12/2/2019 Motivation

## Note that, since v0.1.6.2, DHARMa includes support for glmm

Motivation

Residual interpretation for generalized linear mixed models (GLMMs) is often
problematic. As an example, here two Poisson GLMMs, one that is lacking a
quadratic effect, and one that fits the data perfectly. | show three standard
residuals diagnostics each. Which is the misspecified model?

Conventional residual plots
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Just for completeness - it was the first one. But don't get too excited if you got
it right. Either you were lucky, or you noted that the first model seems a bit
overdispersed (range of the Pearson residuals). But even when noting that,
would you have added a quadratic effect, instead of adding an overdispersion
correction? The point here is that misspecifications in GL(M)Ms cannot reliably
be diagnosed with standard residual plots, and GLMMs are thus often not as
thoroughly checked as LMs.

One reason why GL(M)Ms residuals are harder to interpret is that the
expected distribution of the data changes with the fitted values. Reweighting
with the expected variance, as done in Pearson residuals, or using deviance
residuals, helps a bit, but does not lead to visually homogenous residuals even
if the model is correctly specified. As a result, standard residual plots, when
interpreted in the same way as for linear models, seem to show all kind of
problems, such as non-normality, heteroscedasticity, even if the model is
correctly specified. Questions on the R mailing lists and forums show that
practitioners are regularly confused about whether such patterns in GL(M)M
residuals are a problem or not.

But even experienced statistical analysts currently have few options to
diagnose misspecification problems in GLMMs. In my experience, the current
standard practice is to eyeball the residual plots for major misspecifications,
potentially have a look at the random effect distribution, and then run a test for
overdispersion, which is usually positive, after which the model is modified
towards an overdispersed / zero-inflated distribution. This approach, however,
has a number of problems, notably:

o Overdispersion often comes from missing or misspecified predictors.
Standard residual plots make it difficult to test for residual patterns
against the predictors to check for candidates.

» Not all overdispersion is the same. For count data, the negative binomial
creates a different distribution than adding observation-level random
effects to the Poisson. Once overdispersion is corrected, such violations
of distributional assumptions are not detectable with standard
overdispersion tests (because the tests only looks at total dispersion),
and nearly impossible to see visually from standard residual plots.

 Dispersion frequently varies with predictors (heteroscedasticity). This can
have a significant effect on the inference. While it is standard to tests for
heteroscedasticity in linear regressions, heteroscedasticity is currently
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hardly ever tested for in GLMMSs, although it is likely as frequent and
influential.

o Moreover, if residuals are checked, they are usually checked conditional
on the fitted random effect estimates. Thus, standard checks only check
the final level of the random structure in a GLMM. One can perform extra
checks on the random effects, but it is somewhat unsatisfactory that
there is no check on the entire model structure.

DHARMa aims at solving these problems by creating readily interpretable
residuals for generalized linear (mixed) models that are standardized to values
between 0 and 1, and that can be interpreted as intuitively as residuals for the
linear model. This is achieved by a simulation-based approach, similar to the
Bayesian p-value or the parametric bootstrap, that transforms the residuals to
a standardized scale. The basic steps are:

1. Simulate new data from the fitted model for each observation.

2. For each observation, calculate the empirical cumulative density function
for the simulated observations, which describes the possible values (and
their probability) at the predictor combination of the observed value,
assuming the fitted model is correct.

3. The residual is then defined as the value of the empirical density function
at the value of the observed data, so a residual of 0 means that all
simulated values are larger than the observed value, and a residual of
0.5 means half of the simulated values are larger than the observed
value.

These steps are visualized in the following figure
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Scaled residual for
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The key idea for this definition is that, if the model is correctly specified, then
the observed data should look like as if it was created from the fitted model.
Hence, for a correctly specified model, all values of the cumulative distribution
should appear with equal probability. That means we expect the distribution of
the residuals to be flat, regardless of the model structure (Poisson, binomial,
random effects and so on).

| currently prepare a more exact statistical justification for the approach in an
accompanying paper, but if you must provide a reference in the meantime |
would suggest citing

e Dunn, K. P., and Smyth, G. K. (1996). Randomized quantile residuals.
Journal of Computational and Graphical Statistics 5, 1-10.

e Gelman, A. & Hill, J. Data analysis using regression and
multilevel/hierarchical models Cambridge University Press, 2006

p.s.: DHARMa stands for “Diagnostics for HierArchical Regression Models” —
which, strictly speaking, would make DHARM. But in German, Darm means
intestines; plus, the meaning of DHARMa in Hinduism makes the current
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abbreviation so much more suitable for a package that tests whether your
model is in harmony with your data:

From Wikipedia, 28/08/16: In Hinduism, dharma signifies behaviours that
are considered to be in accord with rta, the order that makes life and
universe possible, and includes duties, rights, laws, conduct, virtues and
“right way of living”.

Workflow in DHARMa

I " I : "
pnasgﬂabneg’ oading and citing the

If you haven't installed the package yet, either run

install.packages ("DHARMa")

Or follow the instructions on https://github.com/florianhartig/DHARMa to install
a development version.

Loading and citation

Tibrary (DHARMa)
citation("DHARMa")
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##

## To cite package 'DHARMa' 1in publications use:

##

##  Florian Hartig (2018). DHARMa: Residual Diagnostics for
## Hierarchical (Multi-Level / Mixed) Regression Models. R p
##  version 0.2.0. http://florianhartig.github.io/DHARMa/

##

## A BibTeX entry for LaTeX users is

##

##  @vanual{,

## title = {DHARMa: Residual Diagnostics for Hierarchical
## author = {Florian Hartig},

## year = {2018},

## note = {R package version 0.2.0},

## url = {http://florianhartig.github.io/DHARMa/},

## }

Calculating scaled residuals

The scaled (quantile) residuals are calculated with the simulateResiduals()
function. The default number of simulations to run is 250, which proved to be a
reasonable compromise between computation time and precision, but if high
precision is desired, n should be raised to 1000 at least.

simulationOutput <- simulateResiduals(fittedModel = fittedMode

What the function does is a) creating n new synthetic datasets by simulating
from the fitted model, b) calculates the cumulative distribution of simulated
values for each observed value, and c) returning the quantile value that
corresponds to the observed value.

