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set.seed(1234567890) ## to make a reproducible simulation result

library(arm)
library(ggplot2); theme_set(theme_bw())
library(gridExtra)

library(rstan)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)

library(bayesplot)
library(shinystan)

library(DHARMa)

print_file <- function(filename) {
x <- paste(scan(file=filename,

what="",
sep="\n",
blank.lines.skip = TRUE,
quiet=TRUE),

collapse="\n")
cat(x)

}

Problem 1 – Chicks
The ChickWeight data frame is included with R, and you can access it with data(ChickWeight). It has
578 rows and 4 columns from an experiment on the effect of diet on early growth of chicks. The variables
(Columns) are:

• weight: a numeric vector giving the body weight of the chick (gm).

• Time: a numeric vector giving the number of days since birth when the measurement was made.

• Chick: an ordered factor with levels 18 < . . . < 48 giving a unique identifier for the chick. The ordering
of the levels groups chicks on the same diet together and orders them according to their final weight
(lightest to heaviest) within diet.

• Diet: a factor with levels 1, ..., 4 indicating which experimental diet the chick received.
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For most of this exercise we will be working with the model

log(weighti) = α0j[i] + α1j[i] · Timei + εi

α0j = β0 + η0j

α1j = β1 + η1j

εi
iid∼ N(0, σ2)

η0j
iid∼ N(0, τ2

0 )

η1j
iid∼ N(0, τ2

1 ) ,

where i is the observation number and j is the Chick number1. You will have to convert Chick from a factor
variable to a numerical variable, to work with stan().

Problem 1(a)
In the same folder as this assignment sheet there is a file chicks.stan with most of the program already
written, but the model section left blank. Fill in the blank model section2 and get the program to run using
library(rstan), taking at least 500 MCMC steps per chain3, and accepting the other stan() defaults, so
that you end up with at least 1000 “good” MCMC samples from the four Markov chains produced. Turn in:

• The completed stan program chicks.stan.

• A printout of the fitted stan object but including only the lines for β0, β1, τ0, τ1, and σ.

(You are free to use lmer() to estimate the corresponding multi-level model, to make sure you are on the
right track, but please don’t turn in any lmer() code or output for this part of the exercise.)
data(ChickWeight)

## str(ChickWeight)

Since the Level 1 mean mu[i] <- a0[Chick[i]] + a1[Chick[i]]*Time[i] and the random intercept a0[j]
<- b0 + eta0[j] and slope a1[j] <- b1 + eta1[j] are already defined in the transformed parameters
block, all we need to do in the model block is specify

• Level 1: distribution (likelihood) for y:

for (i in 1:N) {
y[i] ~ normal(mu[i],sigma);

}

• Level 2: distributions of the η’s:

for (j in 1:J) {
eta0[j] ~ normal(0,tau0);
eta1[j] ~ normal(0,tau1);

}

• Priors for all the free parameters (fixed effects and sd’s):

b0 ~ normal(0,1e6);
b1 ~ normal(0,1e6);
sigma ~ uniform(0,50);
tau0 ~ uniform(0,50);
tau1 ~ uniform(0,50);

1Also note that in this model we are just letting ρη0,η1 = 0, to make the stan() coding less complicated.
2You should not have to change any of the code already in the file; just add to it. However if it is easier for you to change

some of the code in the file, that is fine too.
3If you need to take more steps to get convergence to the stationary distribution, that is fine.
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The final, complete stan program looks like this:
print_file("chicks.stan")

## data {
## int N; // # observations
## int J; // # chicks
## real weight[N];
## real Time[N];
## int Chick[N]; // needs to be integers, not a factor variable
## }
##
## transformed data {
## real y[N];
## y <- log(weight);
## }
##
## parameters{
## real b0;
## real b1;
## real eta0[J];
## real eta1[J];
## real<lower=0> sigma;
## real<lower=0> tau0;
## real<lower=0> tau1;
## }
##
## transformed parameters {
## real mu[N];
## real a0[J];
## real a1[J];
## for (j in 1:J) {
## a0[j] <- b0 + eta0[j];
## a1[j] <- b1 + eta1[j];
## }
## for (i in 1:N) {
## mu[i] <- a0[Chick[i]] + a1[Chick[i]]*Time[i];
##
## }
## }
##
## model {
## // Level 1
## for (i in 1:N) {
## y[i] ~ normal(mu[i],sigma) ;
## }
## // Level 2
## for (j in 1:J) {
## eta0[j] ~ normal(0,tau0);
## eta1[j] ~ normal(0,tau1);
## }
## // Prior distributions
## b0 ~ normal(0,1e6);
## b1 ~ normal(0,1e6);
## sigma ~ uniform(0,50);
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## tau0 ~ uniform(0,50);
## tau1 ~ uniform(0,50);
## }
##
## generated quantities {
## real yrep[N];
## for (i in 1:N) {
## yrep[i] <- normal_rng(mu[i],sigma);
## }
## }

