * treatmnt + (1 + VISIT | newpid),

data=cd4))

## lmer(formula = sqrt.CD4PCT ~ 1 + VISIT * treatmnt + (1 + VISIT |
## newpid), data = cd4)
## coef.est coef.se
## (Intercept) 4.71 0.13
## VISIT -0.03 0.01
## treatmnt2 0.14 0.19
## VISIT:treatmnt2 0.01 0.01
##
## Error terms:
## Groups Name Std.Dev. Corr
## newpid (Intercept) 1.40
## VISIT 0.05 -0.10
## Residual 0.72
## ---
## number of obs: 1075, groups: newpid, 251
## AIC = 3149.4, DIC = 3093
## deviance = 3113.2
r.1 <- hlm_resid(lmer.1,level=1,include.ls=F)
r.1s <- hlm_resid(lmer.1,level=1,include.ls=F,standardize=T)
r.2 <- hlm_resid(lmer.1,level="newpid",include.ls=F)
r.2s <- hlm_resid(lmer.1,level="newpid",include.ls=F,standardize=T)
names(r.1)

## [1] "id" "sqrt.CD4PCT" "VISIT" "treatmnt" "newpid"
## [6] ".resid" ".fitted" ".mar.resid" ".mar.fitted"
names(r.1s)

## [1] "id" "sqrt.CD4PCT" "VISIT" "treatmnt"
## [5] "newpid" ".std.resid" ".fitted" ".chol.mar.resid"
## [9] ".mar.fitted"
names(r.2)

## [1] "newpid" ".ranef.intercept" ".ranef.visit"
names(r.2s)

## [1] "newpid" ".std.ranef.intercept" ".std.ranef.visit"
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Problem 1(a).
Make a facets plot of the marginal residuals, as a function of the marginal fitted values (use scales="free_x"
if needed to make the plot legible). Explain in a sentence or two why a facets plot is not very useful for
assessing model fit for this problem, whether we look at the first 12 children, or all 251 children).
ggplot(r.1[first.12,],aes(x=.mar.fitted,y=.mar.resid)) +

facet_wrap( ~ newpid,scales="free_x") +
geom_point(aes(color=treatmnt)) +
geom_abline(intercept=0,slope=0)

9 10 11 12

5 6 7 8

1 2 3 4

4.1 4.2 4.3 4.4 4.54.1 4.2 4.3 4.4 4.5 4.6 4.74.4 4.5 4.6 4.7 4.8 4.5 4.6 4.7 4.8

4.6254.6504.6754.700 4.4 4.5 4.6 4.7 4.8 4.4 4.5 4.6 4.7 4.8 4.3 4.4 4.5

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.76 4.78 4.80 4.824.1 4.2 4.3 4.4 4.5 4.6 4.74.2 4.3 4.4 4.5 4.6

−4

−2

0

2

−4

−2

0

2

−4

−2

0

2

.mar.fitted

.m
ar

.r
es

id treatmnt

1

2

There are very few data points per child, and so the residual plot within facet for each child contains almost no
information about fit. (Having said that, there are some hints of misfit, to the extent that several individual
children’s residuals are entirely above, or entirely below, the zero line.)

Problem 1(b)
Make an ungrouped (that is, no facets) scatter plot of marginal residuals as a function of marginal fitted
values, using the full data set (not just the first 12 children). Color the points for treatmnt=1 kids and
treatmnt=2 kids with different colors. Overlay a smooth fit (geom_smooth is the easist to use here).
ggplot(r.1,aes(x=.mar.fitted,y=.mar.resid)) +

geom_point(aes(color=treatmnt)) +
geom_smooth()
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Explain, in a couple of sentences (optionally with some math):

• What is causing the dominant structure in this plot, and why that dominant structure is essentially
irrelevant for checking the relationship between sqrt.CD4PCT and VISIT;

The dominant structure in the data is the way the residuals are grouped horizontally into 14 groups—7
groups for treatmnt=1 and 7 for treatmnt=2. They are caused by the fact that our main predictor
variable is VISIT, which only takes on 7 values. The spacing of the groups is not the same between
treatmnt=1 and treatmnt=2 because the model contains a treatmnt × VISIT interaction, so that the
slope on VISIT is different for children in the treatmnt=1 and treatmnt=2 groups.

This does not affect our assessment of the fit of the model, since to check the model fit we are interested
in vertical patterns (trends, curves, outliers, changing variance, etc.) in the residuals, not horizontal
(grouping) patterns.

and

• What in this plot makes you happy or unhappy about having a linear relationship between sqrt.CD4PCT
and VISIT in the model.

