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Announcements
◼ Quiz 02 – see in week 03 folder

❑ 1 - learned.pdf

❑ 1 - mystified.pdf

◼ Quiz 03 – Covers 6.4, 6.5, 6.6 (out at 5pm)

◼ HW04 – Out later today; due next Monday

◼ Reading 

❑ This week: Sheather 6.4, 6.5, 6.6, 7.1, 7.2

◼ (supplemental: ISLR 3.3.3; G&H Ch 4)

❑ Next week: Sheather, 7.3, 7.4, 8.1, 8.2

❑ Supplementary: ISLR 3.3.3,& Ch 6; G&H Ch 4
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Outline

◼ Graphical tools for Transformations (catching up!)

❑ Added Variable Plots

❑ Marginal Model Plots

❑ Moral of the Story

◼ Over- and under-specifying a model

❑ Too many predictors: Excess SE’s and Collinearity 

❑ Too few predictors: Omitted Variable Bias
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Added-Variable Plots  (add Z? or f(Z)?)
◼ Suppose the true model is 

◼ Let us fit the models

◼ If we multiply the true model by (I-HX), we get

so, plotting (or regressing)        on        will reveal    !

49/19/2022



Added-variable plots: “graphical t-
statistics”
kidiq <- read.csv("kidiq.csv",header=TRUE)

round(summary(lm.3 <- lm(kid.score ~ mom.iq + mom.hs, data=kidiq))$coef,4)

##             Estimate Std. Error t value Pr(>|t|)

## (Intercept)  25.7315     5.8752  4.3797   0.0000

## mom.iq        0.5639     0.0606  9.3094   0.0000

## mom.hs 5.9501     2.2118  2.6902   0.0074

ks.given.hs <- residuals(lm(kid.score ~ mom.hs, data=kidiq))

miq.given.hs <- residuals(lm(mom.iq ~ mom.hs, data=kidiq))

plot(ks.given.hs ~ miq.given.hs)

abline(lm(ks.given.hs ~ miq.given.hs))

round(summary(lm.4 <- lm(ks.given.hs ~ miq.given.hs))$coef,4)

##              Estimate Std. Error t value Pr(>|t|)

## (Intercept)    0.0000     0.8695  0.0000        1

## miq.given.hs 0.5639     0.0605  9.3202        0

##

## The t-statistic in a multiple regression gives the same information

## as the t-statistic in an added-variable regression: it tests the

## significance of adding the variable *after* accounting for all

## other X's in the model

##       In this sense, the added variable plot is the graphical equivalent

##       of the t-statistic

59/19/2022 kidiq - av plot and t-statistic.r



Added-Variable Plots – Example…

> library(car)

> lm.3

Call:

lm(formula = kid.score ~ mom.iq + 

mom.hs, data = kidiq)

Coefficients:

(Intercept)   mom.iq   mom.hs  

25.7315   0.5639   5.9501  

> avPlot(lm.3,"mom.iq")

> avPlot(lm.3,"mom.hs")
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Added-Variable Plots – Interpretations 

◼ Shows g as the effect of Z after controlling for X, 
on Y, after controlling for X

◼ Allows you to visually assess the importance of g , 
after controlling for all the other X’s.

❑ A visual form of the t-statistic!

◼ Also allows you to check for nonlinearity in 
predicting Y from Z, after controlling for X

◼ Another plot that allows us to assess nonlinearity 
is the “marginal model plot” – later in this lecture 
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Added-Variable Plots – Example…

> library(car)

> lm.3

Call:

lm(formula = kid.score ~ mom.iq + 

mom.hs, data = kidiq)

Coefficients:

(Intercept)   mom.iq   mom.hs  

25.7315   0.5639   5.9501  

> avPlot(lm.3,"mom.iq")

> avPlot(lm.3,"mom.hs")
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An example
> library(car)

> x1 <- rnorm(100)

> x2 <- rnorm(100)

> y <- 1 + x1 + 2*x2 +

+ 10*x1*x2 + rnorm(100)

