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‘ Announcements

m Quiz 02 available at 5pm — due Tues at 7pm
= HWO02 — Due tonight at 11:59pm
= Reading

o This week: Sheather Ch 6 (diagnostics & transformations)
= (supplemental: ISLR 3.3.3; G&H Ch 4)

o Next week: Sheather Ch 7 (variable selection)
= (supplemental: ISLR Ch 6; G&H Ch 4)

= HW 03 out on Canvas
0 Due Mon 1159pm
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‘ Outline

Quick Review of Casewise Diagnostic Plots

Transformations -- Why & How for X and Y
0o Aside: the approach | suggested in HWO01 solutions

Substantive (investigator-driven) considerations
Variance Stabilization for Y

Box-Cox for X or Y: Fix distribution(s)

Inverse Response Plot for Y

Perspective and recommendations

o Aside: the approach | suggested in HWO1 solutions

Can residual plots distinguish y!) = 3, + B,x? + &,
vs. y = (By + Pyx + €)% ?

9/12/2022



‘ Casewise Diagnostics and Patterns

Normal Q-Q

Residuals vs Fitted o ]

« Mean zero?

« Qutliers?

* Functional depen-
dence on ¥; ?

* Normal?
« Outliers?
« Large enough sample?

220 0 20 40 60
1

Residuals
Standardized residuals

-60
1

70 a0 90 100 110

Theoretical Quantiles

Fitted values

Scale-Location

Residuals vs Leverage

« Constant variance? = . B « NE & SE corners:

+  Outliers? « High leverage h;;

» Functional Adepen- * High std resid r;
dence on y;? « D;>0.50rso0?

15

1.0

058

|Standardized residualsl

Standardized residuals

0o
1

[+]
T - Codkeedistance
70 80 90 100 110 T T T T
0.000 0.005 0.010 0.015

Fitted values
Leverage

« Generally these are conversation points

« Could reveal things investigator cares about!

« Otherwise, look for data collection/recording errors
« Delete data only with a good justification!
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‘ Transformations
= Why to transform

0 Substantive (investigator-driven) reasons

o Improving fit of data to modelling assumptions; makes formal (and
informal) inference more valid

= Why not to transform

0 Substantive (investigator-driven) reasons!

m What to transform
o X: often trying to reduce leverage; normality is an informal target
o Y:really trying to improve distribution of €; , but access is indirect
o Xand/orY: linearity wrong; improve functional form y= f(x)

= How to transform

o We will concentrate on power-function methods for now

o Nonparametric function estimation (e.g. gam() in R) provides another
approach
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‘ Aside: Approach in HWO01 Solutions

= In the solutions to HWO01, | recommended trying each of
these approaches:

o For all the variables (y as well as the x’s), find any that are asymmetric
(skewed) and transform each one to make it more symmetric

OR

o Use the scatterplot matrix to find x’s that are nonlinearly related to vy,
and then transform the x so that it is more linearly related to y.

m These are a heuristic one-variable-at-a-time approach to the
more general recommendations in this lecture.

o They often get you pretty far, and are almost always worth a try.

o Limit yourself to simple transformations:
x%,[¥,vx,1og(y) ,log(x) , exp(y) , exp(x), ...
m Substantive (investigator) considerations > math, always!!
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‘ Transformations of X

m |f Xis discrete or a design variable, there is
usually no sensible transformation to make!

= If Xis continuous, it has an (empirical)
distribution. We might want to transform X for
any of three reasons

a Substantive: we know Y is a nonlinear function of X, or
we want a particular interpretation

a Leverage: bring the (empirical) distribution of X closer
to normality; reduces high-leverage points

o Functional:y = f(X) is not linear and we want to find a
better functional form for f()
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‘ Substantive Transformation of X

= There might be substantive knowledge.

o E.g. in physics if Yis the intensity of an effect at
distance X, often an inverse-square law applies, so we
might replace X with X" = 1/X?

m A better interpretation might be available
0 Recenter X so that the intercept 3 is interpretable
0 Rescale X to change units of slope (31 (e.g. to SD’s of X)

= Percent change in X matters more than additive
change: logarithms...
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‘ A Substantive reason for log transform:

effect of percent change
m For the modely = 5y + B1x + €:

V\r/1e consider a stmaclil Elyle +1] = Bo+pi(x+1) B, is the change

change in x, instea : ' '

of a 1gunit change E[y‘.ﬁl? - /80 + BV thzr[]}g;?;i1 unt
AEly| = Elylst 1] - Elylz] = pi-1

m For the modely = ﬁo + 51 log(x) + €:
Ax is only a 1% Elylx + Ax] = fo+ 1 log(x + Ax)
change in x [y|$] _ 50 X 61 loggL‘
Ax Azx\ *
AEly| = Elyle + Az] — Elylz] = pP1-log (1 + ?> ~ [ (?)