The plot actually looks pretty wonderful. The variance of the residuals looks pretty much constant, as a
function of the fitted values, and the trend modeled with the smooth really does look like a horizontal
line at 0.

Problem 1(c)
Make an ungrouped (that is, no facets) scatter plot of conditional residuals as a function of conditional fitted
values, using the full data set (not just the first 12 children). Color the points for treatmnt=1 kids and
treatmnt=2 kids with different colors. Overlay a smooth fit (geom_smooth is the easist to use here).
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ggplot(r.1,aes(x=.fitted,y=.resid)) +
geom_point(aes(color=treatmnt)) +
geom_smooth()
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Explain, in a couple of sentences (optionally with some math):

• Why the dominant structure in the marginal residuals is not also present in this plot of conditional
residuals

The marginal residuals plot shows

.mar.residi = sqrt.CD4PCTi − β̂0 − β̂1 ·VISITi − β̂3 · treatmntj[i] − β̂4 ·VISITi · treatmntj[i]

vs.
.mar.fittedi = β̂0 + β̂1 ·VISITi + β̂3 · treatmntj[i] + β̂4 ·VISITi · treatmntj[i]

and because VISIT and treatmnt are both discrete, the fitted values will only take on a few discrete
values, causing the horizontal grouping in the marginal plot.

The conditional residuals plot shows

.residi = sqrt.CD4PCTi − β̂0 − β̂1 ·VISITi − β̂3 · treatmntj[i] − β̂4 ·VISITi · treatmntj[i]

−η0j[i] − η1j[i] ·VISITi

vs.
.fittedi = β̂0 + β̂1 ·VISITi + β̂3 · treatmntj[i] + β̂4 ·VISITi · treatmntj[i]

+η0j[i] + η1j[i] ·VISITi

The additional continuous (because the η’s are continuous) terms η0j[i] +η1j[i] ·VISITi essentially "jitter"
the fitted values so they no longer show the horizonal grouping structure of the marginal residuals.
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• What might be causing the trend you see in this plot to be different from the trend in the plot of the
marginal residuals.

The trend shows that when the conditional fitted value ŷcond is larger, it tends to underpredict y =
sqrt.CD4PCT (positive residual), and when ŷcond is smaller, it tends to overpredict y (negative residual).

The only difference between the two plots is the presence of the η0j[i] + η1j[i] ·VISITi terms.

In ordinary regression,we know that residuals and fitted values will be uncorrelated: that is why we don’t
see overall increasing or overall decreasing trends in the marginal residual plots (as far as the math is
concerned, marginal residuals and marginal fitted values behave exactly like ordinary regression). The
fact that conditional residuals and conditional fitted values are correlated is due to the values we use
for the η’s: η̂ = E[η|the data], and "the data" includes y. Since, therefore, the conditional fitted values
depend on y, it’s not surprising that the residuals and fitted values are correlated.

The plots below explore the association between the η̂’s and y. We can see that, although there’s not
much association between η̂1j and y, there is quite a strong association between η̂0j and y.

y.grouped <- with(cd4,sapply(split(sqrt.CD4PCT,newpid),mean))
tx.grouped <- with(cd4,sapply(split(treatmnt,newpid),function(x) x[1]))

g1 <- ggplot(r.2,aes(x=y.grouped,y=.ranef.intercept)) +
geom_point(aes(color=tx.grouped)) +
xlab("mean(sqrt.CD4PCT) within child") +
ylab("eta0") +
theme(legend.position="none")

g2 <- ggplot(r.2,aes(x=y.grouped,y=.ranef.visit)) +
geom_point(aes(color=tx.grouped)) +
xlab("mean(sqrt.CD4PCT) within child") +
ylab("eta1") +
theme(legend.position="none")

grid.arrange(g1,g2,ncol=2)
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Problem 1(d)
Use standardized residuals and standardized random effects estimates to assess the normality of εi, η0j and
η1j in the fitted model, and to check for any outliers. Include qq plots for each, and accompany each plot
with a sentence or two describing what is good or bad in that plot.
g1 <- ggplot(r.1s,aes(sample=.std.resid)) +

geom_qq() +
geom_qq_line() +
xlim(-3.5,3.5) +
ylim(-8,8) +
xlab("Normal Quantiles") +
ylab("Data Quantiles") +
ggtitle("Standardized conditional residuals")