Examining the data block,

data {
int N; // # observations
int J; // # chicks
real weight[N];
real Time[N];
int Chick[N]; // needs to be integers, not a factor variable

}

all of the variables are already in the ChickWeight data frame, except for N, J and a version of Chick that is
an integer, not a factor, variable. Here is code to run the model:
attach(ChickWeight)

chicknum <- as.numeric(Chick)

chickdata <- list(N=length(chicknum),
J=length(unique(chicknum)),
weight=weight,
Time=Time,
Chick=chicknum)

detach()

chickmodel <- stan(file="chicks.stan",data=chickdata,chains=0)

chickresult <- stan(fit=chickmodel,data=chickdata,iter=500)

and here is the printout of the results, for β0, β1, τ0, τ1 and σ:
print(chickresult,pars=c("b0","b1","tau0","tau1","sigma"))

## Inference for Stan model: chicks.
## 4 chains, each with iter=500; warmup=250; thin=1;
## post-warmup draws per chain=250, total post-warmup draws=1000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## b0 3.81 0 0.01 3.79 3.80 3.81 3.82 3.83 921 1.00
## b1 0.08 0 0.00 0.07 0.07 0.08 0.08 0.08 255 1.01
## tau0 0.06 0 0.01 0.03 0.05 0.06 0.07 0.09 128 1.02
## tau1 0.02 0 0.00 0.02 0.02 0.02 0.02 0.03 785 1.00
## sigma 0.11 0 0.00 0.10 0.10 0.11 0.11 0.11 666 1.00
##
## Samples were drawn using NUTS(diag_e) at Fri Apr 01 11:53:36 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
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## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

Problem 1(b)
Use shinystan or bayesplot to generate and turn in the following plots, neatly organized:

• For β0: (i) Histogram of the MCMC draws; (ii) Autocorrelation plot for at least one of the four Markov
chains; (iii) trace plot of all four Markov chains on the same graph, with different colors to indicate the
different Markov chains.

• For β1: the same three things.

• For τ0: the same three things.

• For τ1: the same three things.

• For σ: the same three things.
param <- "b0"
g1 <- mcmc_hist(chickresult,pars=param)
g2 <- mcmc_acf(chickresult,pars=param)
g3 <- mcmc_trace(chickresult,pars=param)
param <- "b1"
g4 <- mcmc_hist(chickresult,pars=param)
g5 <- mcmc_acf(chickresult,pars=param)
g6 <- mcmc_trace(chickresult,pars=param)
param <- "tau0"
g7 <- mcmc_hist(chickresult,pars=param)
g8 <- mcmc_acf(chickresult,pars=param)
g9 <- mcmc_trace(chickresult,pars=param)
param <- "tau1"
g10 <- mcmc_hist(chickresult,pars=param)
g11 <- mcmc_acf(chickresult,pars=param)
g12 <- mcmc_trace(chickresult,pars=param)
param <- "sigma"
g13 <- mcmc_hist(chickresult,pars=param)
g14 <- mcmc_acf(chickresult,pars=param)
g15 <- mcmc_trace(chickresult,pars=param)
grid.arrange(g1,g2,g3,

g4,g5,g6,
g7,g8,g9,
g10,g11,g12,
g13,g14,g15,ncol=3)
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Problem 1(c)
Set y <- log(ChickWeight$weight), and use shinystan or bayesplot to produce graphical posterior
predictive checks (ppc’s) for

• T(y) = mean(y)

• T(y) = sd(y)

• At least one other test statistic T(y) that produces an interesting result.

In addition to the mean and the sd, I tried the min and the max as test statistics (see below). The mean,
sd and min didn’t show any misfit of the model to the data, but you can see that the max of the data is far
outside the distribution of max’s of data simulated from the model (from the posterior predictive distribution).
That is interesting, because it suggests a feature of the data that the model isn’t fitting very well.

