
19/26/2022

36-617: Applied Linear 
Models 

Variable Selection

Brian Junker

132E Baker Hall

brian@stat.cmu.edu



29/26/2022

Announcements
◼ Reading

❑ This week: Sheather, 7.3, 7.4, 8.1, 8.2 
(supplemental: ISLR 3.3.3 & Ch 6; G&H Ch 4)

❑ Next week: Sheather Ch 8, ISLR Sect 4.3 , 4.7.1, 4.7.2
(supplemental: G&H Ch’s 5 & 6)

◼ Quiz 04 out at 5pm this afternoon

◼ HW04 due Wed, 1159pm, not tonight
❑ See extended notes/hints on hw04 on Piazza!

◼ I plan to publish the take-home midterm on Wednesday.



Outline
◼ Variable selection – An Overview

◼ Traditional variable selection
❑ MSE-based indices

❑ Likelihood-based indices

❑ Stepwise and all-subsets

◼ Modern variable selection
❑ Variable selection by penalized likelihood

❑ Are All Subsets and Stepwise really so
different from Ridge and Lasso?

◼ Inference after variable selection

◼ What do I really do?
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Variable Selection – The Dark 
Underbelly of Statistical Modeling
◼ Large search space (p predictors:                models)

❑ Heuristics to select “good paths” through model space

◼ Multiple-inference problems and non-nested 
model comparisons as we sift through models

❑ (trad) Indices instead of statistical tests

❑ (mod) Jointly estimate model & select variables

◼ Inference after model selection is vulnerable to 
capitalization on chance

❑ Training/test samples; cross-validation methods
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Traditional Variable Selection
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RSS & MSE-based indices
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1See https://onlinecourses.science.psu.edu/stat501/node/330/ for a 

discussion of Cp, for example.

https://onlinecourses.science.psu.edu/stat501/node/330/


Digression: ML estimation 
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Digression: Likelihood Ratio (LR) Test
◼ Let the full model be y = Xb + x’b’+ e

and the reduced model be y = Xb + e

◼ Under H0: b’=0, the LR test statistic

will be1 asymptotically c2 with df = the number of 
constraints (parameters set to zero) under H0

❑ Like the partial F test

❑ Works only for nested models

❑ Tends to become significant as n alone increases

89/26/2022

1See any good book on stat theory, e.g. Casella & Berger (2008), Lehmann & 

Casella (2003), Lehmann & Romano (2006) or Bickel & Doksum (2015)



“Fixing” the LR test
◼ Two problems:

❑ Larger sample size tends to ring the significance bell

❑ Works only for nested models

◼ Fixes: penalized likelihood indices (small is good):

❑ AIC:

❑ CAIC: 

❑ BIC:

◼ Focus on differences, eg AICM1 – AICM2

❑ Puzzle: R replaces p+2 with p when it calculates AIC or 
BIC… why doesn’t this matter?
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Comments1 on AIC, CAIC, BIC
◼ AIC is motivated as an approximation to the K-L 

information distance between the linear model and 
the “true” distribution of the data

❑ As sample size grows, AIC (and CAIC) tends to pick the 
model that minimizes prediction error.

❑ In “small” samples, AIC picks models that are too complex.  
CAIC picks less complex models.

◼ BIC is motivated as an approximation to the log-
posterior probability of the linear model when 
several models are considered

❑ As sample size grows, BIC tends to pick the true model.

❑ In “small” samples, BIC picks models that are too simple.
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1Sheather pp. 230ff. sketches some details.  For a more complete 

story, see Burnham & Anderson (2004).



Model comparison indices xIC 
(x = A, CA, B):
◼ Cannot tell you that a model fits well (or poorly)

◼ Can only tell you that one model fits better (or 
worse) than another (smaller is better!)

