36-617: Applied Linear Models

Transformation of Variables Brian Junker 132E Baker Hall brian@stat.cmu.edu

Announcements

- Quiz 02 available at 5pm due Tues at 7pm
- HW02 Due tonight at 11:59pm
- Reading
 - This week: Sheather Ch 6 (diagnostics & transformations)
 - (supplemental: ISLR 3.3.3; G&H Ch 4)
 - Next week: Sheather Ch 7 (variable selection)
 - (supplemental: ISLR Ch 6; G&H Ch 4)
- HW 03 out on Canvas
 - Due Mon 1159pm

Outline

- Quick Review of Casewise Diagnostic Plots
- Transformations -- Why & How for X and Y
 - Aside: the approach I suggested in HW01 solutions
- Substantive (investigator-driven) considerations
- Variance Stabilization for Y
- Box-Cox for X or Y: Fix distribution(s)
- Inverse Response Plot for Y
- Perspective and recommendations
 - Aside: the approach I suggested in HW01 solutions
- Can residual plots distinguish $y^{(1)} = \beta_0 + \beta_1 x^2 + \varepsilon$, vs. $y^{(2)} = (\beta_0 + \beta_1 x + \varepsilon)^2$?

Casewise Diagnostics and Patterns

- Generally these are conversation points
 - Could reveal things investigator cares about!
 - Otherwise, look for data collection/recording errors
- Delete data only with a good justification!

Transformations

- Why to transform
 - Substantive (investigator-driven) reasons
 - Improving fit of data to modelling assumptions; makes formal (and informal) inference more valid
- Why not to transform
 - Substantive (investigator-driven) reasons!
- What to transform
 - X: often trying to reduce leverage; normality is an *informal* target
 - Y: really trying to improve distribution of ϵ_i , but access is indirect
 - □ X and/or Y: linearity wrong; improve functional form y = f(x)
- How to transform
 - We will concentrate on power-function methods for now
 - Nonparametric function estimation (e.g. gam() in R) provides another approach

Aside: Approach in HW01 Solutions

- In the solutions to HW01, I recommended trying each of these approaches:
 - For all the variables (y as well as the x's), find any that are asymmetric (skewed) and transform each one to make it more symmetric

OR

- Use the scatterplot matrix to find x's that are nonlinearly related to y, and then transform the x so that it is more linearly related to y.
- These are a heuristic one-variable-at-a-time approach to the more general recommendations in this lecture.
 - □ They often get you pretty far, and are almost always worth a try.
 - □ Limit yourself to simple transformations: $x^2, \sqrt{y}, \sqrt{x}, \log(y), \log(x), \exp(y), \exp(x), \dots$
- Substantive (investigator) considerations >> math, always!!

Transformations of X

- If X is discrete or a design variable, there is usually no sensible transformation to make!
- If X is continuous, it has an (empirical) distribution. We might want to transform X for any of three reasons
 - <u>Substantive</u>: we know Y is a nonlinear function of X, or we want a particular interpretation
 - <u>Leverage</u>: bring the (empirical) distribution of X closer to normality; reduces high-leverage points
 - *Functional*: y = f(X) is not linear and we want to find a better functional form for f()

<u>Substantive</u> Transformation of X

- There might be substantive knowledge.
 - E.g. in physics if Y is the intensity of an effect at distance X, often an inverse-square law applies, so we might replace X with X' = 1/X².
- A better interpretation might be available
 Recenter X so that the intercept β₀ is interpretable
 Rescale X to change units of slope β₁ (e.g. to SD's of X)
- Percent change in X matters more than additive change: logarithms...

