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In the coming days…

◼ HW 04 due tonight at 11:59

◼ No Quiz next Monday

◼ Takehome Midterm will be out around 6pm

❑ Covers through Ch 7;   Due Wed Oct 5 at 11:59pm

❑ Open-book, open-notes, etc., but not open-people

◼ Do the work on your own, no collaborators

❑ In particular, no current or former MSP students or solutions

◼ Feel free to use web resources (incl stackexchange etc) but you 
ARE NOT ALLOWED to post questions or interact on the web

❑ Office hours (me or TA) or private Piazza questions are 
fine (ok to learn from my answers to other students)
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Outline
◼ Logistic Regression

◼ Interpreting the Coefficients

◼ Example: Extract from the Coleman Report

◼ Improving the Model

◼ Overfitting and Identifiability

◼ Effect of Dichotomization

◼ Assessing Residuals

◼ Example: Wells in Bangladesh

❑ A simple model

❑ Variable selection
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Logistic Regression

◼ Basic Setup

❑ y = 0 or 1, indicating some outcome of interest (passed 
test, responded to treatment, is a water well of type A 
rather than type B, switched brands of soap, etc.)

❑ x1, x2, …, xk are continuous or discrete predictor 
variables (income, SES, test score, mother’s IQ, 
amount of sulphur, parents divorced, etc.)

◼ We want to build a linear model to predict y 
from the x’s, just like linear regression
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Logistic Regression

◼ The linear regression model was

❑ Each yi has some mean µi = E[yi]

❑ Each µi has some linear structure

❑ There is a statistical distribution N( *, ¾2) that 
describes unmodeled variation around µi

◼ Obviously y = 0 or 1 cannot have a normal 
distribution, but we want the same structure!
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Logistic Regression

◼ By analogy with linear regression, we model as

◼ Since pi ² [0,1], we often use an S-shaped 
function to stretch pi out to the whole real line 
(so unrestricted linear modeling is possible)

◼ Some choices:
❑ Tangent function: 

❑ Probit function: 

❑ Logit function:
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Aside… S –shaped Functions

curve(tan(pi*(x-1/2)),xlab="p",ylab=expression(tan(pi*(p-1/2))))
curve(qnorm(x),xlab="p",ylab=expression({Phi^{-1}}(p)))
curve(log(x/(1-x)),xlab="p",ylab=expression(log(p/(1-p))))
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Logistic Regression
◼ The logistic regression model is:

◼ Two useful functions:

(sometimes invlogit known as “expit”…)

logit <- function (p) { log(p/(1-p)) }

invlogit <- function(x) {exp(x)/(1 + exp(x))}
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Interpreting the Coefficients

◼

◼ Difficult to predict effect 
of change from xi to xi + 1 
on pi because it depends 
on where pi (or xi) is!

◼ Maximum effect when

¯0 + ¯1 xi = 0; can show 
the effect is to change pi

by ¯1/4 

(“divide by 4” rule)
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change in xi depends on where
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Interpreting the Coefficients

◼

◼ Oi = pi/(1-pi) is the Odds

❑ If there is a 50-50 chance, pi=1/2, and so Oi = 1 (even 
odds)

❑ If pi = 1/3 then Oi =1/2, two-to-one odds against

❑ log Oi = log-odds (logit)

◼ Going from xi to xi+1 produces 
❑ An additive change of ¯1 in the log-odds

❑ A multiplicative change of e¯1 in the odds

❑ No matter where xi or pi are!
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◼ The log-odds (logit) form

has the same interpretation as before: a change 
from xj to xj + 1 produces a change of ¯j in the log 
odds (holding the other x’s fixed)

❑ Assumes xj can be manipulated w/o changing other x’s

Interpreting the Coefficients
◼ When there is more than one predictor

is useful for prediction, but difficult to interpret
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Digression: Odds Ratios
◼ If p1 and p2 are probabilities with odds O1 = p1/(1-p1) and 

O2 = p2/(1-p2) then OR12 = O1/O2 is the odds ratio

❑ If p1 = 2/3 and p2 = 1/3 then OR12 = 2/(1/2) = 4, so the odds of 
event 1 are 4 times the odds of event 2.