◼ Models to compare
❑ Must be based on same data

❑ Must be in the same “family” so any ignored 
“normalizing constants” c1(n), c2(n), etc., are the same

❑ For variable selection in regression these are automatic1

◼ Rules of thumb for D(xIC) = xICM1 – xICM2:
❑ D ~ 3 might be interesting; D ~ 10 might be compelling
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1If the data has embedded NA’s for different X’s, R will choose 

different subsets of the data for different models – be careful!



“Automatic” heuristics for searching 
model space: All Subsets Regression
◼ For each fixed number of predictors p, choose 

the model that minimizes RSS 
❑ This also optimizes         , Cp, AIC, CAIC & BIC – why??

◼ Choose among the “winners” at each predictor 
set size, to get an overall winner 
❑ Typically want AIC or CAIC, and BIC, to be (near-) 

minimum at the same model – not always possible!

◼ In R1:
❑ library(leaps): regsubsets(), summary(), coef()

❑ library(car): subsets();   library(MASS): AIC(), BIC()

129/26/2022
1https://www.statmethods.net/stats/regression.html



Example: heights.dta data
> heights.complete <-

+ heights[apply(heights,1,

+ function(x){!any(is.na(x))}),]

> all.subsets <-

+ regsubsets(log(earn+1) ~ .,

+ data=heights.complete)

> subsets(all.subsets)

> coef(all.subsets,1:8)

(Int)   sex    ed yearbn height race2 race3 race4  hisp

11.87 -2.14 

7.84 -2.05  0.29  

8.53 -2.08  0.30  -0.02 

2.86 -1.66  0.30  -0.02   0.08 

2.81 -1.66  0.30  -0.02   0.08  0.33       

2.81 -1.67  0.30  -0.02   0.08  0.33        0.99

3.04 -1.69  0.30  -0.02   0.07  0.33 -0.68  0.99

3.03 -1.69  0.30  -0.02   0.07  0.32 -0.68  0.99  0.00
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AIC       BIC

7104.329  7130.463

7100.063  7131.424



“Automatic” heuristics for searching 
model space: Stepwise Regression
◼ Forward selection

❑ Start with a “smallest” model
❑ Add 1 term at a time that causes largest drop in xIC

◼ Until no added term causes a drop in xIC

◼ Backwards elimination
❑ Start with a “largest” model
❑ Drop 1 term at a time that causes largest drop xIC

◼ Until no dropped term causes a drop in xIC

◼ Both
❑ Drop or add term that causes largest drop in xIC

◼ Until no add or drop causes drop in xIC
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Example: heights.dta data
> stepAIC(lm(log(earn+1) ~ .,data=heights),direction="both",k=2)

Error in stepAIC: number of rows in use has changed: remove 

missing values?

> heights.complete <- heights[apply(heights,1,function(x)

+ {!any(is.na(x))}),] 

> stepAIC(lm(log(earn+1) ~ ., 

+ data=heights.complete),direction="both",k=2)

log(earn + 1) ~ sex + race + hisp + ed + yearbn + height

log(earn + 1) ~ sex +        hisp + ed + yearbn + height

log(earn + 1) ~ sex +               ed + yearbn + height

> n <- dim(heights.complete)[1]

> stepAIC(lm(log(earn+1) ~ ., 

+ data=heights.complete),direction="both", k=log(n))

log(earn + 1) ~ sex + race + hisp + ed + yearbn + height

log(earn + 1) ~ sex +        hisp + ed + yearbn + height

log(earn + 1) ~ sex +               ed + yearbn + height

log(earn + 1) ~ sex +               ed + yearbn
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Output greatly 

abbreviated!



