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All work was done in R and the code can be seen at the end of this project in the R appendix.

1. (a) We are going to consider the linear model of Classical regressed on Harmony, Instrument and
Voice. Note how the response variable could only take integer values, thus not making it a truly
continuous variable. However, for the sake of this question, a typical linear model with normally
distributed errors was made. In future analysis a poisson regression should also be considered.
The following is the summary of this model.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 4.3404 0.1299 33.41 0.0000

HarmonyI-V-IV -0.0309 0.1301 -0.24 0.8122
HarmonyI-V-VI 0.7689 0.1301 5.91 0.0000
HarmonyIV-I-V 0.0510 0.1300 0.39 0.6947
Instrumentpiano 1.3736 0.1130 12.15 0.0000
Instrumentstring 3.1310 0.1123 27.87 0.0000

Voicepar3rd -0.4128 0.1127 -3.66 0.0003
Voicepar5th -0.3717 0.1127 -3.30 0.0010

Model 1(a)

The harmony variable appears to have insignificant factors. To examine that in detail, let us
consider the reduced model of Classical regressed on Harmony and Instrumnet. Thus to check
the adjusted signficicance of the Harmony variable, we can do analysis of variance test. The
following is the summary of that test.

Res.Df RSS Df Sum of Sq F Pr(> F )
1 2488 13388.21
2 2485 13114.89 3 273.32 17.26 0.0000

As seen by the low p-value, the e↵ect of Harmony is significant in predicting Classical. Thus our
final model for this part will be the linear model made in the previous step (model 1(a)). Based
on model 1(a), we can see how the expected classical score changes for each factor level of each of
the predictors. For example, as a subject’s Harmony level changes from I-IV-V (baseline level) to
I-V-IV, the Classical score is expected to decrease by 0.0309. Note how the expected change in
Classical is positive for each of the Instrument levels and negative for each of the Voice levels.

(b) First, let y = classical, x1 = harmony, x2 = voice, x3 = instrument
The syntax for the repeated measures model is: lmer(y ⇠ x1 + x2 + x3 + (1|Subject)
Thus this model written as a hierarchical model is:
yi = ↵j[i] + ↵1x1 + ↵2x2 + ↵3x3 + ✏i

✏ ⇠ N(0,�2)
↵j[i] = �0 + ⌘j

⌘j ⇠ N(0, ⌧2)
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The following summarizes the attributes for the measures model.

Estimate Std. Error t value
(Intercept) 4.34 0.19 22.96

HarmonyI-V-IV -0.03 0.11 -0.30
HarmonyI-V-VI 0.77 0.11 7.19
HarmonyIV-I-V 0.05 0.11 0.47
Instrumentpiano 1.38 0.09 14.77
Instrumentstring 3.13 0.09 33.80

Voicepar3rd -0.42 0.09 -4.47
Voicepar5th -0.38 0.09 -4.04

Fixed E↵ects for model 1(b)

(Intercept) HarmonyI-V-IV HarmonyI-V-VI HarmonyIV-I-V
(Intercept) 0.04 -0.01 -0.01 -0.01

HarmonyI-V-IV -0.01 0.01 0.01 0.01
HarmonyI-V-VI -0.01 0.01 0.01 0.01
HarmonyIV-I-V -0.01 0.01 0.01 0.01
Instrumentpiano -0.00 0.00 0.00 -0.00
Instrumentstring -0.00 -0.00 -0.00 -0.00

Voicepar3rd -0.00 -0.00 0.00 0.00
Voicepar5th -0.00 -0.00 -0.00 -0.00

Correlation of Fixed E↵ects for Model 1(b)

Instrumentpiano Instrumentstring Voicepar3rd Voicepar5th
(Intercept) -0.00 -0.00 -0.00 -0.00

HarmonyI-V-IV 0.00 -0.00 -0.00 -0.00
HarmonyI-V-VI 0.00 -0.00 0.00 -0.00
HarmonyIV-I-V -0.00 -0.00 0.00 -0.00
Instrumentpiano 0.01 0.00 -0.00 -0.00
Instrumentstring 0.00 0.01 -0.00 -0.00