For example, a scaled residual value of 0.5 means that half of the simulated
data are higher than the observed value, and half of them lower. A value of

0.99 would mean that nearly all simulated data are lower than the observed
value. The minimum/maximum values for the residuals are 0 and 1.
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The calculated residuals are stored in

simulationoutput$scaledResiduals

As discussed above, for a correctly specified model we would expect
» a uniform (flat) distribution of the overall residuals
 uniformity in y direction if we plot against any predictor.

Note: the expected uniform distribution is the only differences to the linear
regression that one has to keep in mind when interpreting DHARMa residuals.
If you cannot get used to this and you must have residuals that behave exactly
like a linear regression, you can access a normal transformation of the
residuals via

simulationoutput$scaledrResidualsNormal

These normal residuals will behave exactly like the residuals of a linear
regression. However, for reasons of a) numeric stability with low number of
simulations and b) my conviction that it is much easier to visually detect
deviations from uniformity than normality, | would STRONGLY advice against
using this transformation.

Plotting the scaled residuals

We can get a visual impression of these properties with the plot. DHARMa()
function

plot(simulationOutput)
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DHARMa scaled residual plots
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which creates a qg-plot to detect overall deviations from the expected
distribution, and a plot of the residuals against the predicted value.

To provide a visual aid in detecting deviations from uniformity in y-direction, the
plot of the residuals against the predicted values also performs an (optional)
quantile regression, which provides 0.25, 0.5 and 0.75 quantile lines across
the plots. These lines should be straight, horizontal, and at y-values of 0.25,
0.5 and 0.75. Note, however, that some deviations from this are to be
expected by chance, even for a perfect model, especially if the sample size is
small.

The quantile regression can be very slow for large datasets. You can chose to
use a simpler method with the option quantreg = F.

If you want to plot the residuals against other predictors (highly recommend),
you can use the function

plotResiduals (YOURPREDICTOR, simulationoutput$scaledResiduals)

which does the same quantile plot as the main plotting function.

F I -of-fit test th
EorTng Agefinggs-of it tests on the
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To support the visual inspection of the residuals, the DHARMa package
provides a number of specialized goodness-of-fit tests on the simulated
residuals. For example, the function

testUniformity(simulationOutput = simulationOutput)

QQ plot residuals
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##

## One-sample Kolmogorov-Smirnov test

##

## data: simulationoutput$scaledResiduals
## D = 0.052, p-value = 0.5085

## alternative hypothesis: two-sided

runs a KS test to test for overall uniformity of the residuals. There are a
number of further tests

testOverdispersion()
testZeroinflation()
testTemporalAutocorrelation()
testSpatialAutocorrelation()

that basically do what they say. See the help of the functions and further
comments below for a more detailed description.
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Simulation options

There are a few important technical details regarding how the simulations are
performed, in particular regarding the treatments of random effects and integer
responses. | would therefore strongly recommend to read the help of

?simulateResiduals

The short summary is this: apart from the number of simulations, there are
three important options in the simulateResiduals function

Refit

simulationOutput <- simulateResiduals(fittedModel = fittedMode

o if refit = F (default), new data is simulated from the fitted model, and
residuals are calculated by comparing the observed data to the new data

o if refit = T, a parametric bootstrap is performed, meaning that the model
is refit to the new data, and residuals are created by comparing observed
residuals against refitted residuals

The second option is much much slower, and also seemed to have lower
power in some tests | ran. It is therefore not recommended for standard
residual diagnostics! | only recommend using it in two situations

1. For running tests that rely on comparing observed to simulated residuals,
e.g. the testOverdispersion function (see below),

2. Or, and this was my original motivation for introducing this option, if one
expects that the tested model is biased. A bias could, for example, arise
in small data situations, or when estimating models with shrinkage
estimators that include a purposeful bias, such as ridge/lasso, random
effects or the splines in GAMs. My idea was then that simulated data
would not fit to the observations, but that residuals for model fits on
simulated data would have the same patterns/bias than model fits on the
observed data.
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Note also that refit = T can sometimes run into numerical problems, if the fitted
model does not converge on the newly simulated data.

Random effect simulations

The second option is the treatment of the stochastic hierarchy. In a hierarchical
model, several layers of stochasticity are placed on top of each other.
Specifically, in a GLMM, we have a lower level stochastic process (random
effect), whose result enters into a higher level (e.g. Poisson distribution). For
other hierarchical models, such as state-space models, similar considerations
apply, but the hierarchy can be more complex. When simulating, we have to
decide if we want to re-simulate all stochastic levels, or only a subset of those.
For example, in a GLMM, it is common to only simulate the last stochastic
level (e.g. Poisson) conditional on the fitted random effects, meaning that the
random effects are set on the fitted values.