Since the max of the real data is lower than the max of the simulated data, it suggests to me that perhaps
log(weight) was too strong a transformation, and maybe something like

√
weight or some other fractional

power would be better. (The fit would have to be much much better for the fractional power, though, since
“log” is so much easier to explain to a client or colleague than a fractional power of weight would be.)
y <- log(ChickWeight$weight)
yrep <- extract(chickresult,pars="yrep")$yrep

g1 <- ppc_stat(y,yrep,stat="mean")
g2 <- ppc_stat(y,yrep,stat="sd")
g3 <- ppc_stat(y,yrep,stat="min")
g4 <- ppc_stat(y,yrep,stat="max")

grid.arrange(g1,g2,g3,g4,ncol=2)
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Problem 1(d)
Now fit the corresponding lmer() model (the parameter estimates should be almost identical to your estimates
from the stan() model). Turn in

• The plot of the conditional residuals for the lmer() model. If the model fits well, these should be
approximately normally distributed.

• The plot of the "uniformized" conditional residuals4 for the lmer() model, using library(DHARMa). If
the model fits, these should be approximately uniformly distributed.

Write a sentence or two identifying and commenting on any suggested improvements to the model, or any
other useful information, that you can see in these plots.
lmer.1 <- lmer(log(weight) ~ Time + (Time|Chick), data=ChickWeight, REML=F)

First I’ll verify that the parameter estimates from lmer() and stan() are about the same...
round(summary(lmer.1)$coef,2)

## Estimate Std. Error t value
## (Intercept) 3.81 0.01 316.08
## Time 0.08 0.00 25.23
VarCorr(lmer.1)

## Groups Name Std.Dev. Corr
## Chick (Intercept) 0.061207
## Time 0.020369 -0.309
## Residual 0.106655
print(chickresult,pars=c("b0","b1","tau0","tau1","sigma"))

## Inference for Stan model: chicks.
## 4 chains, each with iter=500; warmup=250; thin=1;
## post-warmup draws per chain=250, total post-warmup draws=1000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## b0 3.81 0 0.01 3.79 3.80 3.81 3.82 3.83 921 1.00
## b1 0.08 0 0.00 0.07 0.07 0.08 0.08 0.08 255 1.01
## tau0 0.06 0 0.01 0.03 0.05 0.06 0.07 0.09 128 1.02
## tau1 0.02 0 0.00 0.02 0.02 0.02 0.02 0.03 785 1.00
## sigma 0.11 0 0.00 0.10 0.10 0.11 0.11 0.11 666 1.00
##
## Samples were drawn using NUTS(diag_e) at Fri Apr 01 11:53:36 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

. . . and then here are the plots. . .

4We could build these by hand from the stan() model, but DHARMa is faster and less prone to user errors.
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plot(lmer.1) ## "plot" plots conditional residuals for (g)lmer objects.
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The qqplot looks good, though the KS test for uniformity of the "uniformized" residuals is just at the edge of
significance. On the other hand, both residual vs fitted plots suggest that we missed some curvature in the
model; I might try to fix this by adding I(Time^2) or I(Time^2) + I(Time^3) to the model.
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Problem 2 – Toenails
The toenail data frame comes from the faraway library, and you can access it by

install.packages("faraway")
library(faraway)
data(toenail)

There are 1908 observations from a study comparing two oral treatments for toenail infection. Patients were
evaluated for the degree of separation of the nail. Patients were randomized into two treatments and were
followed over seven visits—four in the first year and yearly thereafter. The patients have not been treated
prior to the first visit so this should be regarded as the baseline. The variables (columns) are:

• ID: ID of patient

• outcome: 0=none or mild separation, 1=moderate or severe

• treatment: the treatment A=0 or B=1

• month: time of the visit (not exactly monthly intervals hence not round numbers)

• visit: the number of the visit

For most of this exercise we will be working with the model

outcomei ∼ Bernoulli(pi)
logit(pi) = α0j[i] + α1j[i] ·monthi + β2 · treatmentj[i] + εi

α0j = β0 + η0j

α1j = β1 + η1j

η0j
iid∼ N(0, τ2

0 )

η1j
iid∼ N(0, τ2

1 )

where i is the observation number and j is the patient ID number5. Note that there are some skips in the ID
number sequence in the data set; it would be simplest for working with stan() to convert these ID numbers
to successive integers with no skips. (Note that σ is missing from this model—why?)