Using regsubsets for fwd / backward

169/26/2022

> fwd <- regsubsets(log(earn+1) ~ ., data=heights.complete,

+        method="forward")  ## (or you could select method="backward")

> results <- with(summary(fwd),data.frame(which,rss,adjr2,bic))

> results

X.Intercept.  sex  race  hisp ed yearbn height      rss adjr2     bic

1         TRUE TRUE FALSE FALSE FALSE FALSE FALSE 14771.56  0.09 -118.27

2         TRUE TRUE FALSE FALSE TRUE  FALSE  FALSE 14082.98  0.13 -176.87

3         TRUE TRUE FALSE FALSE TRUE   TRUE FALSE 13999.43  0.14 -177.84

4         TRUE TRUE FALSE FALSE TRUE   TRUE TRUE 13937.01  0.14 -176.78

5         TRUE TRUE FALSE  TRUE  TRUE TRUE TRUE 13936.03  0.14 -169.64

6         TRUE TRUE TRUE TRUE TRUE TRUE TRUE 13935.35  0.14 -162.48

> p <- 1:6; n <- dim(heights.complete)[1]

> results$aic <- with(results, n*log(rss) + 2*(p+2))  ## see slide 7: AIC = -2LL + 2(p+2)

> results

X.Intercept.  sex  race  hisp ed yearbn height      rss adjr2     bic aic

1         TRUE TRUE FALSE FALSE FALSE FALSE FALSE 14771.56  0.09 -118.27 13245.03

2         TRUE TRUE FALSE FALSE TRUE  FALSE  FALSE 14082.98  0.13 -176.87 13181.20

3         TRUE TRUE FALSE FALSE TRUE   TRUE FALSE 13999.43  0.14 -177.84 13175.00

4         TRUE TRUE FALSE FALSE TRUE   TRUE TRUE 13937.01  0.14 -176.78 13170.84

5         TRUE TRUE FALSE  TRUE  TRUE TRUE TRUE 13936.03  0.14 -169.64 13172.74

6         TRUE TRUE TRUE TRUE TRUE TRUE TRUE 13935.35  0.14 -162.48 13174.67

> ## min(bic) model is log(earn+1) ~ sex + ed + yearbn

> ## min(aic) model is log(earn+1) ~ sex + ed + yearbn + height
Same results as 

with stepAIC()

See also the Piazza note on Problem 2, HW04.



Modern Variable Selection
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Penalized Estimation1

(a.k.a. “Regularization”, “Shrinkage”)
◼ We have seen that, e.g. under collinearity,        

become unstable and              can explode

❑ This leads to poor prediction error1

◼ If we can control the size of the       , they will 
become more stable and              will be controlled

❑ Prediction error will actually be improved1

◼ Basic idea:  Instead of maximizing 
we will maximize

189/26/2022

1Much useful detail at 

http://statweb.stanford.edu/~tibs/sta305files/Rudyregularization.pdf



Ridge Regression (a.k.a. L2 penalty)
◼ Maximize

◼ We usually (and henceforth) replace           
with just RSS, so we want to minimize

❑ l controls how much “regularization”:
◼ : just ordinary LS

◼ : all b’s equal 0

❑ To treat all b’s equally, should standardize columns of X

❑ |b| < 1 not much affected; |b| > 1 reduced in magnitude

◼ In R: library(glmnet), function glmnet(…,alpha=0)
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Example: heights.dta data
> Z <- heights.complete[,-c(1,3)]

> # omit "earn" and "race" 

> Z <- apply(Z,2,

+ function(x) rescale(x,"full"))

> znames <- dimnames(Z)[2]

> z.ridge.fits <-

+ glmnet(Z,heights.complete[,1],

+ alpha=0) 

> # alpha=0 for ridge regression

> plot(z.ridge.fits,

+ xvar="lambda")

> abline(h=0,lty=2)

> legend("bottomright", 

+ legend=znames,col=1:5,lty=1)
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How many nonzero b’s

We omit race because it is a group of

dummy variables that should be considered
together.  glmnet can’t deal with that.



