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LINEAR SMOOTHERS AND ADDITIVE MODELS 

BYANDREASBUJA,' TREVOR HASTIEAND ROBERTTIBSHIRANI~ 

Bellcore, AT& T Bell Laboratories and University of Toronto 

We study linear smoothers and their use in building nonparametric 
regression models. In the first part of this paper we examine certain aspects 
of linear smoothers for scatterplots; examples of these are the running-mean 
and running-line, kernel and cubic spline smoothers. The eigenvalue and 
singular value decompositions of the corresponding smoother matrix are used 
to describe qualitatively a smoother, and several other topics such as the 
number of degrees of freedom of a smoother are discussed. In the second part 
of the paper we describe how linear smoothers can be used to estimate the 
additive model, a powerful nonparametric regression model, using the "back- 
fitting algorithm." We show that backfitting is the Gauss-Seidel iterative 
method for solving a set of normal equations associated with the additive 
model. We provide conditions for consistency and nondegeneracy and prove 
convergence for the backfitting and related algorithms for a class of smoothers 
that includes cubic spline smoothers. 

1. Introduction. Consider a standard regression problem where we have n 
observations of a random variable Y, say y,, y,, . . . , y,, a t  design points 
x,, x,, ...,x,. A regression procedure produces a decomposition of the form 
y, = jj, + residual,, where the fit is thought to estimate a systematic depen- 
dence of yi on xi. If the design points xi are univariate real values, one usually 
makes the assumption that the dependence is smooth, and correspondingly, 
nonparametric regression methods are often called scatterplot smothers in this 
case. Typically the fits are useful both for scatterplot enhancement as well as for 
estimating the regression model 

(1) E(Ylx) = f (x ) .  

A linear smoother is special in that 4 = (jj,, .. . , jjn)t can be written in the form 
4 = Sy,  where y = (y,, y,, . . . ,Y,)~ and the n x n matrix S, called a smother 
matrix, does not depend on y. Examples of linear smoothers are running means, 
locally weighted running lines, kernel smoothers, smoothing splines, bin 
smoothers and even the least-squares line. The running median is an example of 
a nonlinear 'smoother for which a smoother matrix cannot be constructed. Most 
of the linear smoothers mentioned above depend on a smoothingparameter; if a 
data-driven technique such as cross-validation is used to select this parameter, 
they become nonlinear smoothers. Other examples of nonlinear smoothers are 
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robust smoothers ["Lowess," Cleveland (1979)l and cross-validated variable span 
smoothers ["Supersmoother," Friedman and Stuetzle (1981)l. Mallows (1980) 
discusses linear and nonlinear smoothers and methods for obtaining smoother 
matrices for the "linear" part of a nonlinear smoother. Examples of some linear 
smoothers, applied to a set of meteorological data, are shown in Figure 2. Each of 
these smoothers and these data are discussed later in this paper. 

Because their smoother matrices do not depend on the response y, linear 
smoothers lend themselves to relatively simple analyses. In the first part of this 
paper (Section 2) we use the eigenvalue and singular value decompositions of S 
to describe the qualitative behavior of a linear smoother and discuss some other 
descriptive tools for smoothers. We also discuss some statistical properties such 
as the number of "degrees of freedom" used by a smoother and the variance of 
the fit. The literature on linear smoothers for scatterplots is very large and we 
will not attempt a complete bibliography. Some notable papers include Watson 
(1964), Rosenblatt (1971), Reinsch (1967), Priestley and Chao (1972), Stone 
(1977), Craven and Wahba (1979), Cleveland (1979), Friedman and Stuetzle 
(1981) and Silverman (1985). Many others are given in the reference lists of these 
papers. A great deal of work on smoothing appears in the time-series literature 
[see Cleveland (1983)], where Whittaker (1923) first introduced spline smoothing. 