❑ log(OR12) is the log odds ratio

◼ Suppose 

then

◼ ¯j is the log-odds ratio for going from xj to xj + 1
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Example
◼ Mosteller & Tukey (1977) data on average verbal test 

scores for 6th graders at 20 mid-Atlantic schools taken from 
The Coleman Report:

◼ X1 = staff salaries per pupil; X2 = percent of fathers in white 
collar jobs; X3 = socioeconomic status; X4 = average verbal 
test scores for teachers at each school; X5 = (mothers’ 
years of schooling)/2; Z = mean verbal test scores for 
students at each school; and  Y = 1 if Z > 37 and Y = 0 if not

X1    X2     X3    X4   X5 Y     Z

1  3.83 28.87   7.20 26.60 6.19 1 37.01

2  2.89 20.10 -11.71 24.40 5.17 0 26.51

.

.

.

20 2.37 76.73  12.77 24.51 6.96 1 41.01
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Example, Cont’d
◼ We begin by fitting an additive (main effects 

only) logistic regression to the above data
> schools <- read.table("mosteller-tukey.txt")

> summary(fit0 <- glm(y ~ x1 + x2 + x3 +x4 +x5,data=schools,family=binomial))

Call:

glm(formula = y ~ x1 + x2 + x3 + x4 + x5, family = binomial,data = schools)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept)  -4.5635    33.1771  -0.138    0.891

x1            2.1346     3.3235   0.642    0.521

x2            0.1135     0.1592   0.713    0.476

x3            0.9789     0.8487   1.153    0.249

x4            2.0242     1.3251   1.528    0.127

x5          -10.0928     9.7992  -1.030    0.303

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.526  on 19  degrees of freedom

Residual deviance:  8.343  on 14  degrees of freedom

AIC: 20.343

No R2 but think of
this as a Â2 test

of fit…

(staff sal)

(% wht col)

(SES)

(tchr test) 

(mom yrs 

of school)
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Interpreting the Coefficients, Cont’d

◼ Reading off the coefficients table in the example,

❑ If we increase staff salaries per pupil by 1 unit, the 
model predicts an increase in log-odds of a successful 
school of 2.13;

❑ If we increase the percent of fathers in white collar 
jobs by one unit, the model predicts an increase in log-
odds of a successful school increase by 0.11; etc.

❑ This assumes we can manipulate xj, and can do so 
without affecting the other xj’s! 
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Interpreting the Coefficients, Cont’d
◼ When ¯j is (insignificantly different from) zero, we can infer that y 

and xj are independent, conditional on the other x’s in the model

◼ In our example, none of the coefficients are significantly different 
from zero! Same sorts of suspects as with ordinary linear 
regression:

❑ Small sample size—only 20 observations

❑ Collinearity in the x’s—indeed:

> vif(fit0)

x1        x2        x3        x4        x5 

1.749053 22.382765 22.795807  2.111019 55.066313 

> X <- model.matrix(fit0)

> cor(X[,-1])

x1         x2        x3         x4        x5

x1 1.0000000 0.18113980 0.2296278 0.50266385 0.1967731

x2 0.1811398 1.00000000 0.8271829 0.05105812 0.9271008

x3 0.2296278 0.82718291 1.0000000 0.18332924 0.8190633

x4 0.5026638 0.05105812 0.1833292 1.00000000 0.1238087

x5 0.1967731 0.92710081 0.8190633 0.12380866 1.0000000



Null & Residual Deviance
◼ At the end of glm summary you will see

◼ Let D0(M) = -2log(likelihoodM), and let

❑ S = “saturated” model that perfectly fits data

❑ M = model fitted by glm

❑ M0 = the intercept only model

◼ Null Deviance:         DNull = D0(M0) – D0(S); 
Null df:                            dfNull = df(S) – df(M0)

◼ Residual Deviance: DRes = D0(M) – D0(S); 
Residual df:                    dfRes = df(S) – df(M)

1810/3/2022

Null deviance: 27.526  on 19  degrees of freedom

Residual deviance:  8.343  on 14  degrees of freedom

AIC: 20.343

S

M

M0

DNull

DRes



Null & Residual Deviance (cont’d)

◼ This gives rise to two likelihood ratio 
Chi-squared tests:

◼ H0: M (fitted model) vs. HA: S (saturated model)

❑ Under H0, DRes ~ Chi-squared on dfRes

❑ 8.343  on 14  df: Don’t reject H0; fitted model OK

◼ H0: M0 (intcpt-only) vs. HA: M (fitted model)

❑ Under H0, DNull – DRes ~ Chi-squared on dfNull – dfRes

❑ 27.526 – 8.343 = 19.183 on 19 – 14 = 5 df: Reject H0;
fitted model better than intercept-only

1910/3/2022
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Improving the Model

◼ Improving logistic regression models is like improving 
linear regression models

❑ Add variables and interactions that make sense

❑ Add variables and interactions if they greatly increase R2, or if 
they improve residuals, etc.

