36-617: Applied Linear Models

Logistic Regression Brian Junker 132E Baker Hall brian@stat.cmu.edu

Statistics & Data Science Social

hosted by Women in Statistics

social hour + board games

coffee shop gift card raffle

pizza + refreshments

open to **all students** (undergraduate and graduate!!) interested in statistics and data science!

chat about hobbies, life, and more!

thursday, september 29 4-6 pm hamburg hall 1007

stop in whenever and stay however long you like!

In the coming days...

- HW 04 due tonight at 11:59
- No Quiz next Monday
- Takehome Midterm will be out around 6pm
 - Covers through Ch 7; Due Wed Oct 5 at 11:59pm
 - Open-book, open-notes, etc., <u>but not open-people</u>
 - Do the work on your own, no collaborators
 In particular, no current or former MSP students or solutions
 - Feel free to use web resources (incl stackexchange etc) but you ARE NOT ALLOWED to post questions or interact on the web
 - Office hours (me or TA) or private Piazza questions are fine (ok to learn from my answers to other students)

Outline

- Logistic Regression
- Interpreting the Coefficients
- Example: Extract from the Coleman Report
- Improving the Model
- Overfitting and Identifiability
- Effect of Dichotomization
- Assessing Residuals
- Example: Wells in Bangladesh
 - A simple model
 - Variable selection

Logistic Regression

Basic Setup

- y = 0 or 1, indicating some outcome of interest (passed test, responded to treatment, is a water well of type A rather than type B, switched brands of soap, etc.)
- x₁, x₂, ..., x_k are continuous or discrete predictor variables (income, SES, test score, mother's IQ, amount of sulphur, parents divorced, etc.)
- We want to build a <u>linear model</u> to predict y from the x's, just like linear regression

Logistic Regression

The <u>linear regression</u> model was

$$y_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2), \ i = 1, \dots, n$$

$$\theta_i = X_i \beta = \beta_1 X_{i1} + \cdots + \beta_k X_{ik}$$

- **a** Each y_i has some mean $\theta_i = E[y_i]$
- Each θ_i has some linear structure
- There is a statistical distribution N(*, σ^2) that describes unmodeled variation around θ_i
- Obviously y = 0 or 1 cannot have a normal distribution, but we want the same structure!

Logistic Regression

By analogy with linear regression, we model as $y_i \sim \text{some distribution depending on}$

$$E[y_i] = P(Y_i = 1) = p_i$$

- Since p_i ∈ [0,1], we often use an S-shaped function to stretch p_i out to the whole real line (so unrestricted linear modeling is possible)
- Some choices:
 - Tangent function:
 - Probit function:
 - Logit function:

$$\begin{array}{ll} \theta_i = \tan(\pi \cdot (p_i - \frac{1}{2})) \\ \theta_i = \Phi^{-1}(p_i) \\ \theta_i = \log \frac{p_i}{1 - p_i} \end{array}$$

Aside... S – shaped Functions

curve(tan(pi*(x-1/2)),xlab="p",ylab=expression(tan(pi*(p-1/2))))
curve(qnorm(x),xlab="p",ylab=expression({Phi^{-1}}(p)))
curve(log(x/(1-x)),xlab="p",ylab=expression(log(p/(1-p))))

Not much difference between $\Phi^{-1}(p)$ and $\log(p/(1-p))$. We usually use $\log(p/(1-p))$.

Logistic Regression The *logistic regression* model is:

$y_i \stackrel{indep}{\sim} Bernoulli(p_i), \ i = 1, \dots, n$ $\theta_i = \log \frac{p_i}{1 - p_i} = X_i \beta$ $= \beta_1 X_{i1} + \dots + \beta_k X_{ik}$

Two useful functions:

logit <- function (p) { log(p/(1-p)) } invlogit <- function(x) {exp(x)/(1 + exp(x))}</pre>

(sometimes invlogit known as "expit"...)

Interpreting the Coefficients

p_i = \frac{\exp[\beta_0 + \beta_1 x_i]}{1 + \exp[\beta_0 + \beta_1 x_i]}\$
 Difficult to predict effect of change from x_i to x_i + 1 on p_i because it depends on where p_i (or x_i) is!