LASSO (a.k.a. L1 penalty)
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◼ Minimize

❑ l controls how much “regularization”:
◼ : just ordinary LS

◼ : all b’s equal 0

❑ To treat all b’s equally, should standardize columns of X

◼ All b’s reduced in magnitude

◼ Geometry of L1 distance means that smaller b’s are 
forced to zero – provides a variable selection tool

◼ In R: library(glmnet), function glmnet(…,alpha=1)
https://newonlinecourses.science.psu.edu/stat508/lesson/5/5.4

https://stats.stackexchange.com/questions/74542/why-does-the-lasso-provide-

variable-selection

https://newonlinecourses.science.psu.edu/stat508/lesson/5/5.4
https://stats.stackexchange.com/questions/74542/why-does-the-lasso-provide-variable-selection


Example: heights.dta data
> z.lasso.fits <-

+ glmnet(Z,heights.complete[,1],

+ alpha=1) 

> # alpha=1 for lasso

> plot(z.lasso.fits,

+ xvar="lambda")

> abline(h=0,lty=2)

> legend("bottomright", 

+ legend=znames,col=1:5,lty=1)

> coef(z.lasso.fits,s=exp(6:9))
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How many nonzero b’s

log l = 6: sex, hisp, ed, yearbn, height

log l = 7: sex,        , ed, yearbn, height

log l = 8: sex,        , ed,            , 

log l = 9: Intercept only

Also found by xIC methodsNot found by xIC methods

A newer package, gglasso, can deal with groups of variables, like 

race (there are over 70 lasso packages on https://cran.r-

project.org/!!)



Elasticnet: aL1 + (1-a)L2 penalty

239/26/2022

◼ Minimize

❑ l controls how much “regularization”:
◼ : just ordinary LS

◼ : all b’s equal 0

❑ To treat all b’s equally, should standardize columns of X

◼ a controls tradeoff between lasso & ridge

◼ Smaller b’s are forced to zero (lasso); |b|>1 tend to 
be more quickly reduced in magnitude (ridge) 

◼ In R: library(glmnet), function glmnet(…,alpha=??)



Example: heights.dta data
> z.elasticnet.fits <-

+ glmnet(Z,heights.complete[,1],

+ alpha=0.5) 

> # any 0<alpha<1 gives tradeoff

> plot(z.elasticnet.fits,

+ xvar="lambda")

> abline(h=0,lty=2)

> legend("bottomright", 

+ legend=znames,col=1:5,lty=1)

> coef(z.elasticnet.fits,s=exp(7:9))
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How many nonzero b’s

log l = 7: sex, hisp, ed, yearbn, height

log l = 8: sex,        , ed, yearbn, height

log l ~ 9: sex,        , ed,            , height 

Also found by xIC methodsxIC methods preferred 

yearbn to height



Are All Subsets and Stepwise really so
different from Ridge and Lasso?
◼
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Are All Subsets and Stepwise really so
different from Ridge and Lasso?
◼
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Are All Subsets and Stepwise really so
different from Ridge and Lasso?
◼
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Inference After Variable Selection
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Assessing/comparing models 
after variable selection
◼ After “all subsets”, “stepwise” or “lasso”, we 

cannot expect test statistics to have “textbook” 
distributions. 

◼ It is difficult (and in some cases a matter of 
current research) to get valid CI’s for b’s, 
prediction intervals, etc., after variable selection.

◼ A better approach can be to measure how well 
the final model, or a set of candidate models, can 
predict new data.
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Measuring predictive ability of a 
model
◼ RSS measures “predictive ability” on the same 

data set as the model was fitted on
❑ We know RSS decreases whenever we add more 

variables
❑ More “degrees of freedom” to minimize RSS

◼ Instead, we can split the data into
❑ A training data set
❑ A test data set
Do whatever variable selection and model building we 
like on the training data set, and then assess/compare 
models on the (independent) test data set.
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Choosing a Training Set & Test Set

◼ The split into training and test sets should be 
“uninformative” about the model

❑ Conceptually simplest to do a random split

❑ If that is impossible or undesirable, a systematic split 
that is uninformative is fine