❑ Transform X variables to reduce leverate and/or improve 
interpretation (functional form, etc.)

◼ Unlike lm(), glm() does not report R2.  Instead it reports 
AIC:

❑ AIC = -2*log(likelihood) + 2*(df)                 [small is good]

❑ Like a likelihood ratio test, but penalized for the complexity of 
the model (df = number of regression coefficients)
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Improving the Model

◼ stepAIC() in library(MASS) will search through a 
set of models, minimizing AIC.
> library(MASS)

> basemodel <- glm(y  ̃x1 + x2 + x3 +x4 + x5 ,

+  data=schools,family=binomial)

> fit1 <- eval(stepAIC(basemodel, scope=list(lower=. ̃1,

+ upper=. ̃x1 + x2 + x3 +x4 + x5,k=2))$call)

> anova(fit1,fit0,test="Chisq")

Analysis of Deviance Table

Model 1: y  ̃x3 + x4

Model 2: y  ̃x1 + x2 + x3 + x4 + x5

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1           17    10.1414

2           14     8.3429  3   1.7984   0.6153

> summary(fit1)$coef

Estimate Std. Error   z value   Pr(>|z|)

(Intercept) -41.8188263 24.5239239 -1.705226 0.08815233

x3            0.3646223  0.1798581  2.027277 0.04263408

x4            1.5614704  0.9427877  1.656227 0.09767586

Chi-squared test

finds no evidence 

against smaller model

ses

tchr sco



2210/3/2022

Improving the Model
◼ If we try to expand the model to consider 

interactions of all orders, something interesting 
happens:

> fit2 <- eval(stepAIC(basemodel,

+ scope=list(lower=.~ 1,

+ upper=.~(x1 + x2 + x3 +x4 + x5)^5,k=2))$call)

y ~ x3 + x4 + x5 + x4:x5

Df Deviance    AIC

<none>       0.0000 10.000

+ x3:x5  1   0.0000 12.000

+ x3:x4  1   0.0000 12.000

+ x1     1   0.0000 12.000

+ x2     1   0.0000 12.000

- x3     1   9.2741 17.274

- x4:x5  1   9.2821 17.282

There were 50 or more warnings 

(use warnings() to see the first 50)

> warnings()

Warning messages:

1: glm.fit: fitted probabilities 

numerically 0 or 1 occurred

2: glm.fit: algorithm did not converge

3: glm.fit: fitted probabilities 

numerically 0 or 1 occurred

4: glm.fit: algorithm did not converge

5: glm.fit: fitted probabilities 

numerically 0 or 1 occurred
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Overfitting and Identifiability

◼ Comparing fitted(fit2) to the actual y’s you will 
see that they agree closely:

◼ log pi/(1-pi) can’t be evaluated accurately when p 
¼ 0 or 1.  Estimates of the regression coefficients 
can go haywire too.

> y - fitted(fit2)

1             2             3             4             5 

2.220446e-16 -2.220446e-16 -2.712309e-09  1.053467e-09  2.171825e-10 

6             7             8             9            10 

-2.220446e-16  2.220446e-16 -2.220446e-16  6.313647e-10  2.220446e-16 

11            12            13            14            15 

-2.220446e-16 -2.220446e-16 -2.220446e-16 -2.220446e-16 -2.220446e-16 

16            17            18            19            20 

2.220446e-16 -2.220446e-16 -2.220446e-16  1.574083e-09  2.220446e-16 
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The Effect of Dichotomization
◼ Finally we recall that y is a dichotomized version of z: y = 1 if z > 37; 

otherwise y = 0

◼ Even though the stepwise procedure had access to interactions of all 
orders, x1 was not in the final (logistic) model for y.

◼ This suggests that  x1  was more useful for predicting the more 
complex response z than for predicting the simpler response y 
(dichotomized z).
❑ We should dichotomize with care, and then only if the substantive 

question requires it.
❑ Dichotomization always changes the information in the data.
❑ If you must dichotomize, I’d suggest doing a sensitivity analysis (try 

different dichotomizations and see how that affects the results).