Maximum effect when
 β_o + β₁ x_i = 0; can show
 the effect is to change p_i
 by β₁/4
 ("divide by 4" rule)

Interpreting the Coefficients

- $\bullet \log \frac{p_i}{1-p_i} = \beta_0 + \beta_1 x_i$
- $O_i = p_i/(1-p_i)$ is the Odds
 - If there is a 50-50 chance, p_i=1/2, and so O_i = 1 (even odds)
 - □ If $p_i = 1/3$ then $O_i = 1/2$, two-to-one odds against
 - \Box log O_i = log-odds (logit)
- Going from x_i to x_i+1 produces
 - □ An *additive* change of β_1 in the log-odds
 - **a** A *multiplicative* change of e^{β_1} in the odds

■ No matter where x_i or p_i are!

Interpreting the Coefficients

When there is more than one predictor

$$p_{i} = \frac{\exp \{\beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{k}x_{ik}\}}{1 + \exp \{\beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{k}x_{ik}\}}$$

is useful for prediction, but difficult to interpretThe log-odds (logit) form

$$\log \frac{p_i}{1-p_i} = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_j x_j + \dots + \beta_k x_{ik}$$

has the same interpretation as before: a change from x_j to $x_j + 1$ produces a change of β_j in the log odds (holding the other x's fixed)

Assumes x_i can be manipulated w/o changing other x's

Digression: Odds Ratios

- If p_1 and p_2 are probabilities with odds $O_1 = p_1/(1-p_1)$ and $O_2 = p_2/(1-p_2)$ then $OR_{12} = O_1/O_2$ is the <u>odds ratio</u>
 - □ If $p_1 = 2/3$ and $p_2 = 1/3$ then $OR_{12} = 2/(1/2) = 4$, so the odds of event 1 are 4 times the odds of event 2.
 - log(OR₁₂) is the <u>log odds ratio</u>

• Suppose

$$\log \frac{p_1}{1-p_1} = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_j x_j + \dots + \beta_k x_k$$

$$\log \frac{p_2}{1-p_2} = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_j (x_j+1) + \dots + \beta_k x_k$$
then

$$\beta_j = \log \frac{p_2}{1-p_2} - \log \frac{p_1}{1-p_1} = \log O_2 / O_1 = \log(OR_{21})$$
• β_j is the log-odds ratio for going from \mathbf{x}_j to $\mathbf{x}_j + \mathbf{1}$

Example

 Mosteller & Tukey (1977) data on average verbal test scores for 6th graders at 20 mid-Atlantic schools taken from The Coleman Report:

	X1	X2	X3	X4	X5	Y	Z
1	3.83	28.87	7.20	26.60	6.19	1	37.01
2	2.89	20.10	-11.71	24.40	5.17	0	26.51
•							
•							
•							
20	2.37	76.73	12.77	24.51	6.96	1	41.01

X1 = staff salaries per pupil; X2 = percent of fathers in white collar jobs; X3 = socioeconomic status; X4 = average verbal test scores for *teachers* at each school; X5 = (mothers' years of schooling)/2; Z = mean verbal test scores for students at each school; and Y = 1 if Z > 37 and Y = 0 if not

Example, Cont'd

We begin by fitting an additive (main effects only) logistic regression to the above data > schools <- read.table("mosteller-tukey.txt")

```
Call:
qlm(formula = y \sim x1 + x2 + x3 + x4 + x5, family = binomial, data = schools)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                       33.1771 -0.138 0.891
(Intercept) -4.5635
x1 (staff sal) 2.1346
                    3.3235 0.642 0.521
                     0.1592 0.713 0.476
x2 (% wht col) 0.1135
x3 (SES) 0.9789
                        0.8487 1.153 0.249
x4 (tchr test) 2.0242
                        1.3251 1.528 0.127
x5 (mom yrs -10.0928
                         9.7992 -1.030 0.303
  of school)
                                                           No R<sup>2</sup> but think of
(Dispersion parameter for binomial family taken to be 1)
                                                           this as a \chi^2 test
    Null deviance: 27.526 on 19 degrees of freedom
                                                           of fit...
Residual deviance < 8.343
                                 degrees of freedom
                           on 14
AIC: 20.343
```