(*) Since $log(1+x) = x - x^2/2 + /- ...$ (Taylor series) See also "log xform and percent interpretation.pdf" ⁹

<u>Reducing leverage</u> – power transforms

• In regression, we are conditioning on X: $Y|X \sim N(X\beta, \sigma^2)$

so "officially" the distribution of X doesn't matter

- However, if the (empirical) distribution of X is skewed, many X's will have high leverage.
- Helps to make empirical distribution of X more symmetric – pull tails in
 - □ If X is skewed left (long left tail), X^{λ} , λ >1, pulls in tail
 - If X is skewed right (long right tail), X^{λ} , $\lambda < 1$, pulls in tail

• Since
$$\log(x) = \lim_{\lambda \to 0} \frac{x^{\lambda} - 1}{\lambda}$$
, useful to think " $x^{0} = \log(x)$ "

Aside: Reminder of distribution shapes

9/12/2022

<u>Reducing Leverage</u>: Powers of X

- Check for symmetry after trying simple powers
- More formally, try to maximize likelihood

$$L(\lambda,\mu,\sigma^2) = [\lambda \cdot gm(x)^{(\lambda-1)}]^n \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{x_i^\lambda - \mu}{\sigma}\right)^2\right]$$

Box-Cox: Likelihood simplifies if we replace x^{λ} with

$$\Psi_M(x,\lambda) = gm(x)^{(1-\lambda)} \cdot \frac{x^{\lambda} - 1}{\lambda}, \quad gm(x) = \left| \prod_{i=1}^n x_i \right|^{-1}$$

- Usually suggests awkward values (λ = 0.33453) that should be "rounded" to a simpler power (λ = 1/3)
 x is assumed to be positive!
- □ *x* is assumed to be positive!

Implementing Box-Cox for X in R

- library(car)
 - ("Companion to Applied Regression^(*)")
 - boxCox(): show Box-Cox likelihood as a function of λ ("profile likelihood")
 - powerTransform(): compute optimal λ using the Box-Cox likelihood

^(*) for Weissberg's Applied Linear Regression text. 14

<u>Functional</u>: y = f(x) is not linear

We can replace

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{1}$$

with

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_p x^p + \epsilon_i \qquad (2)$$

This is also a good idea...

N.b., model (2) still assumes equal additive errors!

Transformations of Y

- We might want to transform Y for any of three reasons:
 - <u>Substantive</u>: we know Y is a nonlinear function of X, or we want a particular interpretation
 - □ *Improve residuals*: bring the (empirical) distribution of ε_i closer to normality; makes inferences more valid
 - *Functional*: y = f(X) is not linear and we want to find a better functional form for f()

<u>Substantive</u> Transformation of Y

- There might be substantive knowledge.
 - If we know 0< Y<100 (e.g. a test or hw score) we may need to transform Y before building a linear predictor for it: e.g. replace Y with log[Y/(100-Y)] ...
- Percent change in Y :

• For
$$\log y = \beta_0 + \beta_1 x + \epsilon$$
, $\det \Delta y = y' - y$, then

$$E[\log(y + \Delta y)] = \beta_0 + \beta_1(x + 1)$$

$$E[\log(y)] = \beta_0 + \beta_1 x$$

$$\Delta E[\log y] = E[\log(y + \Delta y)] - E[\log(y)] = \beta_1 \cdot 1$$
So, $\beta_1 = E[\log(y + \Delta y)] - E[\log(y)] = E\left[\log\left(1 + \frac{\Delta y}{y}\right)\right] \approx E\left[\frac{\Delta y}{y}\right]^{(*)}$

 $100 \times \beta_1$ = expected pct change in y per unit change in x

(*) Since $log(1+x) = x - x^2/2 + /- ...$ (Taylor series) See also "log xform and percent interpretation.pdf" ¹⁷

Improve Error (residual) Distribution

to improve the distribution of ϵ_i (or \hat{e}_i). Can do "by hand" or by applying Box-Cox to $y_i^{\lambda} - X_i\beta$ instead of $x_i^{\lambda} - \mu$

again, replace y^{λ} with $\Psi_M(x,\lambda)$...