(There is no σ in the model since the likelihood is Bernoulli, not normal, and for the Bernoulli, once you
know the mean µi = pi, you also know the SD =

√
pi(1− pi).)

library(faraway)

data(toenail)
str(toenail)

## 'data.frame': 1908 obs. of 5 variables:
## $ ID : int 1 1 1 1 1 1 1 2 2 2 ...
## $ outcome : int 1 1 1 0 0 0 0 0 0 1 ...
## $ treatment: int 1 1 1 1 1 1 1 0 0 0 ...
## $ month : num 0 0.857 3.536 4.536 7.536 ...
## $ visit : int 1 2 3 4 5 6 7 1 2 3 ...
## You can see where the skips are in the ID numbers by doing this :
##
## diff(sort(unique(toenail$ID)))
##
## (if there were no skips you would see all 1's in the output of this command)

5Also note that in this model we are just letting ρη0,η1 = 0, to make the stan() coding less complicated.
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## ...and a very simple way to renumber the ID numbers so there are no skips is this:
ID.new <- factor(toenail$ID)
ID.new <- as.numeric(ID.new)

## You can verify that things line up correctly with
##
## View(cbind(toenail$ID,ID.new))

Problem 2(a)
In the same folder as this assignment sheet there is a file toenails.stan with the parameters and transformed
parameters sections left blank. Fill in the blank sections6 and get the program to run using library(rstan),
taking at least 500 MCMC steps per chain7, and accepting the other stan() defaults, so that you end up
with at least 1000 “good” MCMC samples from the four Markov chains produced. Turn in:

• The completed stan program toenails.stan.

• A printout of the fitted stan object but including only the lines for β0, β1, β2, τ0, and τ1.

Some notes:

• You are free to use glmer() to estimate the corresponding multi-level model, to make sure you are on
the right track, but please don’t turn in any glmer() code or output for this part of the exercise. Note
that, even if you have done everything right the magnitudes of the glmer() estimates may not agree
very well with the magnitudes of the stan() estimates; see part (d) below also.

• You will struggle to get a "great" run from stan() on this model. If you can get a run where most
or all of the difficulties are in yrep, that will be good enough: the various convergence and stability
diagnostics like Rhat don’t really apply to yrep since it is simulated from the posterior predictive
distribution; moreover the discreteness of yrep makes neff less meaningful.

Clearly we have to define all of the parameters in the model block; the only tricky part is knowing what to
put in the parameters block, vs. the transformed parameters block. But we can imitate what was done in
chicks.stan, and what we come up with is this:
print_file("toenails.stan")

## data {
## int N; // # observations
## int J; // # patients
## int y[N]; // This should be the "outcome" variable
## // in the "toenail" dataframe, i.e., 0's an 1's
## real month[N];
## int ID[N]; // convert ID in the dataframe to successive integers
## // with no gaps
## real treatment[N];
## }
##
## parameters{
## real b0;
## real b1;
## real b2;
## real eta0[J];
## real eta1[J];

6You should not have to change any of the code already in the file; just add to it. However if it is easier for you to change
some of the code in the file, that is fine too.

7If you need to take more steps to get convergence to the stationary distribution, that is fine.
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## real<lower=0> tau0;
## real<lower=0> tau1;
## }
##
## transformed parameters {
## real logit_p[N];
## real a0[J];
## real a1[J];
## for (j in 1:J) {
## a0[j] <- b0 + eta0[j];
## a1[j] <- b1 + eta1[j];
## }
## for (i in 1:N) {
## logit_p[i] <- a0[ID[i]] + a1[ID[i]]*month[i] + b2*treatment[ID[i]];
##
## }
## }
##
## model {
## for (i in 1:N) {
## y[i] ~ bernoulli_logit(logit_p[i]) ;
## }
## for (j in 1:J) {
## eta0[j] ~ normal(0,tau0);
## eta1[j] ~ normal(0,tau1);
## }
## b0 ~ normal(0,1e6);
## b1 ~ normal(0,1e6);
## b2 ~ normal(0,1e6);
## tau0 ~ uniform(0,50);
## tau1 ~ uniform(0,50);
##
## }
##
## generated quantities {
## real yrep[N];
## for (i in 1:N) {
##
## yrep[i] <- bernoulli_logit_rng(logit_p[i]);
## }
## }