> summary(fit0 <- (glm)y ~ x1 + x2 + x3 +x4 +x5, data=schools, family=binomial)

Interpreting the Coefficients, Cont'd

- Reading off the coefficients table in the example,
 - If we increase staff salaries per pupil by 1 unit, the model predicts an increase in log-odds of a successful school of 2.13;
 - If we increase the percent of fathers in white collar jobs by one unit, the model predicts an increase in logodds of a successful school increase by 0.11; etc.
 - This assumes we can manipulate x_j, and can do so without affecting the other x_i's!

Interpreting the Coefficients, Cont'd

- When β_j is (insignificantly different from) zero, we can infer that y and x_j are independent, conditional on the other x's in the model
- In our example, none of the coefficients are significantly different from zero! Same sorts of suspects as with ordinary linear regression:
 - Small sample size—only 20 observations
 - □ Collinearity in the *x*'s—indeed:

```
> vif(fit0)
                 x2
                            x3
       x1
                                       \times 4
                                                  x5
1.749053 22.382765 22.795807 2.111019 55.066313
> X <- model.matrix(fit0)</pre>
> cor(X[, -1])
                                xЗ
          x1
                      x^2
                                            x4
                                                       x5
x1 1.0000000 0.18113980 0.2296278 0.50266385 0.1967731
x2 0.1811398 1.0000000 0.8271829 0.05105812 0.9271008
x3 0.2296278 0.82718291 1.0000000 0.18332924 0.8190633
x4 0.5026638 0.05105812 0.1833292 1.00000000 0.1238087
x5 0.1967731(0.92710081)0.8190633 0.12380866 1.000000
```

Null & Residual Deviance

• At the end of glm summary you will see

Null deviance: 27.526 on 19 degrees of freedom Residual deviance: 8.343 on 14 degrees of freedom AIC: 20.343

- Let D₀(M) = -2log(likelihood_M), and let
 - S = "saturated" model that perfectly fits data
 - M = model fitted by glm
 - \square M₀ = the intercept only model
- Null Deviance: $D_{Null} = D_0(M_0) D_0(S);$ $df_{Null} = df(S) df(M_0)$
- Residual Deviance: $D_{Res} = D_0(M) D_0(S)$; Residual df: $df_{Res} = df(S) - df(M)$

Null & Residual Deviance (cont'd)

- This gives rise to two <u>likelihood ratio</u> Chi-squared tests:
- H₀: M (fitted model) vs. H_A: S (saturated model)
 Under H₀, D_{Res} ~ Chi-squared on df_{Res}
 - □ 8.343 on 14 df: Don't reject H_{0;} fitted model OK
- H₀: M₀ (intcpt-only) vs. H_A: M (fitted model)
 Under H₀, D_{Null} D_{Res} ~ Chi-squared on df_{Null} df_{Res}
 - 27.526 8.343 = 19.183 on 19 14 = 5 df: Reject H₀; fitted model better than intercept-only

D_{Null}

M

Improving the Model

- Improving logistic regression models is like improving linear regression models
 - Add variables and interactions that make sense
 - Add variables and interactions if they greatly increase R², or if they improve residuals, etc.
 - Transform X variables to reduce leverate and/or improve interpretation (functional form, etc.)
- Unlike lm(), glm() does not report R². Instead it reports AIC:
 - □ AIC = $-2*\log(likelihood) + 2*(df)$
- [small is good]
- Like a <u>likelihood ratio test</u>, but penalized for the complexity of the model (df = number of regression coefficients)