Putting Ax = 0.01z, AE[y] =~ 1(0.01)

(0.01)3; is the change in E[y] for a 1% change in x

(*) Since log(1+x) = x — x2/2 +/- ... (Taylor series)

9/12/2022 See also “log xform and percent interpretation.pdf’



‘ Reducing leverage — power transforms

® |n regression, we are conditioning on X:
Y|X ~ N(XB,0°%)
o “officially” the distribution of X doesn’t matter

= However, if the (empirical) distribution of X is
skewed, many X’s will have high leverage.

= Helps to make empirical distribution of X more
symmetric — pull tails in
o If X is skewed left (long left tail), X*, A>1, pulls in tail
o If X is skewed right (Iong right tail), X*, A <1, pulls in tail

, useful to think “x° = log(x)”

m Since log(z) = lim v X
%
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‘ Aside: Reminder of distribution shapes
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‘ Reducing Leverage: Powers of X

m Check for symmetry after trying simple powers
= More formally, try to maximize likelihood

2 — )\’
o1t (252

A with

o Box-Cox: Likelihood simplifies if we replace x

1/n
Ly =1
\IJM(Q%A) — gm(x)(l o N gm |:H $2:|

0 Usually suggests awkward values (A = 0.33453) that
should be “rounded” to a simpler power (A = 1/3)

QO X is assumed to be positive!

9/12/2022 13



‘ Implementing Box-Cox for X in R

m library(car)
(“Companion to Applied Regression*”)

0 boxCox () : show Box-Cox likelihood as a function of
A (“profile likelihood”)

0 powerTransform () : compute optimal A using the
Box-Cox likelihood

> 7z <- rnorm(100,4,1) .
> x <- z"3 —__—’//////////”———+ |
> boxCox (x~1) 1
> B
i )

powerTransform(x~1)
stimated transformation parameter
X
0.390494

9/12/2022 ) for Weissberg’s Applied Linear Regression text. 14



Functional: y = f(x) is not linear

= We can replace

yi = Bo + b1z + € "

with
yi:BO+ﬁlxi+/62$?+"'+ﬁp$p+€i (2)

= This is also a good idea...

= N.b., model (2) still assumes equal additive errors!

9/12/2022 15



‘ Transformations of Y

= We might want to transform Y for any of three
reasons:

a Substantive: we know Y is a nonlinear function of X, or
we want a particular interpretation

o Improve residuals: bring the (empirical) distribution of
& closer to normality; makes inferences more valid

o Functional:y = f(X) is not linear and we want to find a
better functional form for f()

9/12/2022 16



‘ Substantive Transformation of Y

= There might be substantive knowledge.

a If we know 0< Y<100 (e.g. a test or hw score) we may
need to transform Y before building a linear predictor
forit: e.g.replace Y with log[Y/(100-Y)] ...

m Percent changeinY:

o Forlogy = By + Bix + ¢, letAy = ¢’ — y, then

FEllog(y + Ay)] = o+ Bi(x+1)
Ellog(y)] = fo+ prx

]
AFElogy] = Eflog(y + Ay)] — Eflog(y)] = pi-1
J

So, 81 = FEllog(y + Ay)] — Ellog(y)] = E [log (1 + %)} ~ E [%] ©

100 x (1 = expected pct change iny per unit changeinx

(*) Since log(1+x) = x — x2/2 +/- ... (Taylor series)

9/12/2022 See also “log xform and percent interpretation.pdf’



‘ Improve Error (residual) Distribution

= We want to replace

ith row of

yi — Xq,B _I_ 6,: X matrix
with

?J? = X;0 + €

to improve the distribution of €; (or ¢; ).