Now, consulting the data block to see what goes in the data list for stan(), we can use the following code to
make a stan run:
attach(toenail)

ID.new <- factor(ID)
ID.new <- as.numeric(ID.new)

toedata <- list(N=length(ID.new),
J=length(unique(ID.new)),
y=outcome,
month=month,
ID=ID.new,

12



treatment=treatment)
detach()

toemodel <- stan(file="toenails.stan",data=toedata,chains=0)

toeresult <- stan(fit=toemodel,data=toedata,iter=500)

. . . and the requested estimated parameters are:
print(toeresult,pars=c("b0","b1","b2","tau0","tau1"))

## Inference for Stan model: lineartoe.
## 4 chains, each with iter=500; warmup=250; thin=1;
## post-warmup draws per chain=250, total post-warmup draws=1000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## b0 -1.39 0.05 0.85 -3.14 -1.92 -1.43 -0.83 0.25 256 1.02
## b1 -1.56 0.04 0.24 -2.10 -1.71 -1.54 -1.39 -1.17 31 1.11
## b2 -2.20 0.06 1.17 -4.63 -2.90 -2.17 -1.38 -0.11 333 1.00
## tau0 8.37 0.18 1.10 6.60 7.55 8.25 9.06 10.69 37 1.09
## tau1 1.15 0.03 0.18 0.86 1.02 1.13 1.26 1.57 30 1.11
##
## Samples were drawn using NUTS(diag_e) at Fri Apr 01 14:15:53 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

The stan() result is not super (small n_eff’s and some Rhat’s bigger than 1.1). I could run the stan model
longer (say with iter=1000 or iter=2000 rather than iter=500) to get better Rhat’s. but I’m going to go with
what I already have from stan(); these Rhat’s are OK for just poking around with data and models as we are
doing here.

(I would definitely try a higher number of iterations, and generally do what is needed to avoid warnings and
things, if this were a final run for a formal paper or report!)

Problem 2(b)
Use shinystan or bayesplot to generate and turn in the following plots, neatly organized:

• For β0: (i) Histogram of the MCMC draws; (ii) Autocorrelation plot for at least one of the four Markov
chains; (iii) trace plot of all four Markov chains on the same graph, with different colors to indicate the
different Markov chains.

• For β1: the same three things.

• For β2: the same three things.

• For τ0: the same three things.

• For τ1: the same three things.
param <- "b0"
g1 <- mcmc_hist(toeresult,pars=param)
g2 <- mcmc_acf(toeresult,pars=param)
g3 <- mcmc_trace(toeresult,pars=param)
param <- "b1"
g4 <- mcmc_hist(toeresult,pars=param)
g5 <- mcmc_acf(toeresult,pars=param)
g6 <- mcmc_trace(toeresult,pars=param)
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param <- "b2"
g7 <- mcmc_hist(toeresult,pars=param)
g8 <- mcmc_acf(toeresult,pars=param)
g9 <- mcmc_trace(toeresult,pars=param)
param <- "tau0"
g10 <- mcmc_hist(toeresult,pars=param)
g11 <- mcmc_acf(toeresult,pars=param)
g12 <- mcmc_trace(toeresult,pars=param)
param <- "tau1"
g13 <- mcmc_hist(toeresult,pars=param)
g14 <- mcmc_acf(toeresult,pars=param)
g15 <- mcmc_trace(toeresult,pars=param)

## The graphs are on the next page. You can see that the autocorrelations stay
## pretty large for b1, tau0 and tau1, which is consistent with the small n_eff's
## and large Rhat's we see for those parameters.

grid.arrange(g1,g2,g3,
g4,g5,g6,
g7,g8,g9,
g10,g11,g12,
g13,g14,g15,ncol=3)
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Problem 2(c)
Set y <- toenail$outcome, and use shinystan or bayesplot to produce graphical posterior predictive
checks (ppc’s) for

• T(y) = mean(y)

• T(y) = sd(y)

• At least one other test statistic T(y) that produces an interesting result.