Improving the Model

stepAIC() in library(MASS) will search through a set of models, minimizing AIC.

```
> library(MASS)
      > basemodel <- qlm(y x1 + x2 + x3 + x4 + x5),
      + data=schools, family=binomial)
      > fit1 <- eval(stepAIC(basemodel, scope=list(lower=.~1,</pre>
      + upper=.x1 + x2 + x3 + x4 + x5, k=2)$call)
      > anova(fit1,fit0,test="Chisq")
      Analysis of Deviance Table
                                                        Chi-squared test
      Model 1: y x^3 + x^4
                                                        finds no evidence
      Model 2: y x1 + x2 + x3 + x4 + x5
                                                        against smaller model
            Resid. Df Resid. Dev Df Deviance P(>|Chi|)
      1
                   17
                         10.1414
      2
                       8.3429 3 4.7984
                                                0.6153
                   14
      > summary(fit1)$coef
                      Estimate Std. Error z value Pr(>|z|)
       (Intercept) -41.8188263 24.5239239 -1.705226 0.08815233
                     0.3646223 0.1798581 2.027277 0.04263408
      xЗ
tchr sco<sub>x4</sub>
                     1.5614704 0.9427877 1.656227 0.09767586
```

ses

Improving the Model

If we try to expand the model to consider interactions of all orders, something interesting happens:

```
> fit2 <- eval(stepAIC(basemodel,
+ scope=list(lower=.~ 1,
+ upper=.~(x1 + x2 + x3 + x4 + x5)^{5}, k=2) $call)
y \sim x3 + x4 + x5 + x4:x5
                               > warnings()
                               Warning messages:
       Df Deviance AIC
                               1: glm.fit: fitted probabilities
<none> 0.0000 10.000
                                  numerically 0 or 1 occurred
+ x3:x5 1 0.0000 12.000
                               2: glm.fit: algorithm did not converge
+ x3:x4 1 0.0000 12.000
                               3: glm.fit: fitted probabilities
+ x1 1 0.0000 12.000
                                  numerically 0 or 1 occurred
+ x2 1 0.0000 12.000
                               4: glm.fit: algorithm did not converge
- x3 1 9.2741 17.274
                               5: glm.fit: fitted probabilities
- x4:x5 1 9.2821 17.282
                                  numerically 0 or 1 occurred
There were 50 or more warnings
(use warnings() to see the first 50)
```

Overfitting and Identifiability

• Comparing fitted(fit2) to the actual y's you will see that they agree closely: $|y_i - p_i| \approx 0$.

```
> y - fitted(fit2)
                          2
                                        3
                                                                    5
                                                      4
 2.220446e-16 -2.220446e-16 -2.712309e-09 1.053467e-09 2.171825e-10
            6
                          7
                                        8
                                                      9
                                                                   10
-2.220446e-16 2.220446e-16 -2.220446e-16 6.313647e-10 2.220446e-16
                         12
           11
                                       13
                                                     14
                                                                   15
-2.220446e-16 -2.220446e-16 -2.220446e-16 -2.220446e-16 -2.220446e-16
           16
                         17
                                       18
                                                     19
                                                                   20
 2.220446e-16 -2.220446e-16 -2.220446e-16 1.574083e-09 2.220446e-16
```

 log p_i/(1-p_i) can't be evaluated accurately when p ≈ 0 or 1. Estimates of the regression coefficients can go haywire too.

The Effect of Dichotomization

 Finally we recall that y is a dichotomized version of z: y = 1 if z > 37; otherwise y = 0

```
> basemodel <- lm(z ~x1 + x2 + x3 + x4 + x5, data=schools)
```

```
> norm1 <- eval(stepAIC(basemodel,</pre>
```

```
scope=list(lower=.~1,
upper=.(x1 + x2 + x3 + x4 + x5)^5),
k=2)$call) # k=2 for AIC
```

```
> norm1$call
```

```
lm(formula = z ~x1 + x3 + x4, data = schools)
```

- Even though the stepwise procedure had access to interactions of all orders, x1 was not in the final (logistic) model for y.
- This suggests that x1 was more useful for predicting the more complex response z than for predicting the simpler response y (dichotomized z).
 - We should dichotomize with care, and then only if the substantive question requires it.
 - Dichotomization always changes the information in the data.
 - If you must dichotomize, I'd suggest doing a sensitivity analysis (try different dichotomizations and see how that affects the results).

