36-617: Applied Linear Models
Fall 2022
HWI10 — Due Wed Dec 7, 11:59pm

e Please turn the homework in, as a single pdf, online in GradeScope using the link provided on the Assignment
page on canvas.cmu.edu, as usual.

e Reading: for the week after spring break:

— For last week: Lynch, Ch’s 3 (read) and 4 (skim)
— For this week & next week: Lynch, Ch 9 (read)

All three readings will be in the week 13, week14, and hw10 folders on Canvas.
e There are 3 exercises

— The first one is just to get you going with stan(). Instructions for installing Stan on your laptop are on
the last page of this hw.

— The next two are about applying stan() to estimate Bayesian versions of multilevel models. They are
not particularly “interesting” exercises by themselves. Instead they are more like “finger exercises” to play
around with writing, debugging, and examining the output of, stan() programs.

— Feel free to borrow ideas liberally from lecture notes, pdfs and R files shared in class, and/or from resources
you find on the www, etc.

Exercises

1. Install and verify the software package Stan and the library rstan, on your personal computer. Instructions for
doing this are appended at the end of this hw assignment. Then run the following short example to verify that
rstan is intalled and working correctly (note that the text string assigned to the variable “model” runs over several
lines; that’s perfectly OK):
text_model <- "

data {
real y_mean;
3
parameters {
real y;
}
model {
y 7 normal (y_mean,1);
3

compiled_model <- stan(model_code=text_model,data=1ist(y_mean=0),chains=0)

fit <- stan(fit=compiled_model,data=1list(y_mean=0))

fit2 <- stan(fit=compiled_model,data=list(y_mean=5))

This Stan program is not doing anything Bayesian, it’s just making draws from a normal distribution with
mean=0 and sd=1 (fit) or mean 5 and sd=1 (fit2).



(a)

(b)

©

(d)

(e

Turn in the output for both print(£fit) (or just fit), and summary(£fit). Write a sentence or two
explaining the difference between the two outputs (besides a different number of decimal places printed!).

Use commands like those in the appendix (from library(bayesplot)) of lecture 13 to produce and turn
in, for the fitted model fit:

e Trace plots of y (the variable being simulated) and 1p__ (the value of the log-posterior (in this case,

not a posterior but just the normal density) at each simulated value of y).

e Autocorrelation plots of y and 1p__.

e A histogram of just y.
Use the extract function to extract simulated values for y from fit and make a qgplot of the values
against the Normal distribution. Is it plausible that the simulated values for y are normally distributed?
Print out and turn in output from print (£it) and print (fit2). Write a sentence noting any similarities
or differences between them.

Use the extract function to extract simulated values for y from fit2 and make a qqplot of the values
against the Normal distribution. Is it plausible that the simulated values for y are normally distributed?

2. Chicks. The ChickWeight data frame is included with R, and you can access it with data(ChickWeight). It
has 578 rows and 4 columns from an experiment on the effect of diet on early growth of chicks. The variables
(Columns) are:

weight: a numeric vector giving the body weight of the chick (gm).
Time: a numeric vector giving the number of days since birth when the measurement was made.

Chick: an ordered factor with levels 18 < ... < 48 giving a unique identifier for the chick. The ordering of
the levels groups chicks on the same diet together and orders them according to their final weight (lightest
to heaviest) within diet.

Diet: a factor with levels 1, ..., 4 indicating which experimental diet the chick received.

For most of this exercise we will be working with the model

log(weight,) = aojij + a1 - Time; + ¢
ao;j = Po+ 1o
a; = Pr+m;
& “ NO.0?
oy % NO,T)
mi % N@O,7),

where i is the observation number and j is the Chick numbei] You will have to convert Chick from a factor
variable to a numerical variable, to work with stan().

(a)

In the same folder as this assignment sheet there is a file chicks. stan with most of the program already
written, but the model section left blank. Fill in the blank model sectiorﬂ and get the program to run using
library(rstan), taking at least 500 MCMC steps per chairﬂ and accepting the other stan() defaults,
so that you end up with at least 1000 “good” MCMC samples from the four Markov chains produced. Turn
in:

! Also note that in this model we are just lettng Pro.m = 0, to make the stan() coding less complicated.