g2 <- ggplot(r.1s,aes(sample=.chol.mar.resid)) +
geom_qq() +
geom_qq_line() +
xlim(-3.5,3.5) +
ylim(-8,8) +
xlab("Normal Quantiles") +
ylab("Data Quantiles") +
ggtitle("Cholesky marginal residuals")

g3 <- ggplot(r.2s,aes(sample=.std.ranef.intercept)) +
geom_qq() +
geom_qq_line() +
xlim(-3.5,3.5) +
ylim(-8,8) +
xlab("Normal Quantiles") +
ylab("Data Quantiles") +
ggtitle("Standardized eta0")

g4 <- ggplot(r.2s,aes(sample=.std.ranef.visit)) +
geom_qq() +
geom_qq_line() +
xlim(-3.5,3.5) +
ylim(-8,8) +
xlab("Normal Quantiles") +
ylab("Data Quantiles") +
ggtitle("Standardized eta1")

grid.arrange(g1,g2,g3,g4,ncol=2)

## Warning: Removed 1 rows containing missing values (geom_point).
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The “middle” part of all four plots seem to follow the normal distribution fairly well, but the tails fail in
various ways:

• The standardized conditional and marginal residuals both have longer tails than the Normal distribution.
There seem to be two low outliers and two high outliers among these residuals.

• The Cholesky marginal residual seem a little more extreme that the standardized conditional residuals,
which make sense since Xβ + Zη should do a better job predicting y than Xβ alone. There seem to be
two low outliers and two high outliers among these residuals. It would be useful to know if these are the
same data points as in the first QQ plot.

• The standardized η̂0’s have a long left tail and slighltly short right tail. In fact the left tail for η0 is the
most extreme of all four plots. There don’t appear to be any clear outliers among the η̂0’s.

• The distribution of η̂1 is closest to Normal, with a right tail that is only a little longer than the Normal,
and a left tail that is the least extreme of all four plots. There may be one low outlier among the η̂1’s.

Problem 2.
Continuing with the CD4 data. . .

Problem 2(a)
Make a table giving values of AIC, BIC, DIC, and cAIC (you compared two of these on the last assignment,using
just AIC, BIC and DIC):
lmer.1 <- lmer(sqrt.CD4PCT ~ 1 + visage + (1+visage|newpid),data=cd4,REML=F)
lmer.2 <- lmer(sqrt.CD4PCT ~ 1 + visage + treatmnt + (1+visage|newpid),data=cd4,REML=F)
lmer.3 <- lmer(sqrt.CD4PCT ~ 1 + visage * treatmnt + (1+visage|newpid),data=cd4,REML=F)
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lmer.4 <- lmer(sqrt.CD4PCT ~ 1 + VISIT + (1+VISIT|newpid),data=cd4,REML=F)
lmer.5 <- lmer(sqrt.CD4PCT ~ 1 + VISIT + treatmnt + (1+VISIT|newpid),data=cd4,REML=F)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00584617 (tol = 0.002, component 1)
lmer.6 <- lmer(sqrt.CD4PCT ~ 1 + VISIT * treatmnt + (1+VISIT|newpid),data=cd4,REML=F)

DIC <- function(M) {
if(class(M)=="lm") { x <- AIC(M) }
else { x <- unname(extractDIC(M)) }
return(x)

}

CAIC <- function(M) {cAIC(M)$caic}

IC <- function(M) {
x <-c(AIC=AIC(M),BIC=BIC(M),DIC=DIC(M),cAIC=CAIC(M))
return(x)

}

IC.table <- function(...) {
Mlist <- list(...)
x <- suppressWarnings(lapply(Mlist,IC))
x <- data.frame(matrix(unlist(x),ncol=4,byrow=T))
names(x) <- c("AIC","BIC","DIC","cAIC")
models <- sapply(Mlist,formula)
models <- abbreviate(substr(models,14,200),30)
rownames(x) <- models
return(x)

}

IC.table(lmer.1,lmer.2,lmer.3,lmer.4,lmer.5,lmer.6)

## AIC BIC DIC cAIC
## 1+visage+(1+visage|newpid) 3142.447 3172.327 3130.447 2697.868
## 1+visag+treatmnt+(1+visg|nwpd) 3142.755 3177.616 3128.755 2698.827
## 1+visag*treatmnt+(1+visg|nwpd) 3144.755 3184.595 3128.755 2699.562
## 1+VISIT+(1+VISIT|newpid) 3126.563 3156.443 3114.563 2642.798
## 1+VISIT+tretmnt+(1+VISIT|nwpd) 3127.625 3162.486 3113.625 2643.307
## 1+VISIT*tretmnt+(1+VISIT|nwpd) 3129.215 3169.056 3113.215 2644.733

Comment briefly on any similarities or differences in how the different criteria choose fixed effects.