> 

> lm.x1px2 <- lm(y ~ x1 + x2)

> lm.x1mx2 <- lm(y ~ x1 * x2)

> 

> summary(lm.x1px2)

Call:

lm(formula = y ~ x1 + x2)

Coefficients:

Est   SE     t p

(Int) -0.05 0.82 -0.06 0.95    

x1     1.77 0.87  2.03 0.04 *  

x2     3.44 0.82  4.20 0.00 ***

---

Residual standard error: 8.13 on 

97 degrees of freedom

Multiple R-squared:  0.1722,    

Adjusted R-squared:  0.1551 

F-statistic: 10.09 on 2 and 97 DF,  

p-value: 0.0001045
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Casewise Diagnostic Plots

109/19/2022

> par(mfrow=c(2,2))

> plot(lm.x1px2)



Added Variable Plots

119/19/2022

> avPlots(lm.x1px2)



Marginal Model Plot

◼ The idea is very simple:

❑ Plot y against a predictor (e.g. one of the          or even
); we’ll call it x.

❑ Use a nonparametric regression procedure (e.g. loess) 
to estimate E[y|x]

❑ Use the fitted model to estimate E[y|x]

◼ The two should agree.  If they do not,

❑ x or y may need to be transformed

❑ A term may be missing in the model

❑ (or both!)
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Marginal Model Plots

139/19/2022

> mmps(lm.x1px2)

▪ Blue line: Nonparametric 

smooth estimate of E[y|x]

▪ Red dashed line: Estimate 

of E[y|x] from the fitted 

regression model



The “right” model (with interaction)

> summary(lm.x1mx2)

Call:

lm(formula = y ~ x1 * x2)

Coefficients:

Est    SE      t     p

(Int)  0.77  0.11   7.06  0.00 ***

x1     0.69  0.12   5.93  0.00 ***

x2     2.03  0.11  18.33  0.00 ***

x1:x2  9.90  0.13  73.58  0.00 ***

---

Residual standard error: 

1.079 on 96 degrees of 

freedom

Multiple R-squared:  0.9856,    

Adjusted R-squared:  0.9851 

F-statistic:  2187 on 3 and 

96 DF,  p-value: < 2.2e-16
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Casewise Diagnostic Plots

159/19/2022

> par(mfrow=c(2,2))

> plot(lm.x1mx2)



Added Variable Plots
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> avPlots(lm.x1mx2)



Marginal Model Plots

179/19/2022

> mmps(lm.x1mx2)



Another example
> y <- 1 + x1 + x2^2 +

+ rnorm(100)

> 

> lm.x1px2 <- lm(y ~ x1 + x2)

> lm.x1mx2 <- lm(y ~ x1 * x2)

> lm.x1px2sq <- lm(y ~ x1 +

+ I(x2^2))

> 

> summary(lm.x1px2)

Call:

lm(formula = y ~ x1 + x2)

Coefficients:

Est   SE     t    p    

(Int)  1.82 0.19  9.49 0.00 ***

x1     1.24 0.20  6.08 0.00 ***

x2    -0.30 0.19 -1.55 0.12

---

Residual standard error: 1.904 

on 97 degrees of freedom

Multiple R-squared:  0.3014,    

Adjusted R-squared:  0.287 

F-statistic: 20.93 on 2 and 97 

DF,  p-value: 2.779e-08
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Casewise Diagnostic Plots

199/19/2022

> par(mfrow=c(2,2))

> plot(lm.x1px2)



Added Variable Plots
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> avPlots(lm.x1px2)



Marginal Model Plots

219/19/2022

> mmps(lm.x1px2)



What if we think an interaction will 
fix it?
> summary(lm.x1mx2)

Call:

lm(formula = y ~ x1 * x2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)   1.7774     0.1895   9.380 3.19e-15 ***

x1            1.2891     0.2024   6.370 6.52e-09 ***

x2           -0.2321     0.1922  -1.208   0.2301    

x1:x2        -0.4607     0.2340  -1.969   0.0518 .  