For controlling how many levels should be re-simulated, the simulateResidual
function allows to pass on parameters to the simulate function of the fitted
model object. Please refer to the help of the different simulate functions (e.g. ?
simulate.merMod) for details. For merMod (Ime4) model objects, the relevant
parameters are “use.u”, and “re.form”, as, e.g., in

simulationOutput <- simulateResiduals(fittedModel = fittedMode

If the model is correctly specified and the fitting procedure is unbiased
(disclaimer: GLMM estimators are not always unbiased), the simulated
residuals should be flat regardless how many hierarchical levels we re-
simulate. The most thorough procedure would be therefore to test all possible
options. If testing only one option, | would recommend to re-simulate all levels,
because this essentially tests the model structure as a whole. This is the
default setting in the DHARMa package. A potential drawback is that re-
simulating the random effects creates more variability, which may reduce
power for detecting problems in the upper-level stochastic processes.

Integer treatment / randomization
A third option is the treatment of integer responses. The background of this

option is that, for integer-valued variables, some additional steps are
neccessary to make sure that the residual distribution becomes flat
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(essentially, we have to smoothen away the integer nature of the data). The
idea is explained in

e Dunn, K. P.,, and Smyth, G. K. (1996). Randomized quantile residuals.
Journal of Computational and Graphical Statistics 5, 1-10.

The simulateResiduals function will automatically check if the family is integer
valued, and apply randomization if that is the case. | see no reason why one
would not want to randomize for an integer-valued function, so the parameter
should usually not be changed.

Calculating residuals per group

In many situations, it can be useful to look at residuals per group, e.g. to see
how much the model over / underpredicts per plot, year or subject. To do this,
use the recalculateResiduals() function, together with a grouping variable

simulationoutput = recalculateResiduals(simulationOutput, grou

you can keep using the simulation output as before. Note, hover, that items
such as simulationOutput$scaledResiduals now have as many entries as you
have groups, so if you perform plots by hand, you have to aggregate
predictors in the same way. For the latter purpose, recalculateResiduals adds
a function aggregateByGroup to the output.

Reproducibility notes, random seed and random state

As DHARMa uses simulations to calculate the residuals, a naive
implementation of the algorithm would mean that residuals would look slightly
different each time a DHARMa calculation is executed. This might only be
confusing to a user, but it also bears the danger that one might run the
simulation several times and take the result that looks better (which would
amount to multiple testing / p-hacking).

By default, DHARMa therefore fixes the random seed to the same value every
time a simulation is run, and afterwards restores the random state to the old
value. This means that you will get exactly the same residual plot each time. If
you want to avoid this behavior, for example for simulation experiments on
DHARMa, use seed = NULL -> no seed set, but random state will be restored,
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or seed = F -> no seed set, and random state will not be restored. \Whether or
not you fix the seed, the setting for the random seed and the random state are
stored in

simulationOoutput$randomState

If you want to reproduce simualtions for such a run, set the variable
.Random.seed by hand, and simulate with seed = NULL.

Moreover (general advice), to ensure reproducibility, it's advisable to add a
set.seed() at the beginning, and a session.info() at the end of your script. The
latter will lists the version number of R and all loaded packages.

Visual diagnasticsngigets of

In all plots / tests that were shown so far, the model was correctly specified,
resulting in “perfect” residual plots. In this section, we discuss how to
recognize and interpret model misspecifications in the scaled residuals.

Overdispersion / underdispersion

The most common concern for GLMMs is overdispersion, underdispersion and
zero-inflation.

Over/underdispersion refers to the phenomenon that residual variance is
larger/smaller than expected under the fitted model. Over/underdispersion can
appear for any distributional family with fixed variance, in particular for Poisson
and binomial models.

A few general rules of thumb

» You can detect overdispersion / zero-inflation only AFTER fitting the
model

e Overdispersion is more common than underdispersion

« If overdispersion is present, confidence intervals tend to be too narrow,
and p-values to small. The opposite is true for underdispersion

o A common reason for overdispersion is a misspecified model. When
overdispersion is detected, one should therefore first search for problems
in the model specification (e.g. by plotting residuals against predictors
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with DHARMa), and only if this doesn't lead to success, overdispersion
corrections such as individual-level random effects or changes in the
distribution should be applied

An example of overdispersion

This this is how overdispersion looks like in the DHARMa residuals

testData = createbata(sampleSize = 500, overdispersion = 2, fa
fittedModel <- glmer(observedResponse ~ Environmentl + (1l|grou

simulationOutput <- simulateResiduals(fittedModel = fittedMode
plot(simulationOutput)

DHARMa scaled residual plots

Residual vs. predicted
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Note that we get more residuals around 0 and 1, which means that more
residuals are in the tail of distribution than would be expected under the fitted
model.

An example of underdispersion

This is an example of underdispersion
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testData = createData(sampleSize = 500, intercept=0, fixedEffe
fittedModel <- glmer(observedResponse ~ Environmentl + (1|grou

summary (fittedModel)

## Generalized Tinear mixed model fit by maximum 1ikelihood (L
##  Approximation) [glmerMod]

## Family: poisson ( Tlog )

## Formula: observedResponse ~ Environmentl + (1 | group)
## Data: testData

##

#i#t AIC BIC logLik deviance df.resid

## 1031.1 1043.8 -512.6 1025.1 497

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -0.64083 -0.35390 -0.05813 0.22834 0.91703

##

## Random effects:

## Groups Name variance Std.Dev.

## group (Intercept) O 0

## Number of obs: 500, groups: group, 10

##

## Fixed effects:

## Estimate std. Error z value Pr(>|z|)

## (Intercept) -0.13024 0.05831 -2.233 0.0255 *
## Environmentl 2.19567 0.08519 25.772 <2e-16 ***
## ---

## Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
##

## Correlation of Fixed Effects:

## (Intr)

## Environmntl -0.818
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# plotConventionalResiduals (fittedModel)

simulationoutput <- simulateResiduals(fittedModel = fittedMode

plot(simulationoutput)

DHARMa scaled residual plots
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QQ plot residuals
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##

## One-sample Kolmogorov-Smirnov test

##

## data: simulationoutput$scaledResiduals
## D = 0.22, p-value < 2.2e-16

## alternative hypothesis: two-sided

Here, we get too many residuals around 0.5, which means that we are not
getting as many residuals as we would expect in the tail of the distribution than

expected from the fitted model.