> basemodel <- lm(z  ̃x1 + x2 + x3 +x4 + x5 ,data=schools)

> norm1 <- eval(stepAIC(basemodel,

scope=list(lower=. ̃1,

upper=.(̃x1 + x2 + x3 +x4 + x5)ˆ5),

k=2)$call) # k=2 for AIC

> norm1$call

lm(formula = z  ̃x1 + x3 + x4, data = schools)
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Assessing Residuals

par(mfrow=c(2,2))

plot(fit0,

add.smooth=F)

◼ Residual plots for logistic 
regression usually look 
terrible!

◼ Fit is pretty good:

❑ Resid deviance = 8.3

❑ Good fit: 𝑃 𝜒14
2 > 8.34

= pchisq(8.3,14,lower=F) = 0.87
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Final Example: Wells in Bangladesh
◼ Researchers classified wells as “safe” or “contaminated with 

arsenic” and collected data on families using the wells. They 
encouraged those with unsafe wells to switch to safe wells (a 
neighbor’s well, a community well,  or a new well).

◼ Several years later they came back to see who switched.

> wells <- read.table("wells.dat“)

> str(wells)

#'data.frame':   3020 obs. of  5 variables:

# $ switch : int  1 1 0 1 1 1 1 1 1 1 ...            did the family switch wells?

# $ arsenic: num  2.36 0.71 2.07 1.15 1.1 ... how much arsenic in old well?

# $ dist   : num  16.8 47.3 21 21.5 40.9 ...   distance (m) to nearest safe well

# $ assoc  : int  0 0 0 0 1 1 1 0 1 1 ...             anyone in fam active in cmty?

# $ educ   : int  0 0 10 12 14 9 4 10 0 0 ...    education level of head of h'hold
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Bangladesh Wells – Fitting a Simple 
Model

> attach(wells)

> dist100 <- dist/100

> fit.3 <- glm (switch ~ dist100 + arsenic, 

+    family=binomial(link="logit"))

> summary(fit.3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.002749   0.079448   0.035    0.972    

dist100     -0.896644   0.104347  -8.593   <2e-16 ***

arsenic      0.460775   0.041385  11.134   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Null deviance: 4118.1  on 3019  degrees of freedom

Residual deviance: 3930.7  on 3017  degrees of freedom

AIC: 3936.7

I rescaled dist to make ෠𝛽𝑑𝑖𝑠𝑡
easier to read; in later 

analyses I will just use dist…
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Bangladesh Wells – Plotting P[switch] vs 
distance to safe well

jitter.binary <- function(a, jitt=.05){

ifelse (a==0, runif (length(a), 0, jitt), runif (length(a), 1-

jitt, 1))

}

switch.jitter <- jitter.binary(switch)

plot(dist,switch.jitter,xlim=c(0,max(dist)),ylab="P[switch]")

curve (invlogit(cbind (1, x/100, .5) %*% coef(fit.3)), add=TRUE)

curve (invlogit(cbind (1, x/100, 1.0) %*% coef(fit.3)), add=TRUE)

text (50, .27, "if As = 0.5", adj=0, cex=.8)

text (75, .50, "if As = 1.0", adj=0, cex=.8)

(plot on next page)
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Bangladesh Wells – Plotting P[switch] vs 
distance to safe well
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Bangladesh Wells – Plotting P[switch] vs 
arsenic level of old well

plot(arsenic,switch.jitter,xlim=c(0,max(arsenic)),ylab="P[switch]")

curve (invlogit(cbind (1, 0/100,  x) %*% coef(fit.3)), add=TRUE)

curve (invlogit(cbind (1, 50/100, x) %*% coef(fit.3)), add=TRUE)

text (1.5, .78, "if dist = 0", adj=0, cex=.8)

text (2.2, .6, "if dist = 50", adj=0, cex=.8)
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Bangladesh Wells – Standard R Residual 
Plots 
par(mfrow=c(2,2))

plot(fit.3)
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Assessing Residuals

◼ We can make the behavior of the residual vs 
fitted plot more like residuals in linear regression 
by binning the data

❑ Make 10 or more bins of fitted values, and then 
average the residuals in each bin

◼ Library(arm) has the binnedplot() function to help 
create the plot (default # of bins: 𝑛)

❑ Really need at least 𝑛 ≥ 100 and still not always useful

◼ Next lecture: DHARMa residuals based on the 
inverse probability transform (much more useful!)
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Bangladesh – Binned Residuals

Library(arm)

par(mfrow=c(1,1))

x <- predict(fit.3)

y <- resid(fit.3)

binnedplot(x,y)
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◼ Grey lines are 95% envelope
◼ If we believe inverted U-shape, 

could transform one or more x’s
❑ log(dist), log(arsenic)
❑ dist + dist^2  …



Comparing unbinned vs binned resids
> data <-

read.table("wells.dat",

+  header=T)