2You should not have to change any of the code already in the file; just add to it. However if it is easier for you to change some of the code in
the file, that is fine too.

3If you need to take more steps to get convergence to the stationary distribution, that is fine.



e The completed stan program chicks.stan.
o A printout of the fitted stan object but including only the lines for 8y, 81, 7o, 71, and 0.

(You are free to use lmer () to estimate the corresponding multi-level model, to make sure you are on the
right track, but please don’t turn in any 1mer () code or output for this part of the exercise.)

(b) Use shinystan or bayesplot to generate and turn in the following plots, neatly organized:

e For By: (i) Histogram of the MCMC draws; (ii) Autocorrelation plot for at least one of the four Markov
chains; (iii) trace plot of all four Markov chains on the same graph, with different colors to indicate
the different Markov chains.

e For $;: the same three things.
e For 7): the same three things.
e For 7y: the same three things.
e For o the same three things.
(c) Sety <- log(ChickWeight$weight), and use shinystan or bayesplot to produce graphical poste-
rior predictive checks (ppc’s) for
e T(y) = mean(y)
e T(y) = sd(y)
o At least one other test statistic T(y) that produces an interesting result.

(d) Now fit the corresponding 1mer () model (the parameter estimates should be almost identical to your
estimates from the stan() model). Turn in

e The plot of the conditional residuals for the Imer () model. If the model fits well, these should be
approximately normally distributied.

e The plot of the “uniformized” conditional residualﬂ for the 1Imer () model, using library (DHARMa).
If the model fits, these should be approximately uniformly distributed.

Write a sentence or two identifying and commenting on any suggested improvements to the model, or any
other useful information, that you can see in these plots.

3. Toenails. The toenail data frame comes from the faraway library, and you can access it by

install.packages("faraway")
library(faraway)
data(toenail)

There are 1908 observations from a study comparing two oral treatments for toenail infection. Patients were
evaluated for the degree of separation of the nail. Patients were randomized into two treatments and were fol-
lowed over seven visits—four in the first year and yearly thereafter. The patients have not been treated prior to
the first visit so this should be regarded as the baseline. The variables (columns) are:

o ID: ID of patient

e outcome: O=none or mild seperation, 1=moderate or severe

o treatment: the treatment A=0 or B=1

e month: time of the visit (not exactly monthly intervals hence not round numbers)

e visit: the number of the visit

4We could build these by hand from the stan() model, but DHARMa is faster and less prone to user errors.



For most of this exercise we will be working with the model

outcome; ~ Bernoulli(p;)

IOgit(pi) = Qoj + @[] - month[ +,82 . treatmentj[[]
®; = Po+1o;
a; = Pr+m;
iid 2
noj ~ N(O,7p)

m; ~ N1

where i is the observation number and j is the patient ID numbelﬂ Note that there are some skips in the ID
number sequence in the data set; it would be simplest for working with stan() to convert these ID numbers to
successive integers with no skips. (Note that o is missing from this model—why?)

(a) In the same folder as this assignment sheet there is a file toenails.stan with the parameters and
transformed parameters sections left blank. Fill in the blank sectionsﬁ] and get the program to run using
library(rstan), taking at least 500 MCMC steps per chairﬂ and accepting the other stan() defaults,
so that you end up with at least 1000 “good” MCMC samples from the four Markov chains produced. Turn
in:

e The completed stan program toenails.stan.
o A printout of the fitted stan object but including only the lines for By, 81, 52, 7o, and 7.

Some notes:

e You are free to use glmer () to estimate the corresponding multi-level model, to make sure you are
on the right track, but please don’t turn in any glmer () code or output for this part of the exercise.
Note that, even if you have done everything right the magnitudes of the glmer () estimates may not
agree very well with the magnitudes of the stan() estimates; see part (d) below also.