Here are the plots for the mean and the SD. No indications of misfit here. I also tried the min and the max;
nothing interesting there either.
y <- toenail$outcome
yrep <- extract(toeresult,pars="yrep")$yrep

g1 <- ppc_stat(y,yrep,stat="mean")
g2 <- ppc_stat(y,yrep,stat="sd")

grid.arrange(g1,g2,ncol=2)

0.20 0.21 0.22 0.23

T = mean
T(y rep)

T(y)

0.400 0.405 0.410 0.415 0.420

T = sd
T(y rep)

T(y)

As for coming up with one other test statistic, you may have had some creative idea that I didn’t think of, but
here’s my idea:

After some thought, I decided to check to see if there were too many or too few positive residuals in different
ranges of the fitted values p̂i, where pi = P [outcomei = 1]. The idea is this

• Divide the range of fitted values into three groups

– The lower 1/3 of the range of fitted values p̂i

– The middle 1/3 of the range of fitted values p̂i

– The upper 1/3 of the range of fitted values p̂i

• In each group:

– Calculate T (obs) = number of positive residuals (yi − p̂i > 0) in the real data

– For each replicated data set yrep,m, m = 1, . . .M , calculate T (rep,m) = number of positive residuals
(yrep,m

i − p̂rep,m
i > 0) in the mth replicated data set.

– Compare T (obs) to a histogram of T (rep,m)’s, m = 1, . . .M .

If for example there are two many positive residuals in the lower and upper thirds, but too few in the middle
third, that suggests a U-shape for the residuals, and perhaps I would add I(month^2) to the model.

Here is the code to implement this idea, and the resulting plots:
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##### Get the data elements needed

y <- toenail$outcome
## the real data

yrep <- extract(toeresult,pars="yrep")$yrep
## the replicated data sets; each row of this matrix is one replication of y

logit_p <- extract(toeresult,pars="logit_p")$logit_p
## the logits sampled from the posterior distribution again, each row of this
## matrix contains the logits for one replication yrep

p <- invlogit(logit_p)
## the p's used to generate the yrep's each row of this matrix contains the p's
## used to generate Bernoulli draws for one replication yrep

p_hat <- apply(p,2,mean)
## posterior mean estimate of p[outcome=1]

##### now, make the plots...

par(mfrow=c(3,1))

T.num.pos <- function(x) sum(x>0) ## the test statistic

##### Plot for the lower 1/3 of the range of p_hat

lo <- -1e6
hi <- min(p_hat) + (max(p_hat)-min(p_hat))/3
sel <- (p_hat<=hi) & (p_hat>lo)

T.obs <- T.num.pos((y-p_hat)[sel])
T.rep <- apply((yrep-p)[,sel],1,T.num.pos)

hist(T.rep,xlim=c(min(c(T.obs,T.rep)),max(c(T.obs,T.rep))),
main="T=Number of Positive Residuals\n(Lower 1/3 of range of p_hat)",
xlab="T(yrep)")

abline(v=T.obs,col="red",lwd=2)
text(x=T.obs,y=25,labels="T(y)",pos=4)

##### Plot for the middle 1/3 of the range of p_hat

lo <- min(p_hat) + (max(p_hat)-min(p_hat))/3
hi <- min(p_hat) + 2*(max(p_hat)-min(p_hat))/3
sel <- (p_hat<=hi) & (p_hat>lo)

T.obs <- T.num.pos((y-p_hat)[sel])
T.rep <- apply((yrep-p)[,sel],1,T.num.pos)

hist(T.rep,xlim=c(min(c(T.obs,T.rep)),max(c(T.obs,T.rep))),
main="T=Number of Positive Residuals\n(Middle 1/3 of range of p_hat)",
xlab="T(yrep)")

abline(v=T.obs,col="red",lwd=2)
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text(x=T.obs,y=75,labels="T(y)",pos=4)

##### Plot for the upper 1/3 of the range of p_hat

lo <- min(p_hat) + 2*(max(p_hat)-min(p_hat))/3
hi <- +1e6
sel <- (p_hat<=hi) & (p_hat>lo)