Here’s an overall sum of the best (minimizing the criterion) models for each criterion, with second and third
place winners as well:

AIC: Best model is lmer.4, with lmer.5 a close second.

BIC: Best model is lmer.4, with lmer.5 a substantially less close second.

DIC: Best model is lmer.6, with lmer.4 and lmer.5 almost indistinguishably close.

cAIC: Best model is lmer.4, with lmer.5 and lmer.5 almost indistinguishably close.

All the criteria prefer having VISIT as a predictor rather than visage. (This kind of surprises me because
visage has more physical meaning, but so be it. . . ) Consistent with our findings on earlier hw that treatmnt
did not seem like an important predictor, lmer.4 (without treatmnt in the model) is first or second with all
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the criteria, with lmer.5 (main effect for treatmt, but no interaction) a strong second or third with all the
criteria.

Problem 2(b)
Make a table giving values of AIC, BIC, DIC, and cAIC for the following models:
lm.7 <- lm(sqrt.CD4PCT ~ 1 + VISIT + treatmnt,data=cd4)
lmer.8 <- lmer(sqrt.CD4PCT ~ 1 + VISIT + treatmnt + (1|newpid),data=cd4,REML=F)
lmer.9 <- lmer(sqrt.CD4PCT ~ 1 + VISIT + treatmnt + (0+VISIT|newpid),data=cd4,REML=F)
lmer.10 <- lmer(sqrt.CD4PCT ~ 1 + VISIT + treatmnt + (1+VISIT|newpid),data=cd4,REML=F)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00584617 (tol = 0.002, component 1)
IC.table(lm.7,lmer.8,lmer.9,lmer.10)

## AIC BIC DIC cAIC
## 1 + VISIT + treatmnt 4009.810 4029.730 4009.810 4009.810
## 1+VISIT+treatmnt+(1|newpid) 3153.879 3178.779 3143.879 2728.147
## 1+VISIT+tretmnt+(0+VISIT|nwpd) 3688.619 3713.520 3678.619 3490.226
## 1+VISIT+tretmnt+(1+VISIT|nwpd) 3127.625 3162.486 3113.625 2643.307

You’ll fit the first model with lm(), and the others with lmer(). Comment briefly on any similarities or
differences in how the different criteria choose random effects. (Note that only BIC and cAIC have a strong
theoretical justification here).

There’s a convergence warning for one of the models, which you can (and should) pursue using the methods
in the R notes from lecture.

All four information criteria strongly favor at least a random intercept (lm.7 and lmer.9 are very strongly
disfavored). Among the remaining two models, the model with random slope and random intercept is strongly
favored by all the criteria.

Problem 2(c)
Repeat part (b) but with the interaction VISIT * treatmnt in each model instead of just the main effects
VISIT + treatmnt.
lm.11 <- lm(sqrt.CD4PCT ~ 1 + VISIT * treatmnt,data=cd4)
lmer.12 <- lmer(sqrt.CD4PCT ~ 1 + VISIT * treatmnt + (1|newpid),data=cd4,REML=F)
lmer.13 <- lmer(sqrt.CD4PCT ~ 1 + VISIT * treatmnt + (0+VISIT|newpid),data=cd4,REML=F)
lmer.14 <- lmer(sqrt.CD4PCT ~ 1 + VISIT * treatmnt + (1+VISIT|newpid),data=cd4,REML=F)

IC.table(lm.11,lmer.12,lmer.13,lmer.14)

## AIC BIC DIC cAIC
## 1 + VISIT * treatmnt 4010.343 4035.244 4010.343 4010.343
## 1+VISIT*treatmnt+(1|newpid) 3155.181 3185.062 3143.181 2729.893
## 1+VISIT*tretmnt+(0+VISIT|nwpd) 3690.150 3720.030 3678.150 3491.763
## 1+VISIT*tretmnt+(1+VISIT|nwpd) 3129.215 3169.056 3113.215 2644.733

The story here is essentially the same as in part (b): The model with random slope and random intercept is
strongly favored by all four criteria.

Not part of the required answer here, but, comparing parts (b) and (c) it seems like the cross-level interaction
is not needed.
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