Voicepar3rd -0.00 -0.00 0.01 0.00
Voicepar5th -0.00 -0.00 0.00 0.01

Correlation of Fixed E↵ects for Model 1(b)

Groups Name Variance Std.Dev.
Subject (Intercept) 1.704 1.305
Residual 3.583 1.893

Random E↵ects for Model 1(b)

To test the performance of this model, relative to the one created in the previous part, we are
going to consider the AIC, BIC, and in-sample MSE for these models. Note that for the MSE,
conditional residuals were used. The following table summarizes these measurements.
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MSE AIC BIC
linear 5.26 11231.86 11284.25

repeated measures 3.48 10492.76 10550.97

Comparing Models 1(a), 1(b)

The repeated measures model is better for all three measurements. Thus, we have evidence to
conclude that the random e↵ect adds value to the model. We also observe the fact that fixed e↵ect
estimates are very similar to model 1(a) and the correlation between each level of each predictor
are very low.

(c) The syntax (using the variables defined in part (c)) for this model is: lmer(y ⇠ x1 + x2 + x3

+ (1|Subject:x1) + (1|Subject:x2) + (1|Subject:x3) This model written as a hierarchical
model is:
yi = ↵j[i] + ↵1x1 + ↵2x2 + ↵3x3 + ✏i, ✏i ⇠ N(0,�2)
↵0i = �00 + ⌘0i, ⌘0i ⇠ N(0, ⌧20 )
↵1i = �10 + ⌘1i, ⌘1i ⇠ N(0, ⌧21 )
↵2i = �20 + ⌘2i, ⌘2i ⇠ N(0, ⌧22 )
This new model (model 1(c)) has the following performance measurements.

MSE AIC BIC
model 1(a) 5.26 11231.86 11284.25
model 1 (b) 3.48 10492.76 10550.97
model 1(c) 2.11 10077.65 10147.50

Comparing Models 1(a), 1(b), 1(c)

All of these measurements are better for model 1(c) where there are random e↵ects for each fixed
e↵ect. The following summarizes the fixed e↵ects for this mode.

Estimate Std. Error t value
(Intercept) 4.34 0.21 20.25

HarmonyI-V-IV -0.03 0.14 -0.21
HarmonyI-V-VI 0.77 0.14 5.38
HarmonyIV-I-V 0.06 0.14 0.40
Instrumentpiano 1.36 0.26 5.20
Instrumentstring 3.13 0.26 11.93

Voicepar3rd -0.41 0.08 -4.98
Voicepar5th -0.37 0.08 -4.55

Fixed E↵ects for Model 1(c)

Again, notice how the fixed e↵ects do not di↵er from the fixed e↵ects from models 1(a) and 1(b).
The following shows each random e↵ect’s variance.

Group Variance
Subject:Harmony 0.44300

Subject:Instrument 2.19904
Subject:Voice 0.02802

Residual 2.43997

Variance for Model 1(c)’s Random E↵ects

The Subject:Instrument group has a variance that is similar to the residual’s variance. The
Subject:Harmony and Subject:Voice variance’s are very similar relative the residual’s variance.
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2. (a) The covariates Voice, OMSI, Composing, ClsListen and Instr.minus.Notes were selected as
possible variables to add to the model. They were chosen for intuitive reasons. Furthermore, the
following table summarizes the performance of this new model compared to model 1(c).

MSE AIC BIC
Model 1(c) 2.11 10077.65 10147.50
Model 2(a) 2.05 9673.74 9766.25

Comparing Models 1(c) and 2(a)

Since all three measurements confirm that the new model is better, we have evidence to conclude
that these new covariates add value to the model.

(b) We will consider two new sets of random e↵ects. The first set of random e↵ects to include in the
model is of the form (1|Subject:Harmony) + (1|Subject:Composing) + (1|Subject:Instrument)
+ (1|Subject:Voice). We will call this model 2(b)i. The second set of random e↵ects to include
in the model is of the form (1|Subject:Harmony) + (1|Subject:Composing) + (1|Subject:Instrument)
+ (1|Subject:Voice) + (1|Selfdeclare:Voice). We will call this model 2(b)ii. Using our
usual criteria of evaluating and comparing AIC/BIC/MSE values, we will see if these new models
with new random e↵ects perform better than model 2(a).