---

Residual standard error: 1.877 on 96 degrees of freedom

Multiple R-squared:  0.3286,    Adjusted R-squared:  0.3076 

F-statistic: 15.66 on 3 and 96 DF,  p-value: 2.29e-08
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Casewise Diagnostic Plots

239/19/2022

> par(mfrow=c(2,2))

> plot(lm.x1mx2)



Added Variable Plots

249/19/2022

> avPlots(lm.x1mx2)



Marginal Model Plots

259/19/2022

> mmps(lm.x1mx2)



And now the correct model (with x2 
squared term)..
> summary(lm.x1px2sq)

Call:

lm(formula = y ~ x1 + I(x2^2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.85241    0.11038   7.722 1.04e-11 ***

x1           1.04216    0.10171  10.247  < 2e-16 ***

I(x2^2)      0.96300    0.05522  17.438  < 2e-16 ***

---

Residual standard error: 0.9481 on 97 degrees of freedom

Multiple R-squared:  0.8269,    Adjusted R-squared:  

0.8233 

F-statistic: 231.6 on 2 and 97 DF,  p-value: < 2.2e-16
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Casewise Diagnostic Plots

279/19/2022

> par(mfrow=c(2,2))

> plot(lm.x1px2sq)



Added Variable Plots

289/19/2022

> avPlots(lm.x1px2sq)



Marginal Model Plots

299/19/2022

> mmps(lm.x1px2sq)



Moral of the Story

◼ Nonlinearity can show up in lots of ways, in lots 
of graphs

❑ In casewise diagnostic plots

◼ As nonlinearity

◼ As nonconstant variance

◼ As Non-normality  (!!!)

❑ In added-variable and marginal model plots

◼ Nonlinearity shows up more clearly

◼ Not always obvious what the right transformation would be.
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Too many predictors: (Multi)Collinearity
◼ Recall that 

◼ What can cause this to blow up?

❑ If (XTX) is full-rank (rank = dimension of (XTX) = p+1), 
then (XTX)-1 exists.  

❑ If (XTX) has rank less than p+1

◼ At least one column of X is a linear combination of the others*

◼ Perfect collinearity

Then (XTX)-1 doesn’t exist

◼ Can fix by deleting columns of X until XTX has full rank again.

319/19/2022
*Fact: rank(XTX) = rank(X)



Collinearity …

◼ If XTX is full-rank, but there is a column of X that 
is nearly a linear combination of the others…

❑ (XTX)-1 will exist but will contain some wild values

❑ can be wildly inflated

◼ How could we measure the amount of “almost 
collinearity”?

❑ Regress Xj on the other X’s; compute        from this 
regression…

◼ for perfect collinearity;

◼ for near-collinearity.
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Using      as a Collinearity measure
◼ is called the tolerance of        to 

collinearity.

◼ One can calculate* that for y = Xb + e,

and we know for simple regression y = b0 + bjXj + e,

◼ Thus,                  is the ratio of                under the full 
model to               under simple regression on Xj

alone.

◼ is the variance inflation factor!

339/19/2022
* E.g. O’Brien, R. (2007). A caution regarding rules of thumb for 

variance inflation factors. Quality & Quantity, 41, 673—690.



Using VIF…
◼ No “significance tests” for VIFj, since X1 X2 …Xp

are usually considered nonrandom.

◼ Some common rule-of-thumb cutoffs are 

❑ VIFj > 4 or 5 (VIF=4 →𝑆𝐸𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 2 × 𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒)

❑ VIFj > 10          (VIF=9 → 𝑆𝐸𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 3 × 𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒)

◼ What to do when VIFj is “large”?

❑ Eliminate columns of X until the VIF’s settle down?

❑ Combine highly correlated columns of X?

◼ Principal Components?

❑ Try alternative models such as ridge regression?

◼ Less sensitive to collinearity
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Do the usual “fixes” make sense?
◼ Eliminate columns of X until the VIF’s settle down?

❑ Unlike perfect collinearity, we are throwing away some 
information – collaborator may not agree!

❑ If we do it, which columns to eliminate?