◼ Rules of thumb1 for sizes (see next slide also):
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Sample Size Speed of Model 
Selection

Ratio of Training 
Set to Test Set

Small Slow 50/50

Moderate to Large Moderate 60/40, 80/20, 90/10

Enormous Fast 99/1, 99.5/0.5

1https://stackoverflow.com/questions/13610074/is-there-a-rule-

of-thumb-for-how-to-divide-a-dataset-into-training-and-validatio



Some remarks on test set sample size

◼

329/26/2022



Example: heights.dta data
> c(.8,.2)*1371

[1] 1096.8  274.2

> indices <- sample(1:1371,size=275,replace=F)

> test.sel <- ifelse(1:1371 %in% indices,T,F); train.sel <- !test.sel

> Z.train <- Z[train.sel,]

> Z.test <- Z[test.sel,]

> X.train <- heights.complete[train.sel,]

> X.test <- heights.complete[test.sel,]

> log.earn.train <- log(X.train[,1]+1)

> log.earn.test <- log(X.test[,1]+1)

> train.all.subsets <-

+ regsubsets(log.earn.train ~ .,data=X.train[,-1])

> subsets(train.all.subsets)

> train.lasso <- glmnet(Z.train,log.earn.train,alpha=1)

> plot(train.lasso,xvar="lambda")

> legend("bottomright",

+ legend=names(heights.complete[-c(1,3)]),col=1:5,lty=1)

339/26/2022

Set up training and 

test data sets

Model selection 

using all-subsets 

and lasso…

Models are 

listed on the 

next slide…



Example: heights.dta data
> ## skipping all of the diagnostics that I would normally do...

> ##   - nonlinearity

> ##   - nonnormality

> ##   - non-constant variance

> ##   - leverage

> lm.1 <- lm(log.earn.train ~ sex + ed,data=X.train)

> lm.2 <- lm(log.earn.train ~ sex + ed + yearbn,data=X.train)

> lm.3 <- lm(log.earn.train ~ sex + ed + yearbn +

+ height,data=X.train)

> 

> BIC(lm.1) # [1] 5672.953

> BIC(lm.2) # [1] 5675.221

> BIC(lm.3) # [1] 5677.121

>

> AIC(lm.1) # [1] 5652.955

> AIC(lm.2) # [1] 5650.224

> AIC(lm.3) # [1] 5647.124

> ## AIC and BIC are telling opposite stories, on the training data...

349/26/2022

Which model 

seems to give 

best xIC?



> yhat.1 <- predict(lm.1,newdata=X.test)

> yhat.2 <- predict(lm.2,newdata=X.test)

> yhat.3 <- predict(lm.3,newdata=X.test)

> (PSE.1 <- sum((log.earn.test-yhat.1)^2))

[1] 2880.098

> (PSE.2 <- sum((log.earn.test-yhat.2)^2))

[1] 2841.281

> (PSE.3 <- sum((log.earn.test-yhat.3)^2))

[1] 2835.232

> plot(log.earn.test,yhat.1)

> plot(log.earn.test,yhat.2)

> plot(log.earn.test,yhat.3)

Example: heights.dta data

359/26/2022

Looking at -- and thinking about -- the 

data tells us there’s much more to do!

Agrees with AIC…

Check 

prediction

error

How good do 

the yhats look?



Extension: K-fold cross-validation

◼ In the heights example we made an 80/20 split of 
the data: 80% for training, 20% for testing.

◼ We can make this 80/20 split 5 times with 5 
disjoint tests sets.  

❑ Each time, compute the prediction squared error (PSE) 
or MSE = PSE/(size of test set) = PSE/ntest

❑ Average these to produce a more stable estimate of 
prediction error (instead of making ntest larger)

◼ This is 5-fold cross-validation.
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More on K-fold cross validation…

◼ For any K, we can split the data into K parts.  Each 
part can be a test set, with the remaining data 
the training set.  