Assessing Residuals

par(mfrow=c(2,2))
plot(fit0,

add.smooth=F)

Predicted values

Theoretical Quantiles

Residual plots for logistic regression usually look terrible!

- Fit is pretty good:
 - Resid deviance = 8.3
 - Good fit: $P[\chi_{14}^2 > 8.34]$

= pchisq(8.3,14,lower=F) = 0.87

Std. deviance resid.

Final Example: Wells in Bangladesh

- Researchers classified wells as "safe" or "contaminated with arsenic" and collected data on families using the wells. They encouraged those with unsafe wells to switch to safe wells (a neighbor's well, a community well, or a new well).
- Several years later they came back to see who switched.

```
> wells <- read.table("wells.dat")
> str(wells)
#'data.frame': 3020 obs. of 5 variables:
# $ switch : int 11011111111... did the family switch wells?
# $ arsenic: num 2.36 0.71 2.07 1.15 1.1 ... how much arsenic in old well?
# $ dist : num 16.8 47.3 21 21.5 40.9 ... distance (m) to nearest safe well
# $ assoc : int 0000111011... anyone in fam active in cmty?
# $ educ : int 00101214941000... education level of head of h'hold
```

Bangladesh Wells – Fitting a Simple Model I rescaled dist to make $\hat{\beta}_{dist}$

> attach(wells)	easier to read; in later analyses I will just use dist							
> dist100 <- dist/100								
> fit.3 <- glm (switch ~ dist100 + arsenic,								
<pre>+ family=binomial(link="logit"))</pre>								
<pre>> summary(fit.3)</pre>								
Coefficients:								
Estimate Std. Error z val	lue Pr(> z)							
(Intercept) 0.002749 0.079448 0.0	0.972							
dist100 (-0.89664) 0.104347 -8.5	593 <2e-16 ***							
arsenic 0.460775 0.041385 11.1	134 <2e-16 ***							
Signif. codes: 0 `***' 0.001 `**' 0.0	0.05							
Null deviance: 4118.1 on 3019 degrees of freedom								
Residual deviance: 3930.7 on 3017 degrees of freedom								
AIC: 3936.7								

Bangladesh Wells – Plotting P[switch] vs distance to safe well

```
jitter.binary <- function(a, jitt=.05){
    ifelse (a==0, runif (length(a), 0, jitt), runif (length(a), 1-
jitt, 1))
}</pre>
```

```
switch.jitter <- jitter.binary(switch)</pre>
```

```
plot(dist,switch.jitter,xlim=c(0,max(dist)),ylab="P[switch]")
curve (invlogit(cbind (1, x/100, .5) %*% coef(fit.3)), add=TRUE)
curve (invlogit(cbind (1, x/100, 1.0) %*% coef(fit.3)), add=TRUE)
text (50, .27, "if As = 0.5", adj=0, cex=.8)
text (75, .50, "if As = 1.0", adj=0, cex=.8)
```

(plot on next page)

Bangladesh Wells – Plotting P[switch] vs distance to safe well

Bangladesh Wells – Plotting P[switch] vs arsenic level of old well

plot(arsenic,switch.jitter,xlim=c(0,max(arsenic)),ylab="P[switch]")
curve (invlogit(cbind (1, 0/100, x) %*% coef(fit.3)), add=TRUE)
curve (invlogit(cbind (1, 50/100, x) %*% coef(fit.3)), add=TRUE)
text (1.5, .78, "if dist = 0", adj=0, cex=.8)
text (2.2, .6, "if dist = 50", adj=0, cex=.8)

Bangladesh Wells – Standard R Residual Plots

Assessing Residuals

- We can make the behavior of the residual vs fitted plot more like residuals in linear regression by binning the data
 - Make 10 or more bins of fitted values, and then average the residuals in each bin
- Library(arm) has the binnedplot() function to help create the plot (default # of bins: \sqrt{n})
 - Really need at least $n \ge 100$ and still not always useful
- Next lecture: DHARMa residuals based on the inverse probability transform (much more useful!)

Bangladesh – Binned Residuals

- Grey lines are 95% envelope
- If we believe inverted U-shape, could transform one or more x's
 - log(dist), log(arsenic)
 - □ dist + dist^2 ...