◼ Combine highly correlated columns of X?

❑ This is a less obvious form of throwing away data…

◼ Use alternative models such as ridge regression?

❑ biased; OLS estimates are not...

❑ Is the changed model meaningful to collaborator?

◼ What consideration is missing from these “fixes”?
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What inferences are we trying to 
make?
◼ Is the goal accurate prediction? We may not care 

if the        individually have high SE’s as long as
adding X’s to the model improves     .

◼ Is the goal selecting a “best model”?  

❑ “Best” does not only mean best statistical measures

❑ We may wish to include high-VIF X’s because they 
comport with substantive theory

◼ Is the goal inference on individual b’s? High VIFs 
can be bad.  This is often where the “fixes” seem 
to make some sense…
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Aside on “generalized VIF”…
◼ GVIF is a more general form of VIF that applies to 

groups of variables and reduces to regular VIF for a 
single variable.   

◼ The usual cutoffs of 5 and 10 work for a 
transformation of GVIF,

GVIF(2/(2*df))

where “df” is the number of free coefficients in the 
for the group of variables.
❑ http://web.vu.lt/mif/a.buteikis/wp-content/uploads/PE_Book/4-5-

Multiple-collinearity.html

❑ Fox, John, and Georges Monette. (1992). “Generalized Collinearity 
Diagnostics.” Journal of the American Statistical Association 87 (417): 178–
83. http://www.jstor.org/stable/2290467.

379/19/2022

http://web.vu.lt/mif/a.buteikis/wp-content/uploads/PE_Book/4-5-Multiple-collinearity.html
http://www.jstor.org/stable/2290467


Example…

◼ heights.dta…

◼ heights - VIFs, avplots, mmplots, etc.r
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Too few predictors: Omitted variable 
bias
◼ Suppose

y = b0 + b1x1 + b2x2 + e
and           x2 = a0 + a1x1 + e’

then y = (b0 + b2a0) + (b1 + b2a1) x1 + (e + b2e’)

◼ So if we fit,  y = g0 + g1 x1 + e’’, we get g1 = b1 + b2a1

❑ If b2 = 0 or a1 = 0, then     will be unbiased for b1

❑ If both are nonzero, then     will be biased for b1

❑ Even if b1 = 0, it can appear that y and x are correlated
(“spurious correlation” – “lurking variable correlation”)
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Example (simulated)
> x1 <- rnorm(100)

> x2 <- 3*x1 + rnorm(100)

> y <- 2 + 4*x2 + rnorm(100)

> lm.y <- lm(y ~ x1)

> summary(lm.y)

Call:

lm(formula = y ~ x1)

Residuals:

Min       1Q   Median       3Q      Max 

-13.2235  -2.7728   0.4441   2.3951   9.0288 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)   2.5535     0.4054   6.299 8.55e-09 ***

x1           11.9012     0.3623  32.853  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.043 on 98 degrees of freedom

Multiple R-squared:  0.9168,    Adjusted R-squared:  0.9159 

F-statistic:  1079 on 1 and 98 DF,  p-value: < 2.2e-16
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Example (simulated)
> lm.y2 <- lm(y ~ x1 + x2)

> summary(lm.y2)

Call:

lm(formula = y ~ x1 + x2)

Residuals:

Min       1Q   Median       3Q      Max 

-2.61952 -0.71282 -0.04126  0.63074  2.51451 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 1.960843   0.100888   19.44   <2e-16 ***

x1          0.009569   0.317556    0.03    0.976    

x2          3.996395   0.102431   39.02   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9947 on 97 degrees of freedom

Multiple R-squared:  0.995,     Adjusted R-squared:  0.9949 

F-statistic:  9678 on 2 and 97 DF,  p-value: < 2.2e-16
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Summary

◼ Graphical tools for Transformations (catching up!)

❑ Added Variable Plots

❑ Marginal Model Plots

❑ Moral of the Story

◼ Over- and under-specifying a model

❑ Too many predictors: Excess SE’s and Collinearity 

❑ Too few predictors: Omitted Variable Bias
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