MSE AIC BIC
Model 2(a) 2.05 9673.74 9766.25
Model 2(b)i 2.07 9641.73 9740.02
Model 2(b)ii 2.07 9643.73 9747.81

Model 2(b)i and 2(b)ii have much better AIC/BIC values than model 2(a). We would then remove
model 2(a) from consideration. However, between model 2(b)i and model 2(b)ii, their AIC and
MSE values are too close to each other to make a decision based on this criteria. However, there is
a big enough di↵erence in BIC between 2(b)i and model 2(b)ii. Thus, we would select model2(b)i
as our final model for this part.

(c) For this question model 2(b)i was our final model (which for future parts will be called m2). The
following table summarizes the fixed e↵ects for this final model.

Estimate Std. Error t value
(Intercept) 3.93172 0.37175 10.57612

HarmonyI-V-IV -0.01258 0.14348 -0.08768
HarmonyI-V-VI 0.79749 0.14351 5.55714
HarmonyIV-I-V 0.05731 0.14345 0.39955
Instrumentpiano 1.40589 0.20766 6.77008
Instrumentstring 3.18769 0.20738 15.37091

Voicepar3rd -0.37067 0.08110 -4.57031
Voicepar5th -0.34571 0.08108 -4.26361

OMSI -0.00040 0.00090 -0.44712
Composing 0.10915 0.14736 0.74068
ClsListen 0.14893 0.11531 1.29156

Instr.minus.Notes 0.05553 0.10252 0.54164

Final Model 2

As can be seen by the summary, the Instrument levels have the highest coe�cients and thus the
greatest expected e↵ect on the response variable. This is especially true for when a subject changes
their instrument from guitar (baseline) to string, the expected value of the response variable will
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increase by 3.18769, holding all other e↵ects constant. All other coe�cients corresponding to
categorical variable have this type of an interpretation. On the other end of the spectrum, OMSI
seems to have the least expected e↵ect on the response variable. As the OMSI test score increases
by one point, the expected value of the response variable increases only by 0.00040, holding all
other e↵ects constant. All other coe�cients corresponding to numeric variables have this type of
an interpretation.

3. In order to dichotomize Selfdeclare variable, the median was found to be 2. Since 2 represents the
50th percentile, all values that are less than 2 were coded as 0 and all values greater than or equal
to 2 were coded as 1. With this new variable, Selfdeclare.binary, the following two models were
considered. The first one was of the form Classical ⇠ Harmony + Instrument + Voice + OMSI +
Composing + ClsListen + Instr.minus.Notes + Selfdeclare.binary + Selfdeclare.binary:Composing
+ (1|Subject:Harmony) + (1|Subject:Instrument) + (1|Selfdeclare.binary:Voice), and the
second one was of the form lmer(Classical ⇠ Harmony + Instrument + Voice + OMSI + Composing
+ ClsListen + Instr.minus.Notes + Selfdeclare.binary + Selfdeclare.binary*Composing +
Selfdeclare.binary*ClsListen + (1|Subject:Harmony) + (1|Subject:Instrument) +
(1|Selfdeclare.binary:Voice). The first model will be called model 3i and the second model will
be called model 3ii. Using our usual criteria of AIC/BIC/MSE, we will see which model is the best
one. Furthermore, we will compare these two models with the final model from 2.

MSE AIC BIC
model 2 2.07 9641.73 9740.02
model 3i 2.08 9675.13 9779.20
model 3ii 2.08 9675.76 9785.62

According to this criteria, model 2 still performed better than either model 3i or model 3ii. This gives
us some evidence the controlling for the dichotomized Selfdeclare does not add much value to the
model. Furthermore, recall how model 2(b)ii also controlled for the non-dichotomized Selfdeclare
as a random intercept, but that model was still not as good as model 2(b)i (which did not use the
Selfdeclare variable in any way). Thus based on these models, and model selection criteria, we have
some evidence to conclude that Selfdeclare (coded as either form) adds no predictive power when
modeling how classical the stimulus sounds.