¢ You will struggle to get a “great” run from stan() on this model. If you can get a run where most
or all of the difficulties are in yrep, that will be good enough: the various convergence and stability
diagnostics like Rhat don’t really apply to yrep since it is simulated from the posterior predictive
distribution; moreover the discreteness of yrep makes 7, less meaningful.

(b) Use shinystan or bayesplot to generate and turn in the following plots, neatly organized:

e For Sy: (i) Histogram of the MCMC draws; (ii) Autocorrelation plot for at least one of the four Markov
chains; (iii) trace plot of all four Markov chains on the same graph, with different colors to indicate
the different Markov chains.

For 3;: the same three things.

For 3,: the same three things.

For 7¢: the same three things.

For 7;: the same three things.

(c) Sety <- toenail$outcome, and use shinystan or bayesplot to produce graphical posterior predic-
tive checks (ppc’s) for

e T(y) = mean(y)

3 Also note that in this model we are just lettng Pnoan = 0, to make the stan() coding less complicated.

%You should not have to change any of the code already in the file; just add to it. However if it is easier for you to change some of the code in
the file, that is fine too.

7If you need to take more steps to get convergence to the stationary distribution, that is fine.



e T(y) = sd(y)
o At least one other test statistic T(y) that produces an interesting result.

(d) Now fit the corresponding glmer () model (the parameter estimates should be almost identical to your
estimates from the stan() model). When I did this, I thought that fixed effect estimates from glmer ()
were much less plausible than the fixed effect estimates from stan(), which made me trust the stan()
results more. Do you agree? Why or why not?

(e) Turn in
o The plot of the conditional residuals for the glmer () model. If the model fits well, these should be
approximately normally distributied.
e The plot of the “uniformized” conditional residualﬂ for the 1Imer () model, using library (DHARMa).
If the model fits, these should be approximately uniformly distributed.

Write a sentence or two identifying and commenting on any suggested improvements to the model, or any
other useful information, that you can see in these plots (or if you think some or all of the plots are useless,
explain that as well).

8We could build these by hand from the stan() model, and we probably should since the stan() results seem more plausible than the glmer ()
results, but DHARMa is faster and less prone to user errors; it will be fine for the purpose of just getting used to using and interpreting DHARMa stuff.



Installing Stan for R

1. Gotohttps://mc-stan.org/users/interfaces/rstan
(can also find by googling “rstan”).
2. Click on the “RStan Quick Start Guide” under “Download and Get Started”
(Note: We will be installing Stan to run in R. There are also installations for python, matlab, julia, stata, mathe-

matica, scala, etc... If you are interested, see https://mc-stan.org/ for details.)

3. Follow the instructions for configuring the C++ Toolchain on your computer

e This is the trickiest part of installing Stan in R on your computer.
o There are separate instructions for Windows, Mac, & Linux

e Make sure you are using R version 4.0 or higher. You may want to update Rstudio to the current version
as well (you need at least version 1.2.5042).

o MAKE SURE YOU ARE following the instructions for your version of R (version 4.0 or higher) not an
earlier version of R such as version 3.6, etc.

4. Follow the instructions under “Installation of RStan” and “Verify Installation”

e The most important parts are the “install.packages” command, to actually do the installation, and the
“example” command to verify that your installation is good. If you can get these two commands to run
successfully, you are golden.

— Note: the “example” command will take from several seconds to up to a minute or so to run. It will
also generate a ton of output that may not make much sense right now. .. Be patient...

e Please note the other instructions under these two headings, which handle some common special cases that

you may need to deal with on your laptop.

5. After you have verified that your installation is good, feel free to browse through the longer “How to Use RStan”
section. As you get more accustomed to Stan, you’ll see that the Stan modeling language is a kind of extension
of R’s usual programming language — much more general and flexibe than 1mer ()’s modeling language.

6. Check outhttps://mc-stan.org/ for background info on stan.


https://mc-stan.org/users/interfaces/rstan
https://mc-stan.org/
https://mc-stan.org/