Implementing Box-Cox for Y in R

- library(car)
 - ("Companion to Applied Regression")
 - boxCox(): show Box-Cox likelihood as a function of λ ("profile likelihood")
 - powerTransform(): compute optimal λ using the Box-Cox likelihood

Improve Error (residual) Distribution:

- Variance-stabilizing Transformations
- Suppose E[Y] = μ, and Var(Y) = h(μ). We want a transformation Y*=g(Y) such that Var(Y*)=Const
- \blacksquare Taylor's Theorem says $g(y)\approx g(\mu)+g'(\mu)(y-\mu)$
- Therefore

 $\operatorname{Var}(Y^*) \approx \operatorname{Var}(g(\mu) + g'(\mu)(Y - \mu)) = [g'(\mu)]^2 h(\mu)$

We want this to be constant, i.e.

$$g'(\mu) = \frac{C}{\sqrt{h(\mu)}};$$
 so $g(\mu) = \int \frac{C}{\sqrt{h(\mu)}} d\mu$

Variance-Stabilizing Transform Example

- If Y ~ Poiss(μ), then we know E[Y]=μ and Var(Y)=μ
- So h(µ)=µ, and "is proportional to" $g(\mu) = \int \frac{C}{\sqrt{\mu}} d\mu \propto \sqrt{\mu}$
- Therefore $Y^* = \sqrt{Y}$ will have approximately constant variance (not depending on E[Y]).
- Nonconstant variance in a scale-location plot
 ⇒ consider a variance-stabilizing transformation.

Functional form of Y: Inverse

Response Plot Suppose

$$y_i = g(\beta_0 + \beta_1 x_i + \epsilon_i)$$

then of course $g^{-1}(y) = \beta_0 + \beta_1 x_i + \epsilon_i$

• It turns out¹ that if x has an elliptically symmetric distribution, then g can be estimated from a plot of \hat{y}_i vs y_i , where \hat{y}_i are predicted values from $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Implementing Inverse Response Plots In R

library(car)

("Companion to Applied Regression")

• invResPlot(): show inverse response plot (\hat{y}_i vs. y_i) and calculate the power λ for y_i^{λ} by nonlinear least-squares^(*)

(*) Specify particular lamdas to try with the lambda=c(...) argument.

Perspectives and Recommendations

- Substantive (investigator-driven) considerations always come first
- Power transforms of X to reduce leverage &
 Power transforms of Y to improve distribution of ϵ_i
 - By hand, or Box-Cox rounded to a simple power
- Inverse response plot for power transform of Y
 - Visually appealing, but Box-Cox probably better (directly addresses distribution of ϵ_i)
- There does not always exist a "perfect" transform!
- Transform for fcn form depends on resid. plots!

Aside: Approach in HW01 Solutions

- In the solutions to HW01, I recommended trying each of these approaches:
 - For all the variables (y as well as the x's), find any that are asymmetric (skewed) and transform each one to make it more symmetric

OR

- Use the scatterplot matrix to find x's that are nonlinearly related to y, and then transform the x so that it is more linearly related to y.
- These are a heuristic one-variable-at-a-time approach to the more general recommendations in this lecture.
 - □ They often get you pretty far, and are almost always worth a try.
 - □ Limit yourself to simple transformations: x^2 , \sqrt{y} , \sqrt{x} , $\log(y)$, $\log(x)$, $\exp(y)$, $\exp(x)$, ...
- Substantive (investigator) considerations >> math, always!!

9/12/2022

0.06

Outline

- Quick Review of Casewise Diagnostic Plots
- Transformations -- Why & How for X and Y
 - Aside: the approach I suggested in HW01 solutions
- Substantive (investigator-driven) considerations
- Variance Stabilization for Y
- Box-Cox for X or Y: Fix distribution(s)
- Inverse Response Plot for Y
- Perspective and recommendations
 - Aside: the approach I suggested in HW01 solutions
- Can residual plots distinguish $y^{(1)} = \beta_0 + \beta_1 x^2 + \epsilon$, vs. $y^{(2)} = (\beta_0 + \beta_1 x + \epsilon)^2$?