4. (a) Using a similar model to the one from 1(c) (where Popular is regressed on Subject, Harmony,
and Voice in addition to each predictor’s interaction with Subject as random e↵ects), creates
the following set of fixed e↵ects.

Estimate Std. Error t value
(Intercept) 6.58 0.21 31.77

HarmonyI-V-IV -0.03 0.14 -0.18
HarmonyI-V-VI -0.27 0.14 -1.93
HarmonyIV-I-V -0.19 0.14 -1.32
Instrumentpiano -0.95 0.25 -3.77
Instrumentstring -2.61 0.25 -10.37

Voicepar3rd 0.16 0.08 1.97
Voicepar5th 0.16 0.08 1.95

Model 4(a)

In this model, the levels of Voice all have positive e↵ects on how popular the stimulus sounds.
The levels for the other two predictors are all negative. This is opposite to what was observed
when Classical was the response variable.

(b) The same set of covariates that were used for question 2 were also considered for this question. In
doing so, two models were created. The first one was of the form lmer(Popular ⇠ Harmony +
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Instrument + Voice + OMSI + Composing + ClsListen + Instr.minus.Notes + (1|Subject:Harmony)
+ (1|Subject:Composing) + (1|Subject:Instrument) + (1|Subject:Voice)). This model
will be called model 4(b)i. The second model is of the form lmer(Popular ⇠ Harmony + Instrument
+ Voice + OMSI + Composing + ClsListen + Instr.minus.Notes + (1|Subject:Harmony) +
(1|Subject:Composing) + (1|Subject:Instrument) + (1|Subject:Voice) + (1|Selfdeclare:Voice)).
This model will be called model 4(b)ii. Using our usual model selection criteria, we have the fol-
lowing measurements.

MSE AIC BIC
model 4(b)i 2.15 9669.00 9767.29
model 4(b)ii 2.15 9671.00 9775.07

Similar to the results from question 2, these two models have similar MSE and AIC values.
However, the BIC does favor model 4(b)i. Thus based on this criteria, we will select model 4(b)i.
Doing this results in the following fixed e↵ects.

Estimate Std. Error t value
(Intercept) 6.53264 0.35605 18.34742

HarmonyI-V-IV -0.02875 0.13906 -0.20676
HarmonyI-V-VI -0.30318 0.13908 -2.17984
HarmonyIV-I-V -0.21228 0.13902 -1.52692
Instrumentpiano -0.98791 0.19710 -5.01213
Instrumentstring -2.69424 0.19681 -13.68961

Voicepar3rd 0.17796 0.08245 2.15839
Voicepar5th 0.16911 0.08243 2.05155

OMSI 0.00038 0.00086 0.44042
Composing 0.14508 0.14101 1.02887
ClsListen -0.01298 0.11034 -0.11762

Instr.minus.Notes -0.10870 0.09811 -1.10802

Model 4(b)

With this final model, the Instrument levels have the highest coe�cients and thus the greatest
expected e↵ect on the response variable. This is especially true when a subject changes their
instrument from guitar (baseline) to string, the expected value of the response variable will de-
crease by about 2.694. On the other end of the spectrum, OMSI seems to have the least expected
e↵ect on the response variable. As the OMSI score increases by one point, the expected value of
the response variable increases only by 0.00038.

(c) Using the same dichotomized Selfdeclare.binary variable, two models will be considered. The
first one will be of the form, Popular ⇠ Harmony + Instrument + Voice + OMSI + Composing
+ ClsListen + Instr.minus.Notes + Selfdeclare.binary + Selfdeclare.binary:Composing
+ (1|Subject:Harmony) + (1Subject:Instrument) + (1|Selfdeclare.binary:Voice), and
the second one was of the form lmer(Popular ⇠ Harmony + Instrument + Voice + OMSI +
Composing + ClsListen + Instr.minus.Notes + Selfdeclare.binary +
Selfdeclare.binary*Composing + Selfdeclare.binary*ClsListen + (1|Subject:Harmony)
+ (1|Subject:Instrument) + (1|Selfdeclare.binary:Voice). The first model will be called
model 4(c)i and the second model will be called model 4(c)ii.