> glm.1 <- glm(switch ~ 

+ dist + arsenic,

+ data=data,

+ family=binomial)

> par(mfrow=c(2,2))

> plot(glm.1)

> library(arm) 

# for binnedplot(); 

# also brings in MASS

# which has AIC(), BIC()

> binnedplot(predict(glm.1),

+ resid(glm.1))
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Variable Selection for Arsenic Data…

> library(car) 

# for avPlots(),

# mmps(), plot()

# method for lasso...

> mmps(glm.1)

> avPlots(glm.1) 

# not very useful for

# logistic regression!

3510/3/2022

Marginal model plots (mmps function) 

actually are useful for thinking about 

variable selection & transformation, but 

the “car” mmps function doesn’t work for 

glms – see next slide!



Aside: problems with mmps(), fixed 
with mmplot()
# (1) install locfit

# from CRAN

# (2) install

# marginalmodelplots

# from

#  marginalmodelplots_0.4.2.tar.gz

> library(marginalmodelplots)

> mmplot(glm.1)

3610/3/2022

> # download marginalmodelplots_0.4.2.tar.gz

> # from canvas

> install.packages(“locfit”)

> install.packages(“marginalmodelplots_0.4.2.tar.gz”, repos=NULL)



Variable Selection for Arsenic Data…
> glm.2 <- glm(switch ~ dist + I(dist^2) + arsenic, 

+ data=data, family=binomial)

> glm.3 <- glm(switch ~ dist + arsenic +

+ I(arsenic^2), data=data, family=binomial)

> glm.4 <- glm(switch ~ dist + I(dist^2) + 

+ arsenic + I(arsenic^2), data=data, family=binomial)

> glm.5 <- glm(switch ~ dist*arsenic, data=data,

+ family=binomial)

> glm.5 <- glm(switch ~ dist+arsenic+dist:arsenic,

+ data=data, family=binomial)

> glm.5 <- glm(switch ~ dist+arsenic+I(dist*arsenic),

+ data=data, family=binomial) 

#

# All three ways of writing glm.5 specify exactly 

# the same model!
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Variable Selection for Arsenic Data…
> anova(glm.1,glm.2,glm.3,glm.4,glm.5)

Analysis of Deviance Table

Model 1: switch ~ dist + arsenic

Model 2: switch ~ dist + I(dist^2) + arsenic

Model 3: switch ~ dist + arsenic       

+ I(arsenic^2)

Model 4: switch ~ dist + I(dist^2) + arsenic

+ I(arsenic^2)

Model 5: switch ~ dist + arsenic 

+ I(dist * arsenic)

Resid. Df Resid. Dev Df Deviance

1      3017     3930.7            

2      3016     3930.1  1   0.5683

3      3016     3911.4  0  18.7481

4      3015     3911.0  1   0.3893

5      3016     3927.6 -1 -16.6659

> ## can't do LR tests, models not nested!

> anova(glm.1,glm.2,glm.3,glm.4,glm.5,

+ test="AIC")

Error in match.arg(test) : 

'arg' should be one of “Rao”, “LRT”,

“Chisq”, “F”, “Cp”

> ## whoops, can’t use R’s anova() function

> ## for these comparisons...

> AIC(glm.1,glm.2,glm.3,glm.4,glm.5)

df      AIC

glm.1  3 3936.668

glm.2  4 3938.100

glm.3  4 3919.352

glm.4  5 3920.963

glm.5  4 3935.628

> BIC(glm.1,glm.2,glm.3,glm.4,glm.5)

df      BIC

glm.1  3 3954.707

glm.2  4 3962.152

glm.3  4 3943.404

glm.4  5 3951.028

glm.5  4 3959.680

> ## and if we want to put them all together:

> check <- function(x)

+ { round(c(AIC=AIC(x),BIC=BIC(x)),2) }

> cbind(glm.1=check(glm.1),glm.2=check(glm.2), 

+ glm.3=check(glm.3),glm.4=check(glm.4),

+ glm.5=check(glm.5))

glm.1   glm.2   glm.3   glm.4   glm.5

AIC 3936.67 3938.10 3919.35 3920.96 3935.63

BIC 3954.71 3962.15 3943.40 3951.03 3959.68
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Variable Selection for Arsenic Data…