Testing for over/underdispersion

Although, as discussed above, over/underdispersion will show up in the
residuals, and it's possible to detect it with the testUniformity function,
simulations show that this test is less powerful than more targeted tests.

DHARMa therefore contains two overdispersion tests that compares the

dispersion of simulated residuals to the observed residuals.

1. A non-parametric test on the simulated residuals

2. A non-parametric overdispersion test on the re-fitted residuals.

You can call these tests as follows:
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# Option 2
testDispersion(simulationOutput)

DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated
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##

## DHARMa nonparametric dispersion test via sd of residuals f
## vs. simulated

##

## data: simulationOutput

## ratioObssim = 0.24135, p-value < 2.2e-16

## alternative hypothesis: two.sided

# Option 3
simulationOutput2 <- simulateResiduals(fittedModel = fittedmod
testDispersion(simulationOutput2)
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DHARMa nonparametric dispersion test via mean
deviance residual fitted vs. simulated-refitted
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##

## DHARMa nonparametric dispersion test via mean deviance res
## fitted vs. simulated-refitted

##

## data: simulationOutput?2

## dispersion = 0.15184, p-value < 2.2e-16

## alternative hypothesis: two.sided

Note: previous versions of DHARMa (< 0.2.0) discouraged the simulated
overdispersion test in favor of the refitted and parametric tests. | have since
changed the test function, and simulations show that it as powerful as the
refitted or parametric test. Because of the generality and speed of this option, |
see no good reason for either refitting or running parametric tests. Therefore

1. My recommendation for testing dispersion is to simply use the standard
dispersion test, based on the simulated residuals

2. It's not clear to if the refitted test is better ... but it's available.

3. In my simulations, parametric tests, such as AER::dispersiontest didn't
provide higher power. Because of that, and because of the higher
generality of the simulated tests, | no longer provide parametric tests in
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DHARMa. However, you can see various implementions of the
parametric tests in the DHARMa GitHub repo under
Code/DHARMaPerformance/Power).

Below and example from there, which compares the four options to test for
overdispersion (2 options to use DHARMa::testDispersoin,
AER::dispersiontest, and DHARMa::testUniformity) for a Poisson glm

1.0

tloutdsummaries, 1, 1)
0.4

by — uniformity
S - 5 --- DHARMa disp basic
s AER dispersiontest
o | Suesns DHARMa disp refit
e | | | T | | |
0.0 0.2 0.4 0.6 0.8 1.0 1.2
dispValues

A word of warning that applies also to all other tests that follow: significance in
hypothesis tests depends on at least 2 ingredients: strenght of the signal, and
number of data points. Hence, the p-value alone is not a good indicator of the
extent to which your residuals deviate from assumptions. Specifically, if you
have a lot of data points, residual diagnostics will nearly inevitably become
significant, because having a perfectly fitting model is very unlikely. That,
however, doesn't neccessarily mean that you need to change your model. The
p-values confirm that there is a deviation from your null hypothesis. It is,
however, in your discretion to decide whether this deviation is worth worrying
about. If you see a dispersion parameter of 1.01, | would not worry, even if the
test is significant. A significant value of 5, however, is clearly a reason to move
to a model that accounts for overdispersion.

Zero-inflation / k-inflation or deficits
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A common special case of overdispersion is zero-inflation, which is the
situation when more zeros appear in the observation than expected under the
fitted model. Zero-inflation requires special correction steps.

More generally, we can also have too few zeros, or too much or too few of any
other values. We'll discuss that at the end of this section

An example of zero-inflation

Here an example of a typical zero-inflated count dataset, plotted against the
environmental predictor

testData = createData(sampleSize = 500, intercept = 2, fixedEf

par(mfrow = c(1,2))
plot(testbata$Environmentl, testbData$observedResponse, xlab =

hist(testData$observedResponse, xlab = "Response", main = "")
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We see a hump-shaped dependence of the environment, but with too many
Zeros.

Zero-inflation in the scaled residuals
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In the normal DHARMa residual, plots, zero-inflation will look pretty much like
overdispersion

fittedModel <- glmer(observedResponse ~ Environmentl + I(Envir

simulationoutput <- simulateResiduals(fittedModel = fittedMode
plot(simulationoutput)

DHARMa scaled residual plots

Residual vs. predicted

QQ plot residuals
4 lines should match
g = 8
= kS test p= 10 -
o Devyiation sign T
o 8 ~
B © g °
g = g B2
5 3 i
5]
o g g
o s
= =
= 7 1 1 | =
00 02 D4 06 08 1.0 00 02 04 06 0B 1.0
Expected Predicted values (rank transformed)

The reason is that the model will usually try to find a compromise between the
zeros, and the other values, which will lead to excess variance in the residuals.

Test for zero-inflation

DHARMa has a special test for zero-inflation, which compares the distribution
of expected zeros in the data against the observed zeros

testzeroInflation(simulationOutput)
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DHARMa zero-intlation test via compariso
xpected zeros with simulation under HO =

model
= E—
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= |
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£ e
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| | ] |
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mnulated values, red line = fitted model. p-value (two.sic

##

## DHARMa zero-inflation test via comparison to expected zero
## simulation under HO = fitted model

##

## data: simulationOutput

## ratioObsSim = 2.1744, p-value < 2.2e-16

## alternative hypothesis: two.sided

This test is likely better suited for detecting zero-inflation than the standard
plot, but note that also overdispersion will lead to excess zeros, so only seeing
too many zeros is not a reliable diagnostics for moving towards a zero-inflated
model. A reliable differentiation between overdispersion and zero-inflation will
usually only be possible when directly comparing alternative models, e.g.
through residual comparison / model selection of a model with / without zero-
inflation, or by simply fitting a model with zero-inflation and looking at the
parameter estimate for the zero-inflation.