MSE AIC BIC
model4(b) 2.15 9669.00 9767.29
model 4(c)i 2.16 9694.85 9798.93
model 4(c)ii 2.16 9698.63 9808.48
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Based on this criteria, model 4(b) is better (the final model from the previous part). Thus, using
the dichotomized Selfdeclare.binary model did not improve our modeling of the response
variable. The fixed e↵ects and interpretations are the same to what they were in the previous
part.

5. See write-up on next page.
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In this analysis, we were interested in creating two di↵erent models. The first model was to identify
what variables, within the data set, a↵ect how classical the musical stimulus sounds. The second model was
to identify what variables, within the data set, a↵ect how popular the musical stimulus sounds. For both
research questions, traditional linear models and hierarchical models were considered.

For the first research question of identifying what factors a↵ect how popular a song sounds, three ma-
jor predictors were considered. These were the harmony motions (I-IV-V, I-V-IV, I-V-VI, IV-I-V), voice
leadings (contrary, par3rd, par5th) and the instrument (guitar, piano, string). The first model was a linear
model in where the response variable of how classical a song was linearly regressed on these three main
predictors. For this linear model, all three predictors were observed to be significant. The second model
that was considered was a repeated measures model in where the previous model was fit with a random
intercept for each participant. The third model considered was one where there was a random intercept for
each person/harmony combination, person/voice combination, and person/instrument combinations. The
reasoning behind this model was to account for all possible forms of bias that people may have when rating
music. In order to compare between these three models, the in-sample mean squared error, AIC, and BIC
measurement were all used. In doing so, the third model where there was a random intercept for each
person/harmony, person/voice and person/instrument combination performed the best. This tells us that
including other variance components adds values to the model.

Moving past the main predictors of harmony, voice and instrument, other predictors were also considered
at this point. Specifically, the OMSI test of musical knowledge score for each subject, the self-reported
composing experience of each subject, the self-reported score of how much classical music each subject
listens to, and the di↵erence between how much a subject concentrates on an instrument while listening to
music and how much a subject concentrates on the notes while listening to music were considered. At first,
each of these covariates were added as fixed e↵ects to the model from the previous part. Then these variable’s
interaction with each subject were considered as random intercepts in the model. Using the MSE/AIC/BIC
criteria mentioned in the previous paragraph, the model where all these new covariates were added as fixed
e↵ects, but not as random intercepts was seen to be the best. Note that this represents the final model
2 from the earlier questions. The last covariate that was considered was the measurement of if they self
declare themselves as musicians. This variable was first dichotomized by making the cut-o↵ value equal to
the median of this variable. This variable was then added as a fixed e↵ect and as a fixed e↵ect with its
interaction with the voice variable. In addition the combination between the self-declare variable and the
voice variable was added as a random intercept to the model. Unfortunately, adding this new variable did
not show any improvement to the model and thus it was not considered. All of this analysis has shown
that a hierarchical model performs very well when trying to predict how classical a song sounds. The final
model that was selected form this analysis was the one displayed in question 2(c). With this final model,
the instrument levels have the highest coe�cients and thus the greatest expected e↵ect on the response
variable. This is especially true for when a subject changes their instrument from guitar (baseline) to string,
the expected value of the response variable will increase by 3.18769, holding all other e↵ects constant. On
the other end of the spectrum, the OMSI score seems to have the least expected e↵ect on the response
variable. As this test score increases by one point, the expected value of the response variable increases only
by 0.00040, holding all other e↵ects constant.

The second research question was about what factors, within the data set, a↵ect how popular a song
sounds. The procedure for answering this question was very similar to the previous question. The three
major covariates of harmony motions, voice leadings and the instrument were first considered. Linear and
hierarchical models were made similar to those made in the first part of the research question. The model
accounting for al possible forms of bias (question 1(c)) performed the best, again telling us that other variance
components adds value to the model.