Binned residual plot

Not so useful for small samples (want $n \ge 100!$)

Comparing unbinned vs binned resids

> data <-

- read.table("wells.dat",
- + header=T)
- > glm.1 <- glm(switch ~
- + dist + arsenic,
- + data=data,
- + family=binomial)
- > par(mfrow=c(2,2))
- > plot(glm.1)
- > library(arm)
- # for binnedplot();
- # also brings in MASS
- # which has AIC(), BIC()
- > binnedplot(predict(glm.1),

+ resid(glm.1))

- > library(car)
- # for avPlots(),
- # mmps(), plot()
- # method for lasso...
- > mmps(glm.1)
- > avPlots(glm.1)
- # not very useful for
- # logistic regression!

Marginal model plots (mmps function) actually are useful for thinking about variable selection & transformation, but the "car" mmps function doesn't work for glms – see next slide!

Aside: problems with mmps(), fixed with mmplot()

- # install locfit (1)
- from CRAN #
- (2) install #
- # marginalmodelplots
- # from
- # marginalmodelplots 0.4.2.tar.gz
- library(marginalmodelplots) >
- mmplot(glm.1)

- > install.packages("locfit")
- > install.packages("marginalmodelplots 0.4.2.tar.gz", repos=NULL)

- > glm.2 <- glm(switch ~ dist + I(dist^2) + arsenic, + data=data, family=binomial)
- > glm.3 <- glm(switch ~ dist + arsenic +</pre>
- + I(arsenic^2), data=data, family=binomial)
- > glm.4 <- glm(switch ~ dist + I(dist^2) +</pre>
- + arsenic + I(arsenic^2), data=data, family=binomial)
- > glm.5 <- glm(switch ~ dist*arsenic, data=data, + family=binomial)
- > glm.5 <- glm(switch ~ dist+arsenic+dist:arsenic,</pre>
- + data=data, family=binomial)
- > glm.5 <- glm(switch ~ dist+arsenic+I(dist*arsenic), + data=data, family=binomial) # # All three ways of writing glm.5 specify exactly

the same model!

```
> anova(glm.1,glm.2,glm.3,glm.4,glm.5)
Analysis of Deviance Table
                                                        df
Model 1: switch ~ dist + arsenic
Model 2: switch ~ dist + I(dist^2) + arsenic
Model 3: switch ~ dist + arsenic
                  + I(arsenic^2)
Model 4: switch ~ dist + I(dist^2) + arsenic
                  + I(arsenic<sup>2</sup>)
Model 5: switch ~ dist + arsenic
                                                        df
                  + I(dist * arsenic)
  Resid. Df Resid. Dev Df Deviance
1
       3017
                3930.7
2
       3016 3930.1 1 0.5683
3
       3016 3911.4 0 18.7481
4
       3015 3911.0 1 0.3893
5
       3016
                3927.6 - 1 - 16.6659
> ## can't do LR tests, models not nested!
> anova(glm.1,glm.2,glm.3,glm.4,glm.5,
+ test="AIC")
Error in match.arg(test) :
  'arg' should be one of "Rao", "LRT",
  "Chisq", "F", "Cp"
> ## whoops, can't use R's anova() function
                                                  BIC 3954.71 3962.15 3943.40 3951.03 3959.68
> ## for these comparisons...
```

```
> AIC(glm.1,glm.2,glm.3,glm.4,glm.5)
             AIC
glm.1 3 3936.668
glm.2 4 3938.100
glm.3 4 3919.352
glm.4 5 3920.963
glm.5 4 3935.628
> BIC(glm.1,glm.2,glm.3,glm.4,glm.5)
              BIC
glm.1 3 3954.707
glm.2 4 3962.152
glm.3 4 3943.404
glm.4 5 3951.028
glm.5 4 3959.680
> ## and if we want to put them all together:
> check <- function(x)</pre>
+ { round(c(AIC=AIC(x),BIC=BIC(x)),2) }
> cbind(glm.1=check(glm.1),glm.2=check(glm.2),
+ glm.3=check(glm.3),glm.4=check(glm.4),
+ glm.5=check(glm.5))
      glm.1 glm.2 glm.3 glm.4
                                     alm.5
AIC 3936.67 3938.10 3919.35 3920.96 3935.63
```

```
> summary(glm.00<-glm(switch ~ poly(dist,2) * poly(arsenic,2),</pre>
data=data,family=binomial))
> ## shorthand for switch ~ dist + arsenic + I(dist^2) + I(arsenic^2) +
> ## I(dist*arsenic) + I(dist^2*arsenic) + I(dist*arsenic^2) + I(dist^2*arsenic^2)
                                                   SE z value Pr(>|z|)
                                       Est
                                   0.34633
                                              0.04083 8.482 < 2e-16 ***
(Int)
                                                                              These are
                                              2.68168 -7.958 1.75e-15 ***
poly(dist, 2)1
                                 -21.33994
                                                                              the same
poly(dist, 2)2
                                  -2.43042
                                              3.00617 -0.808
                                                                0.4188
                                                                              predictors as
                                              2.37766 10.974 < 2e-16 ***
poly(arsenic, 2)1
                                  26.09360
                                                                              glm.3
                                              2.31552 -5.046 4.51e-07 ***
poly(arsenic, 2)2
                                 -11.68443
                                -91.79873
poly(dist, 2)1:poly(arsenic, 2)1
                                           134.61008 -0.682 0.4953
                                                                0.5037
poly(dist, 2)2:poly(arsenic, 2)1
                                 109.52318
                                            163.80153 0.669
                                            148.07164 0.609
```

```
poly(dist, 2)2:poly(arsenic, 2)2 -327.07352
                                            197.60501
                                                       -1.655
                                                                0.0979 .
```