A good option is the R package gimmTMB, which is also supported by
DHARMa. We can use this to fit
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Tibrary(glmmT™MB)

fittedModel <- glmmTMB(observedResponse ~ Environmentl + I(Env

summary (fittedmodeT)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##

Family: poisson ( log )
Formula:

observedResponse ~ Environmentl + I(EnvironmentlA2) + (1 |

Zero inflation: ~1
Data: testData

AIC BIC TlogLik deviance df.resid
1288.7 1309.7 -639.3 1278.7 495

Random effects:

conditional model:

Groups Name variance Std.Dev.
group (Intercept) 8.05e-10 2.837e-05
Number of obs: 500, groups: group, 10

conditional model:

Estimate Sstd. Error z value Pr(>|z|)

(Intercept) 2.00497 0.04648 43.13
Environmentl 1.08342 0.10810 10.02
I(EnvironmentlA2) -2.92000 0.19383 -15.06

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.

Zero-inflation model:

Estimate Std. Error z value Pr(>|z|)

<2e_16 e
<2e_16 ek
<2e_16 e

(Intercept) 0.2990 0.1036  2.885 0.00392 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.
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simulationoutput <- simulateResiduals(fittedModel = fittedMode
plot(simulationoutput)

DHARMa scaled residual plots

Residual vs. predicted

QQ plot residuals
? lines should match
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General zero/k-inflation or deficits

To test for generic excess / deficits of particular values, we have the function
testGeneric, which compares the values of a generic, user-provided summary
statistics

Choose one of alternative = c(“greater”, “two.sided”, “less”) to test for inflation /
deficit or both. Default is “greater” = inflation.

countones <- function(x) sum(x == 1) # testing for number of
testGeneric(simulationOutput, summary = countOnes, alternative

file:///C:/Users/junke/R/win-library/3.4/DHARMa/doc/DHARMa.html 25/55



12/2/2019 Motivation

DHARMa generic simulation test
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Simulated values, red line = fitted model. p-value {greater) = 0.632
##
## DHARMa generic simulation test
##

## data: simulationOutput
## ratioObsSim = 0.94807, p-value = 0.632
## alternative hypothesis: greater

Heteroscedasticity

So far, most of the things that we have tested could also have been detected
with parametric tests. Here, we come to the first issue that is difficult to detect
with current tests, and that is usually neglected.

Heteroscedasticity means that there is a systematic dependency of the
dispersion / variance on another variable in the model. It is not sufficiently
appreciated that also binomial or Poisson models can show heteroscedasticity.
Basically, it means that the level of over/underdispersion depends on another
parameter. Here an example where we create such data
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testData = createData(sampleSize = 500, intercept = 0, overdis
fittedModel <- glmer(observedResponse ~ Environmentl + (1l|grou

simulationOutput <- simulateResiduals(fittedModel = fittedMode
plot(simulationOutput)

DHARMa scaled residual plots

Residual vs. predicted

QQ plot residuals
P lines should match
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testUniformity(simulationOutput = simulationOutput)
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QQ plot residuals
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##
## One-sample Kolmogorov-Smirnov test
##

## data: simulationoutput$scaledResiduals

## D = 0.354, p-value < 2.2e-16
## alternative hypothesis: two-sided

Adding a simple overdispersion correction will try to find a compromise
between the different levels of dispersion in the model. The qq plot looks better

now, but there is still a pattern in the residuals

testData = createData(sampleSize = 500, intercept
fittedModel <- glmer(observedResponse ~ Environmentl + (1|grou

# plotConventionalResiduals (fittedModel)

simulationOutput <- simulateResiduals(fittedModel = fittedMode

plot(simulationOutput)
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DHARMa scaled residual plots

Residual vs. predicted

lot residual
QQ plot residuals lines should match
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testUniformity(simulationOutput = simulationOutput)

QQ plot residuals
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#i#t

## One-sample Kolmogorov-Smirnov test

#i#t

## data: simulationoutput$scaledResiduals
## D = 0.042, p-value = 0.341

## alternative hypothesis: two-sided

To remove this pattern, you would need to make the dispersion parameter
dependent on a predictor (e.g. in JAGS), or apply a transformation on the data.

Missing predictors or quadratic effects

A second test that is typically run for LMs, but not for GL(M)Ms is to plot
residuals against the predictors in the model (or potentially predictors that
were not in the model) to detect possible misspecifications. Doing this is highly
recommended. For that purpose, you can retrieve the residuals via

simulationoutput$scaledrResiduals

Note again that the residual values are scaled between 0 and 1. If you plot the
residuals against predictors, space or time, the resulting plots should not only
show no systematic dependency of those residuals on the covariates, but they
should also again be flat for each fixed situation. That means that if you have,
for example, a categorical predictor: treatment / control, the distribution of
residuals for each predictor alone should be flat as well.