❑ We average PSE, MSE, or some other measure over 
the K cross-validation trials

◼ There is theory that says what the best K is, but in 
practice K = 5 or 10 is usually sufficient.

◼ Often K-fold cross-validation is implemented by 
randomly splitting the data, so different runs give 
slightly different answers.
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Example: heights.dta again
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# recall that heights.complete omits all observations with NA’s

> library(boot) # for the cv.glm() function…

> clm.1 <- glm(log(earn+1) ~ sex + ed,data=heights.complete)

> clm.2 <- glm(log(earn+1) ~ sex + ed + yearbn,data=heights.complete)

> clm.3 <- glm(log(earn+1) ~ sex + ed + yearbn + height,

+   data=heights.complete)

> cv.glm(heights.complete,clm.1,K=5)$delta[1]

[1] 10.21179

> .Last.value * dim(heights.complete)[1]/5  

[1] 2800.073

> cv.glm(heights.complete,clm.2,K=5)$delta[1]

[1] 10.16831

> .Last.value * dim(heights.complete)[1]/5

[1] 2788.151

> cv.glm(heights.complete,clm.3,K=5)$delta[1]

[1] 10.14349

> .Last.value * dim(heights.complete)[1]/5

[1] 2781.435

Refit models on 

“full” data set

Cross-val MSE for 

each model…

Rescale to PSE 

if we wish…

Conclusions 

similar to AIC…



What Do I Really Do?
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Challenges of Consulting/Collaboration
◼ The people you work with will think

❑ You are a “high priest” of variable selection and you know 
the “right” way to do it!

❑ You can provide them with statistical cover for whatever 
model they really really want

◼ These are contradictory, and your collaborators will 
want both… Neither is true!

◼ Your job is to come up with the model that

❑ Best reflects the substance (science, engineering, policy…)

❑ Best satisfies modeling assumptions

❑ Is most clearly indicated by the data
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What do I do in practice1?
◼ Have a good conversation with my collaborator / 

client:  Which variables are

❑ Scientifically or policy-wise important

◼ I will try to keep these in, or discuss eliminating with client

❑ Related to design of the experiment/data collection

◼ These must stay in the model

◼ Use t, F, xIC, best subsets, stepwise, lasso, etc. to 
see what the data will support

❑ Use this together with knowledge of subject area to 
come up with 2-5 models

❑ Conversation with client decides final model

419/26/2022

1The whole process may iterate several 

times before settling on a “final” model!



Heuristic Principles1 from Gelman & 
Hill (2009, p. 69) 
1. Include all input variables that, for substantive reasons, might be 

expected to be important in predicting the outcome.

2. Sometimes inputs can be combined—for example, several inputs can be 
averaged or summed to create a “total score” that replaces them.

3. Inputs with large main effects, often have large interactions as well.

4. Looking at the t-statistics and signs of individual       :
a) If a predictor is not statistically significant and has the expected sign, it is generally fine 

to keep it in. It may not help predictions much but is also probably not hurting them.

b) If a predictor is not statistically significant and does not have the expected sign (for 
example, incumbency having a negative effect on vote share), consider removing it.

c) If a predictor is statistically significant and does not have the expected sign, then think 
hard if it makes sense. (E.g. you were expecting more tutoring to improve test scores, 
but students who sought more tutoring got lower scores). Try to gather data on 
potential lurking variables and include them in the analysis.

d) If a predictor is statistically significant and has the expected sign, then by all means 
keep it in the model.

429/26/2022
1These do not solve all problems!



Summary
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◼ Variable selection – An Overview

◼ Traditional variable selection
❑ MSE-based indices

❑ Likelihood-based indices

❑ Stepwise and all-subsets

◼ Modern variable selection
❑ Variable selection by penalized likelihood

❑ Are All Subsets and Stepwise really so
different from Ridge and Lasso?

◼ Inference after variable selection

◼ What do I really do?