= Can do “by hand” or by applying Box-Cox to
y? — X, instead of x) —

again, replace y* with Ya(z,\) ...
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‘ Implementing Box-Cox for Yin R

B library(car)
(“Companion to Applied Regression”)
0 boxCox () : show Box-Cox likelihood as a function of
A (“profile likelihood”)
0 powerTransform () : compute optimal A using the
Box-Cox likelihood

> 7z <- rnorm(100,4,1)

> vy <= (1 + 3*z + rnorm(100,0,.25))"(1/2) s

> Im.1 <= Im(y ~ 2) g

> boxCox (1lm.1, lambda=seq(-3,3,.1)) ///*52

> powerTransform(lm.1)

Estimated transformation parameter
Y1

1.922959
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‘ Improve Error (residual) Distribution:

Variance-stabilizing Transformations

m Suppose E[Y] =y, and Var(Y) = h(n). We want a
transformation Y*=g(Y) such that Var(Y*)=Const

= Taylor’s Theorem says g(y) ~ g(u) + g' (1) (y — )
= Therefore

Var(Y™) =~ Var(g(p) + ¢'(1)(Y — ) = [¢' (1) h (1)
= We want this to be constant, i.e.

C C
' = ST = d
I = st %0 gl / i

9/12/2022 20



‘ Variance-Stabilizing Transform

Example
m If Y~ Poiss(u), then we know E[Y]=u and Var(Y)=p

m So h(“) !.,l, and “is proportional to”

/—d,uoc

= Therefore Y* = /Y will have approximately
constant variance (not depending on E[Y]).

= Nonconstant variance in a scale-location plot
—> consider a variance-stabilizing transformation.
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‘ Functional form of Y: Inverse

Response Plot
= Suppose

Yi = 9(50 Bix; Ei)
then of course
g Y (y) = Bo + iz + €

= [t turns out! that if x has an elliptically symmetric
distribution, then g can be estimated from a plot
of U; vs Y;, where ¥; are predicted values from

yi = Po + bizi + €&

9/12/2022 1Li and Duan (1989), Cook and Weisberg (1994)



‘ Implementing Inverse Response Plots
In R

m library (car)
(“Companion to Applied Regression”)

0 invResPlot ():show inverse response plot (7; vs.yi) and
calculate the power A for y,f‘ by nonlinear least-squares!”

A
L 23 B-- 1 ®m-- 1

z <- rnorm(100,4,1)
y <= (1 + 3*z + rnorm(100,0,.25))"(1/2)%-
Im.1 <= Im(y ~ 2z)

invResPlot (1m.1) .
lambda RSS _——_§\\\\\\\\~_____*g
1 2.300377 1.711786 <—y =yN2.3)

2 =1.000000 2.711177 <—vy =1y
3 0.000000 2.211967 <— vy =log(y)

4 1.000000 1.874950 <_y’=y 20 25 20 5

)

45

>
>
>
>

40

35

3.0

() Specify particular lamdas to try with
9/12/2022 the lambda=c(...) argument. 23



‘ Perspectives and Recommendations

= Substantive (investigator-driven) considerations
always come first

m Power transforms of X to reduce leverage &
Power transforms of Y to improve distribution of ¢€;

o By hand, or Box-Cox rounded to a simple power

m Inverse response plot for power transform of Y

o Visually appealing, but Box-Cox probably better (directly
addresses distribution of €; )

= There does not always exist a “perfect” transform!
m Transform for fcn form — depends on resid. plots!
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‘ Aside: Approach in HWO01 Solutions

= In the solutions to HWO01, | recommended trying each of
these approaches:

o For all the variables (y as well as the x’s), find any that are asymmetric
(skewed) and transform each one to make it more symmetric

OR

o Use the scatterplot matrix to find x’s that are nonlinearly related to vy,
and then transform the x so that it is more linearly related to y.

m These are a heuristic one-variable-at-a-time approach to the
more general recommendations in this lecture.

o They often get you pretty far, and are almost always worth a try.

o Limit yourself to simple transformations:
x%,[¥,Vx,1og(y) ,log(x) , exp(y) , exp(x), ...
m Substantive (investigator) considerations > math, always!!

9/12/2022
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‘ Can residual plots distinguish
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X <- rnorm(100,0,1)

yl<-1+3*x"2 +rnorm(100,0,4)

y2 <- (1 + 3*x + rnorm(100,0,4))"2
Im.1 <- Im(y1~x)

Im.2 <- Im(y2~x)
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‘ Outline

Quick Review of Casewise Diagnostic Plots

Transformations -- Why & How for X and Y
0o Aside: the approach | suggested in HWO01 solutions

Substantive (investigator-driven) considerations
Variance Stabilization for Y

Box-Cox for X or Y: Fix distribution(s)

Inverse Response Plot for Y

Perspective and recommendations

0 Aside: the approach | suggested in HWO1 solutions
Can residual plots distinguish y!) = B, + B,x? + &,
vs. y? = (B, + Byx + €)% 7?
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