Here an example with a missing quadratic effect in the model and 2 predictors

testData = createData(sampleSize = 200, intercept = 1, fixedEf
fittedModel <- glmer(observedResponse ~ Environmentl + Environ
simulationOoutput <- simulateResiduals(fittedModel = fittedMode
# plotConventionalResiduals (fittedModel)
plot(simulationOutput, quantreg = T)
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DHARMa scaled residual plots

Residual vs. predicted
lines should match
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testUniformity(simulationOutput = simulationOutput)

QQ plot residuals
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##

## One-sample Kolmogorov-Smirnov test

##

## data: simulationoutput$scaledResiduals
## D = 0.091, p-value = 0.07285

## alternative hypothesis: two-sided

It is difficult to see that there is a problem at all in the general plot, but it
becomes clear if we plot against the environment

par(mfrow = c(1,2))
plotResiduals(testbata$Environmentl, simulationOutput$scaledrR
plotResiduals(testbata$Environment2, simulationoutput$scaledr
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Temporal autocorrelation

A special case of plotting residuals against predictors is the plot against time
and space, which should always be performed if those variables are present in
the model. Let's create some temporally autocorrelated data
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testData = createData(sampleSize = 100, family = poisson(), te
fittedModel <- glmer(observedResponse ~ Environmentl + (1|grou

simulationOutput <- simulateResiduals(fittedModel = fittedMode

Test and plot for temporal autocorrelation

The function testTemporalAutocorrelation performs a Durbin-Watson test from
the package Imtest on the uniform residuals to test for temporal autocorrelation
in the residuals, and additionally plots the residuals against time.

The function also has an option to perform the test against randomized time
(HO) - the sense of this is to be able to run simulations for testing if the test has
correct error rates in the respective situation, i.e. is not oversensitive (too high
sensitivity has sometimes been reported for Durbin-Watson).

testTemporalAutocorrelation(simulationOutput = simulationOutpu

10

%
OO ®0 goo o,
o

[ if' [a]

simulationDutput$scaledResiduals
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time
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##

## Durbin-watson test

##

## data: simulationOutput$scaledResiduals ~ 1

## DW = 1.4646, p-value = 0.006846

## alternative hypothesis: true autocorrelation is not 0

testTemporalAutocorrelation(simulationOutput = simulationOutpu
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##
## Durbin-watson test
##

## data: simulationOutput$scaledResiduals ~ 1
## Dw = 1.8733, p-value = 0.5223
## alternative hypothesis: true autocorrelation is not O

Note general caveats mentioned about the DW test in the help of

testTemporalAutocorrelation(). In general, as for spatial autocorrelation, it is
difficult to specify one test, because temporal and spatial autocorrelation can
appear in many flavors, short-scale and long scale, homogenous or not, and
so on. The pre-defined functions in DHARMa are a starting point, but they are

not something you should rely on blindly.
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Spatial autocorrelation
Here an example with spatial autocorrelation
testData = createData(sampleSize = 100, family = poisson(), sp
fittedModel <- glmer(observedResponse ~ Environmentl + (1|grou

simulationOutput <- simulateResiduals(fittedModel = fittedMode

Test and plot for spatial autocorrelation

The spatial autocorrelation test performs the Moran.| test from the package
ape and plots the residuals against space.

An additional test against randomized space (HO) can be performed, for the
same reasons as explained above.

testSpatialAutocorrelation(simulationOutput = simulationOutput

1.0

a

o'l

00 02 04 06 08
o

00 02 04 06 08 10

file:///C:/Users/junke/R/win-library/3.4/DHARMa/doc/DHARMa.html 35/55



12/2/2019 Motivation

##

## DHARMa Moran's I test for spatial autocorrelation

##

## data: simulationOutput

## observed = 0.036095, expected = -0.010101, sd = 0.016982, p
## = 0.006523

## alternative hypothesis: Spatial autocorrelation

testSpatialAutocorrelation(simulationOutput = simulationOutput
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##
## DHARMa Moran's I test for spatial autocorrelation
##

## data: simulationOutput

## observed = -0.0025567, expected = -0.0101010, sd = 0.020928
## p-value = 0.7185

## alternative hypothesis: Spatial autocorrelation
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The usual caveats for Moran.l apply, in particular that it may miss non-local
and heterogeneous (non-stationary) spatial autocorrelation. The former should
be better detectable visually in the spatial plot, or via regressions on the
pattern.

Custom tests

A big advantage of the simulations is that you can test any problem that you
think you may have. For example, you think you have an excess of tens in
your count data? Maybe a faulty measurement instrument that returns too
many tens? Just compare the observed with the expected tens from the
simulations.

You think your random effect estimates look weird? Run the model with the
refit = T option and see how typical random effect estimates look for your
problem.

Supported packages

Im and glm

Im and glm are fully supported as specified in the help

Ime4

Ime 4 is fully supported as specified in the help

glmmTMB

Current limitations of gimmTMB

« residual function doesn't work with factor response (gimmTMB bug)
« refit doesn't work with n/k data, because update doesnt' work
» pearson residuals don't work with zi terms (not implemented), which
limits some of the overdispersion tests
e Currently, gimmTMB doesn't support the reform argument.
o predict() is conditional on all random effects, corresponding to Ime4
re.form = NULL
o simulate() is unconditional, i.e. all random effects will be
resimulated, corresponding to Ime4 re.form = 0
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o That means that all predictions and simulations are conditional on
REs, which can sometimes create a positive correlation between
res and predicted , see
https://github.com/florianhartig/DHARMa/issues/43

Tibrary(glmmT™MB)
testData = createData(sampleSize = 100, fixedeffects = 2, fami

m <- gIlmmTMB(observedResponse ~ Environmentl , data=testData,
res = simulateResiduals(m)

plot(res)
DHARMa scaled residual plots
Residual vs. predicted
QQ plot residuals
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Unsupported packages