90.24115

```
> lasso.data <- glmnet(model.matrix(glm.00), data$switch, family="binomial")</pre>
```

```
> ## glmnet defaults to alpha=1 (lasso penalty)
```

```
> plot(lasso.data,"lambda",label=T,col=1:8)
```

poly(dist, 2)1:poly(arsenic, 2)2

> legend("bottomright", legend=dimnames(model.matrix(glm.00))[[2]][2:9], lty=1, col=1:8) > ## plot on next page...

0.5422

- A fairly stable part of the plot is around log(lambda)=-4
- The variables remaining here are
 - poly(dist,2) 1: dist
 - ploy(arsenic,2) 1: arsenic
 - poly(arsenic,2) 2: arsenic^2
 - i.e. glm.3 variables again...

> summary(glm.3) SE Est Ζ Pr(>|z|) (Intercept) -0.3190.107 -2.9930.00277 ** -0.0100.001 -9.079 < 2e-16 *** dist 0.879 0.101 8.717 < 2e-16 *** arsenic -4.765 1.89e-06 *** I(arsenic^2) -0.087 0.018

Illustrating glm.3...

This looks pretty good. At each fixed level of arsenic, the probability of switching wells decreases as the distance to the nearest "safe well" increases.

Illustrating glm.3...

> plot(arsenic,jitter(switch,factor=.25), + xlim=c(0,max(arsenic)),ylab="P[switch]") > curve (invlogit(cbind (1, 0, x, x^2) %*% coef(glm.3)), add=TRUE) > curve (invlogit(cbind (1, 50, x, x^2) %*% coef(glm.3)), add=TRUE) > text (1.5, .78, "if dist = 0", adj=0, cex=.8) > text (2.2, .6, "if dist = 50", adj=0, cex=.8) > detach(data)

This seems worrisome... it doesn't make sense that the probability of switching wells should go down as arsenic increases from 6 to 10.

It suggests that perhaps we should

- Drop the arsenic² term after all, or
- Look for arsenic^3, etc. to try to get the functional form right, or
- Talk to researchers to see if there is a substantive reason this makes sense afer all...

Summary

- Logistic Regression
- Interpreting the Coefficients
- Example: Extract from the Coleman Report
- Improving the Model
- Overfitting and Identifiability
- Effect of Dichotomization
- Assessing Residuals
- Example: Wells in Bangladesh
 - A simple model
 - Variable selection