At this point, additional covariates were added to refine the model. The same set of covariates were
added to the model. Again models where the covariates were added as fixed e↵ects in addition to models
were the covariate’s interaction with each subject were added as random intercepts were considered. Similar
to the previous question, not surprisingly, the former model performed the best (displayed as model 4(b) in
the earlier questions). Lastly the dichotomized self-declare variable was considered. Again, similar to the
previous question, this variable, both when added as a fixed e↵ect and as a random intercept did not add
any value to the model, thus telling us that the variable is insignificant in predicting the response variable.
This analysis continued to show us that a hierarchical model performs very well when trying to predict how
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popular a song sounds. The final model that selected from this analysis was the one displayed in question
4(b). With this final model, the instrument levels have the highest coe�cients and thus the greatest expected
e↵ect on the response variable. This is especially true when a subject changes their instrument from guitar
(baseline) to string, the expected value of the response variable will decrease by about 2.694. On the other
end of the spectrum, OMSI score seems to have the least expected e↵ect on the response variable. As this
score increases by one point, the expected value of the response variable increases only by 0.00038.
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R Appendix

library(lme4)
library(arm)
library(xtable)

the.data = read.table("ratings.txt", sep = ",", header = TRUE)

### QUESTION 1 ###
## Part (a) ##
getMSE = function(object){
mse = mean(residuals(object)^2)
return(mse)

}

getModelSummary = function(list.of.objects){
l = length(list.of.objects)
model.summary = matrix(rep(NA, l*3), nrow = l, ncol = 3)
for(i in 1:l){
model.summary[i, ] = c(getMSE(list.of.objects[[i]]),

AIC(list.of.objects[[i]]),
BIC(list.of.objects[[i]]))

}
colnames(model.summary) = c("MSE", "AIC", "BIC")
return(model.summary)

}

the.data$Classical = as.integer(the.data$Classical)

m1a = lm(Classical ~ Harmony + Instrument + Voice, data = the.data)
summary(m1a)
xtable(m1a)
m1a.noHarmony = lm(Classical ~ Instrument + Voice, data = the.data)
anova(m1a.noHarmony, m1a)

getModelSummary(list(m1a, m1a.noHarmony))
# m1a looks better

## Part (b) ##
m1b = lmer(Classical ~ Harmony + Instrument + Voice + (1|Subject), data = the.data)
xtable(getModelSummary(list(m1a, m1b)))

names(summary(m1b))
xtable(summary(m1b)$coefficients)

xtable(as.matrix(summary(m1b)$varcor))
m = as.matrix(summary(m1b)$varcor)

xtable(as.matrix(summary(m1b)$vcov)[,1:4])
xtable(as.matrix(summary(m1b)$vcov)[,5:8])

## Part (c) ##
m1c = lmer(Classical ~ Harmony + Instrument + Voice + (1|Subject:Harmony)

+ (1|Subject:Instrument) + (1|Subject:Voice), data = the.data)
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summary.1c = getModelSummary(list(m1a, m1b, m1c))
row.names(summary.1c) = c("model 1(a)", "model 1 (b)", "model 1(c)")
xtable(summary.1c)
summary(m1c)
xtable(as.matrix(summary(m1c)$coefficients))

### QUESTION 2 ###
the.data$CollegeMusic = as.factor(the.data$CollegeMusic)
the.data$APTheory = as.factor(the.data$APTheory)

## Part (a) ##
m2a = lmer(Classical ~ Harmony + Instrument + Voice + OMSI + Composing +

ClsListen + Instr.minus.Notes + (1|Subject:Harmony) +
(1|Subject:Instrument) + (1|Subject:Voice), data = the.data)

summary.2a = getModelSummary(list(m1c, m2a))
row.names(summary.2a) = c("Model 1(c)", "Model 2(a)")
xtable(summary.2a)