T.obs <- T.num.pos((y-p_hat)[sel])
T.rep <- apply((yrep-p)[,sel],1,T.num.pos)

hist(T.rep,xlim=c(min(c(T.obs,T.rep)),max(c(T.obs,T.rep))),
main="T=Number of Positive Residuals\n(Upper 1/3 of range of p_hat)",
xlab="T(yrep)")

abline(v=T.obs,col="red",lwd=2)
text(x=T.obs,y=50,labels="T(y)",pos=2)
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These plots show interesting misfit, but not the misfit I was expecting. Instead, there are too few positive
residuals in the lower range, about the right number in the middle, and too many positive residuals in the
upper range. That suggests that the residuals have an increasing trend, relative to the fitted model. Since the
residual is yi − p̂i and yi can only be 0 or 1, this says that the model under-predicts the number of cases of
yi = 0 when p̂i is low, and under-predicts the number of cases of yi = 1 when p̂i is high: the data is both
zero-inflated and one-inflated, relative to the model predictions. There may be some other variable that we
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could collect and include in the model, that might help the model to correctly predict these 0’s and 1’.

Problem 2(d)
Now fit the corresponding glmer() model (the parameter estimates should be almost identical to your
estimates from the stan() model). When I did this, I thought that fixed effect estimates from glmer() were
much less plausible than the fixed effect estimates from stan(), which made me trust the stan() results
more. Do you agree? Why or why not?
glmer.1 <- glmer(outcome ~ month + treatment + (month||ID),data=toenail,family=binomial)
## note use of "||" in the random effect notation to force the correlation between eta's
## to be zero, just like the stan() model...

display(glmer.1)

## glmer(formula = outcome ~ month + treatment + (month || ID),
## data = toenail, family = binomial)
## coef.est coef.se
## (Intercept) -12.31 1.22
## month -12.50 1.27
## treatment -0.03 1.54
##
## Error terms:
## Groups Name Std.Dev.
## ID (Intercept) 72.74
## ID.1 month 11.87
## Residual 1.00
## ---
## number of obs: 1908, groups: ID, 294
## AIC = 1024.9, DIC = -766.6
## deviance = 124.1

The glmer() results just aren’t very believable. The intercept is estimated to be β̂0 = -12.31; the corresponding
probability is 1/(1 + exp(−β̂0)) =4.513131× 10−6 so that, without the random effects, the probability of a good
outcome is essentially zero; β̂1 = -12.5 is just as large, and the treatment effect b̂eta2 = -0.03 is minuscule
and very different from the estimate from stan(). The SD’s of the random effects are huge however (τ̂0 =
72.74 and τ̂1 = 11.87), which suggests to me that the random effects, rather than the fixed effects, are picking
up the interesting variation in pi(outcome = 1) and in the treatment effect.

The estimates of the fixed effects from the stan() model (β̂0 = -1.39, β̂1 = -1.56 and β̂2 = -2.2) and SD’s of
random effects (τ̂0 = 8.37 and τ̂1 = 1.15) are just much more believable.

Problem 2(e)
Turn in

• The plot of the conditional residuals for the glmer() model. If the model fits well, these should be
approximately normally distributied.

• The plot of the "uniformized" conditional residuals8 for the lmer() model, using library(DHARMa). If
the model fits, these should be approximately uniformly distributed.

Write a sentence or two identifying and commenting on any suggested improvements to the model, or any
other useful information, that you can see in these plots (or if you think some or all of the plots are useless,

8We could build these by hand from the stan() model, and we probably should since the stan() results seem more plausible
than the glmer() results, but DHARMa is faster and less prone to user errors; it will be fine for the purpose of just getting used to
using and interpreting DHARMa stuff.
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explain that as well).
plot(glmer.1)
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plot(simres <- simulateResiduals(glmer.1))
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The plot of the conditional residuals is virtually useless, just as we expect for untransformed residuals from a
generalized linear model.

The plots of the uniformized residuals tell a somewhat different story.

In the qqplot on the left, there is some indication that may be a little long-tailed to the right (the plot curves
upward from a straight line), the KS test for whether the “uniformized” residuals really follow the normal
distribution is has a very low p-value (suggesting that the transformed data doesn’t really follow the normal
distribution, as it would if the model fit well), and the dispersion test also has a low p-value, indicating that
the residuals are over-dispersed (this over-dispersion could be related to the 0-inflation and 1-inflation we
discovered with posterior predictive checks [ppc’s]).

In the residuals vs fitted plot on the right, the smooth curves that are supposed to be estimating the horizontal
lines at the 25th, 50th and 75th percentiles, seem to be increasing (rather than horizontal) over most of their
range. This too is consistent with what we discovered with ppc’s.
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