See my general comments about adding_ new R packages to DHARMa

As noted there, if you want to use DHARMa for a specific case, you could write
a custom simulate function for the specific model you are working with. This
will usually involve using the predict function and adding the random
distribution, plus potentially drawing new data for the random effects or other
hierarchical levels.
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As an example, for an poisson glm, a simulate function could be programmed
as in the following example, which also shows how the results are read into
DHARMa and plotted (see also following section)

testData = createData(sampleSize = 200, overdispersion = 0.5,
fittedModel <- glm(observedResponse ~ Environmentl, family = "
simulatePoissonGLM <- function(fittedmodel, n){

pred = predict(fittedModel, type = "response')

nobs = Tength(pred)

sim = matrix(nrow = nObs, ncol = n)

for(i in 1:n) sim[,i] = rpois(noObs, pred)

return(sim)

sim = simulatePoissonGLM(fittedModel, 100)

DHARMaRes = createDHARMa(simulatedResponse = sim, observedResp
fittedPredictedResponse = predict(fittedmodel))
plot (DHARMaRes, quantreg = F)

DHARMa scaled residual plots

Residual vs. predicted
lines should match
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I;npo ing external simulations e.lg.
ronp( aj«islan software or unsupported
packages

As mentioned earlier, the quantile residuals defined in DHARMa are the
frequentist equivalent of the so-called “Bayesian p-values”, i.e. residuals
created from posterior predictive simulations in a Bayesian analysis.

To make the plots and tests in DHARMa also available for Bayesian analysis,
DHARMa provides the option to convert externally created posterior predictive
simulations into a DHARMa object

res = createDHARMa(scaledResiduals = posteriorPredictiveSimula

What is provided as simulatedResponse is up to the user, but median posterior
predictions seem most sensible to me. After the conversion, all DHARMa plots
can be used, however, note that Bayesian p-values '= DHARMA residuals,
because in the Bayesian analysis, parameters are varied as well.

Important: as DHARMa doesn't know the distribution fitted model, it is vital to
specify the integerResponse option by hand (see above / ?simulateResiduals
for details).

Case studies and examples

Note: More real-world examples on the DHARMa GitHub repository here

d I t- rti Kk
il#\ovr\{ﬁgw example (count-proportion n

This example comes from Jochen Friund. Measured are the number of
parasitized observations, with population density as a covariate

plot(N_parasitized / (N_adult + N_parasitized ) ~ logDensity,
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Let's fit the data with a regular binomial n/k glm

modl <- gIm(cbind(N_parasitized, N_adult) ~ logbDensity, data =
simulationOutput <- simulateResiduals(fittedModel = modl)
plot(simulationoutput)

DHARMa scaled residual plots

Residual vs. predicted

QQ plot residuals
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The residuals look clearly overdispersed. We can confirm that with the
omnibus test

testUniformity(simulationOutput = simulationOutput)

QaQ plot residuals
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##
## One-sample Kolmogorov-Smirnov test
##

## data: simulationoutput$scaledResiduals
## D = 0.36655, p-value = 0.005415
## alternative hypothesis: two-sided

Or with the more powerful overdispersion test

testOverdispersion(simulationOutput = simulationOutput)
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated
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Simulated values, red line = fitted model. p-value (two.sided) = 0

##

## DHARMa nonparametric dispersion test via sd of residuals f
## vs. simulated

##

## data: simulationOutput

## ratioObsSim = 1.1516, p-value < 2.2e-16

## alternative hypothesis: two.sided

OK, so let's add overdispersion through an individual-level random effect
mod2 <- glmer(cbind(N_parasitized, N_adult) ~ TogDensity + (1|

simulationOutput <- simulateResiduals(fittedModel = mod2)
plot(simulationOutput)
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DHARMa scaled residual plots

Residual vs. predicted
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The overdispersion looks better, but you can see that the residuals look a bit
irregular.

Likely, the reason is the steep increase in the beginning that one can see in
the raw data plot. One would probably need to apply another transformation or
a nonlinear function to completely fit this away.

Beetlecount / Poisson example

Dataset

This example is a synthetic dataset of measured beetle counts over 50 plots
across an altitudinal gradient that are yearly sampled over 20 years. The
following plot shows the observed number of beetles (log10) vs. altitude.
Additional variables in the data are soil moisture and the amount of deadwood
on the plots.

par(mfrow = c(1,3))
plot(loglO(beetles) ~ altitude + I(altitude) + moisture, data
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Beetle counts Beetle counts Beetle counts
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Our question is: what is the effect of altitude on the abundance of the beetle?
Let's start with a linear and quadratic term for altitude, linear effect of soil
moisture, and random intercepts on plot and year

mod <- glmer(beetles ~ altitude + I(altitudeA2) + moisture + (
simulationOutput <- simulateResiduals(fittedModel = mod)
plot(simulationOutput)
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DHARMa scaled residual plots

Residual vs. predicted
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summary (mod)
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## Generalized Tinear mixed model fit by maximum 1ikelihood (L

Motivation

##  Approximation) [glmerMod]

## Family: poisson ( Tog )

## Formula: beetles ~ altitude + I(altitudeA2) + moisture + (1

## (1 | year)
## Data: data

## Control: glmercControl(optCtrl = Tist(maxfun

##

## AIC BIC TogLik deviance df.resid

## 20493.9 20523.4 -10241.0 20481.9

##
## Scaled residuals:

## Min 1Q Median

## -12.4093 -2.1837 -0.7425

#H#
## Random effects:
## Groups Name

## plot (Intercept) 0.1906
## year (Intercept) 1.0850
## Number of obs: 1000, groups:

3Q
1.8807 21.6505

variance Std.Dev.