> summary(glm.00<-glm(switch ~ poly(dist,2) * poly(arsenic,2), 

data=data,family=binomial))

> ## shorthand for switch ~ dist + arsenic + I(dist^2) + I(arsenic^2) +

> ## I(dist*arsenic) + I(dist^2*arsenic) + I(dist*arsenic^2) + I(dist^2*arsenic^2)

Est         SE z value Pr(>|z|)    

(Int)                               0.34633    0.04083   8.482  < 2e-16 ***

poly(dist, 2)1                    -21.33994    2.68168  -7.958 1.75e-15 ***

poly(dist, 2)2                     -2.43042    3.00617  -0.808   0.4188    

poly(arsenic, 2)1                  26.09360    2.37766  10.974  < 2e-16 ***

poly(arsenic, 2)2                 -11.68443    2.31552  -5.046 4.51e-07 ***

poly(dist, 2)1:poly(arsenic, 2)1  -91.79873  134.61008  -0.682   0.4953    

poly(dist, 2)2:poly(arsenic, 2)1  109.52318  163.80153   0.669   0.5037    

poly(dist, 2)1:poly(arsenic, 2)2   90.24115  148.07164   0.609   0.5422    

poly(dist, 2)2:poly(arsenic, 2)2 -327.07352  197.60501  -1.655   0.0979 .  

> lasso.data <- glmnet(model.matrix(glm.00),data$switch,family="binomial")

> ## glmnet defaults to alpha=1 (lasso penalty)

> plot(lasso.data,"lambda",label=T,col=1:8)

> legend("bottomright",legend=dimnames(model.matrix(glm.00))[[2]][2:9],lty=1,col=1:8)

> ## plot on next page...
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These are 

the same 

predictors as 

glm.3



Variable Selection for Arsenic Data…
◼ A fairly stable part of the plot is 

around log(lambda)=-4

◼ The variables remaining here 
are
❑ poly(dist,2) 1: dist

❑ ploy(arsenic,2) 1: arsenic

❑ poly(arsenic,2) 2: arsenic^2

i.e. glm.3 variables again…
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◼ We haven’t tried “assoc” or 
“educ” yet, but let’s see what 
the model is telling us…

> summary(glm.3)

Est      SE   z     Pr(>|z|)    

(Intercept)  -0.319   0.107  -2.993  0.00277 ** 

dist         -0.010   0.001  -9.079  < 2e-16 ***

arsenic       0.879   0.101   8.717  < 2e-16 ***

I(arsenic^2) -0.087   0.018  -4.765 1.89e-06 ***



Illustrating glm.3…
attach(data)

plot(dist,jitter(switch,factor=.25),

xlim=c(0,max(dist)),ylab="P[switch]")

curve (invlogit(cbind (1, x, 0.5, 0.5^2) %*% coef(glm.3)), add=TRUE)

curve (invlogit(cbind (1, x, 1.0, 1.0^2) %*% coef(glm.3)), add=TRUE)

text (50, .27, "if As = 0.5", adj=0, cex=.8)

text (75, .50, "if As = 1.0", adj=0, cex=.8)
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This looks pretty good.  

At each fixed level of 

arsenic, the probability 

of switching wells 

decreases as the 

distance to the nearest 

“safe well” increases.



Illustrating glm.3…
> plot(arsenic,jitter(switch,factor=.25),

+      xlim=c(0,max(arsenic)),ylab="P[switch]")

> curve (invlogit(cbind (1, 0,  x, x^2) %*% coef(glm.3)), add=TRUE)

> curve (invlogit(cbind (1, 50, x, x^2) %*% coef(glm.3)), add=TRUE)

> text (1.5, .78, "if dist = 0", adj=0, cex=.8)

> text (2.2, .6, "if dist = 50", adj=0, cex=.8)

> detach(data)
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This seems worrisome… it 

doesn’t make sense that the 

probability of switching wells 

should go down as arsenic 

increases from 6 to 10. 

It suggests that perhaps we 

should 

• Drop the arsenic^2 term 

after all, or

• Look for arsenic^3, etc. to 

try to get the functional form 

right, or

• Talk to researchers to see if 

there is a substantive 

reason this makes sense 

afer all…
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Summary
◼ Logistic Regression

◼ Interpreting the Coefficients

◼ Example: Extract from the Coleman Report

◼ Improving the Model

◼ Overfitting and Identifiability

◼ Effect of Dichotomization

◼ Assessing Residuals

◼ Example: Wells in Bangladesh

❑ A simple model

❑ Variable selection