## Part (b) ##
m2bi = lmer(Classical ~ Harmony + Instrument + Voice + OMSI + Composing +

ClsListen + Instr.minus.Notes +
(1|Subject:Harmony) +
(1|Subject:Composing) +
(1|Subject:Instrument) +
(1|Subject:Voice),

data = the.data)

m2bii = lmer(Classical ~ Harmony + Instrument + Voice + OMSI + Composing +
ClsListen + Instr.minus.Notes +
(1|Subject:Harmony) +
(1|Subject:Composing) +
(1|Subject:Instrument) +
(1|Subject:Voice) +
(1|Selfdeclare:Voice),

data = the.data)
summary.2b = getModelSummary(list(m2a, m2bi, m2bii))
xtable(summary.2b)

m2b = m2bi

xtable(summary(m2b)$coefficients, digits = 5)

### QUESTION 3 ###
summary(the.data$Selfdeclare)
the.data$Selfdeclare.binary = ifelse(the.data$Selfdeclare <= 2, 0, 1)
table(the.data$Selfdeclare.binary)

m3i = lmer(Classical ~ Harmony + Instrument + Voice + OMSI + Composing + ClsListen + Instr.minus.Notes +
Selfdeclare.binary + Selfdeclare.binary:Composing +
(1|Subject:Harmony) + (1|Subject:Instrument) + (1|Selfdeclare.binary:Voice), data = the.data)

m3ii = lmer(Classical ~ Harmony + Instrument + Voice + OMSI + Composing + ClsListen + Instr.minus.Notes +
Selfdeclare.binary + Selfdeclare.binary*Composing + Selfdeclare.binary*ClsListen +
(1|Subject:Harmony) + (1|Subject:Instrument) + (1|Selfdeclare.binary:Voice), data = the.data)
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summary.3 = getModelSummary(list(m2b, m3i, m3ii))
row.names(summary.3) = c("m2", "m3i", "m3ii")
summary.3
xtable(summary.3)

### QUESTION 4 ###
## Part (a) ##
m4a = lmer(Popular ~ Harmony + Instrument + Voice + (1|Subject:Harmony) + (1|Subject:Instrument) +

(1|Subject:Voice), data = the.data)
xtable(summary(m4a)$coefficient)

## Part (b) ##
m4bi = lmer(Popular ~ Harmony + Instrument + Voice + OMSI + Composing +

ClsListen + Instr.minus.Notes +
(1|Subject:Harmony) +
(1|Subject:Composing) +
(1|Subject:Instrument) +
(1|Subject:Voice),

data = the.data)

m4bii = lmer(Popular ~ Harmony + Instrument + Voice + OMSI + Composing +
ClsListen + Instr.minus.Notes +
(1|Subject:Harmony) +
(1|Subject:Composing) +
(1|Subject:Instrument) +
(1|Subject:Voice) +
(1|Selfdeclare:Voice),

data = the.data)

summary.4b = getModelSummary(list(m4bi, m4bii))
row.names(summary.4b) = c("model 4(b)i", "model 4(b)ii")
xtable(summary.4b)

m4b = m4bi
xtable(summary(m4b)$coefficients, digits = 5)

## Part (c) ##
m4ci = lmer(Popular ~ Harmony + Instrument + Voice + OMSI + Composing + ClsListen + Instr.minus.Notes +

Selfdeclare.binary + Selfdeclare.binary:Composing +
(1|Subject:Harmony) + (1|Subject:Instrument) + (1|Selfdeclare.binary:Voice), data = the.data)

m4cii = lmer(Popular ~ Harmony + Instrument + Voice + OMSI + Composing + ClsListen + Instr.minus.Notes +
Selfdeclare.binary + Selfdeclare.binary*Composing + Selfdeclare.binary*ClsListen +
(1|Subject:Harmony) + (1|Subject:Instrument) + (1|Selfdeclare.binary:Voice), data = the.data)

summary.4c = getModelSummary(list(m4b, m4ci, m4cii))
row.names(summary.4c) = c("model4(b)", "model 4(c)i", "model 4(c)ii")
xtable(summary.4c)
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