0.4366
1.0416
plot, 50; year, 20

= 10000))

<2e_16 XX

(NN

<2e-16 **=*

"0.1"

##

## Fixed effects:

## Estimate std. Error z value Pr(>|z|)
## (Intercept) -0.1998 0.2987 -0.669 0.504
## altitude 12.2749 0.8595 14.282

## T(altitudeA2) -12.5505 0.8337 -15.054 <2e-16 ***
## moisture -0.2125 0.0161 -13.196

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.
##

## Correlation of Fixed Effects:

## (Intr) altitd 1I(1A2)

## altitude -0.539

## T(altitdA2) 0.461 -0.967

## moisture 0.008 -0.006 0.006

We see that we have a problem when we plot residuals against deadwood
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plotResiduals(data$deadwood, simulationoutput$scaledResiduals)

res
0.00 025 050 075 1.00

so let's add this term as well

mod <- glmer(beetles ~ altitude + I(altitudeA2) + moisture + d
simulationoutput <- simulateResiduals(fittedModel = mod)
plot(simulationoutput)
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DHARMa scaled residual plots
Residual vs. predicted
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Motivation

Generalized Tlinear mixed model fit by maximum Tikelihood (L
Approximation) [glmerMod]
Family: poisson ( log )
Formula: beetles ~ altitude + I(altitudeA2) + moisture + de
plot) + (1 | year)
Data: data
control: glmercontrol(optCtrl = Tlist(maxfun = 10000))

AIC BIC TogLik deviance df.resid
15162.1 15196.4 -7574.0 15148.1 993
Scaled residuals:

Min 1Q Median 3Q Max
-11.3157 -1.6833 -0.0885 1.9843 14.3762

Random effects:

Groups Name variance Std.Dev.

plot (Intercept) 0.1778 0.4217

year (Intercept) 1.1115 1.0543
Number of obs: 1000, groups: plot, 50; year, 20

Fixed effects:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.47665 0.29746 -1.60 0.109
altitude 12.42714 0.83225 14.93 <2e-16 ***
I(altitudeA2) -12.57408 0.80740 -15.57 <2e-16 **%*
moisture -0.27695 0.01638 -16.91 <2e-16 ***
deadwood 1.18974 0.01715 69.38 <2e-16 ***
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Correlation of Fixed Effects:

(Intr) altitd I(1A2) moistr
altitude -0.525
I(altitdA2) 0.449 -0.967
moisture 0.010 -0.007 0.006
deadwood -0.023 0.003 -0.002 -0.055
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still, there is obviously overdispersion in the data, so we'll add an individual
level random effect to account for overdispersion

mod <- glmer(beetles ~ altitude + I(altitudeA2) + moisture + d
simulationOutput <- simulateResiduals(fittedModel = mod)
plot(simulationOutput)

DHARMa scaled residual plots

Residual vs. predicted

QQ plot residuals
P lines should match
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The data still looks overdispersed. The reason is that there is in fact no
standard overdispersion, but zero-inflation in the data. We can look at the
excess zeros via

testzeroInflation(simulationOutput)
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Motivation

DHARMa zero-intlation test via compariso
xpected zeros with simulation under HO =
model
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##

## DHARMa zero-inflation test via comparison to expected zero

## simulation under HO = fitted model

##

## data: simulationOutput

## ratioObsSim = 1.2203, p-value < 2.2e-16
## alternative hypothesis: two.sided

which shows that we have too many zeros. We need a GLMM with zero-
inflation. The easiest option is to do this in a Bayesian framework, e.g. in
JAGS as in this example

To be honest, however, if | hadn’t created the data with zero-inflation myself, |
would be hard pressed to say with certainty that zero-inflation is the cause of
these residual patterns. The reason is that, if a model is presented with zero-
inflated data, the mean model predictions will be drawn towards the zeros,
which in turn means that mean model-predictions underestimate the “normal”
data. Hence zero-inflation often looks like overdispersion, and seeing such a
pattern after accounting for overdispersion might as well mean that the
distributional assumptions of the chosen model are not fulfilled (for example
because overdispersion is more heavy-tailed than in the chose distribution).
The best way to test if the problem is really due to zero-inflation is probably to
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run model selections (e.g. simulated LRTs) between a number of alternative
models, e.g. a zero-inflated GLMM vs. a number of different overdispersed
GLMMs.

Binomial 0/1 data

There are a lot of rumors about that can and cannot be checked with binomial
0/1 data. Let's consider a clearly misspecified binomial model

testData = createbData(sampleSize = 500, overdispersion = 0, fi
fittedModel <- glm(observedResponse ~ 1, family = "binomial",

simulationOutput <- simulateResiduals(fittedModel = fittedMode

A rumor that is true is that, unlike in k/n or count data, such a misspecification
will not produce overdispersion.

plot(simulationoutput, asFactor = T)

DHARMa scaled residual plots

Residual vs. predicted

QQ plot residuals
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However, you can clearly see the misfit if you plot
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plotResiduals(testbata$Environmentl, simulationoutput$scaledRe

Motivation
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Moreover, if you perform the DHARMa procedure per group, you can see
overdispersion created by the random effect variance (left without grouping,

right with grouping)

par(mfrow = c(1,2))

testDispersion(simulationOutput)

##

## DHARMa nonparametric dispersion test via sd of residuals f

## vs. simulated
##
## data: simulationOutput

## ratioObsSim = 1.0012, p-value =1
## alternative hypothesis: two.sided
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simulationOutput = recalculateResiduals(simulationOutput , gro
testDispersion(simulationOutput)

\RMa nonparametric dispersion test \RMa nonparametric dispersion test\

residuals fitted vs. simulated residuals fitted vs. simulated
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##

## DHARMa nonparametric dispersion test via sd of residuals f
## vs. simulated

#i#

## data: simulationOutput

## ratioObsSim = 2.6099, p-value < 2.2e-16

## alternative hypothesis: two.sided
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