In the second part of this paper (Sections 3-5) we study the use of linear 
smoothers as building blocks for nonparametric multiple regression models. In 
particular, we study the "additive model" in which the response is modeled as a 
sum of smooth functions of the covariates, for example, 

(2) E(Ylu, 0, w) = f l ( 4  + fZ(4 + fdw)  

for three covariates u, v and w. The functions fi(.) are unspecified in form and 
are estimated using linear smoothers in an iterative algorithm known as "back- 
fitting." The additive model is more flexible than the standard linear model and 
a t  the same time is more interpretable than a general (nonadditive) regression 
surface. As an example, Figures 7(a), (b) and (c) show the estimated functions for 
three variables from the meteorological data set mentioned above. Note the 
nonlinearities that might be missed by standard parametric methods. 

The additive model was suggested by Friedman and Stuetzle (1981) [see also 
Friedman, Grosse and Stuetzle (1983)], and forms the core of the "ACE" 
algorithm [Breiman and Friedman (1985)l. More recently the additive model and 
other related models have received renewed attention; see Wahba (1986), Engle, 
Granger, Rice and Weiss (1986), Burman (1988) and Hastie and Tibshirani 
(1986a). Here we describe the backfitting algorithm for estimating an additive 
model and study its properties. The backfitting algorithm is the Gauss-Seidel 
iterative method for solving a set of normal equations. For a class of smoothers 
containing cubic spline smoothers, we prove that the normal equations are 
consistent, and that the backfitting algorithm always converges to a solution. We 
give conditions for the uniqueness of these solutions, and in the case of degenera- 
cies, we characterize them. We also propose more efficient versions of the 
algorithm. We extend the discussion of the statistical properties to this setting 
and explore the relationship between the additive model and generalized least 
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squares. At various points in the paper, we explore connections of this work with 
that of Denby (1984), Green, Jennison and Seheult (1985), Green and Yandell 
(1985), O'Sullivan, Yandell and Raynor (1986), Mallows (1986) and Eubank 
(1984). Finally, in Section 6 some open problems are discussed. 

Notation. Let g ( S )  denote the range of the linear mapping S and N ( S )  its 
nullspace. We use lowercase bold roman such as v to represent vectors, and 
uppercase roman for matrices such as S. In later sections we distinguish com- 
pound matrices by using bold uppercase, such as P. We use A,(S) for the 
eigenspace corresponding to eigenvalue X and hence N ( S )  =A,(S). By V' we 
mean the orthogonal complement of the subspace V. The spectral radius of S 
(largest absolute eigenvalue) is denoted by p(S). The i th largest singular value of 
S is ai(S), and Xi(S) the i th largest eigenvalue of S; if all are real. An arbitrary 
matrix norm of S is denoted by llSll and the two-norm of the matrix S is de- 
noted by llSl12= sup,+,llSa(l/llall. We use f +  to abbreviate CjP,,fj for f t  = 

(f:, fi, ...,fi), f j  E Rn. The orthogonal projection onto a subspace V will be 
denoted by Hv (the "hat" matrix in regression). 

We will represent fitted functions at  n points as n vectors fi. The unsub- 
scripted f will denote the np vector consisting of the concatenation of p such 
fitted functions fj, and let f + =  Ckfk. 

2. Linear smoothers. 

2.1. Definition and examples. Suppose we have data of the fonn 
(XI, YI), . . .,( ~ n ,~ n )and let x = (XI, x2, . ,xnIt,Y = (YIPYz, ., ynIt. A scatter- 
plot smoother of y against x is a function Y(x,lx, y) which at each x, estimates 
the dependence of y on x. Often we are only interested in the fit a t  the observed 
x,, in which case yi = Y(xi(x, y). The smoother is linear if Y(x,(x, y, + ay,) = 
9'(xo(x, y,) + aY(x,(x, y,). This in turn implies that Y(x,(x, y) = 

C?=,s(i, x,, x)yi for some weights s(i, x,, x). Alternatively, if we are given a 
method for producing the fit ji, we can always extend it to a full scatterplot 
smoother using, for example, linear or quadratic interpolation or extrapolation. 

For the remainder of this paper we will concentrate on the computation of the 
fit a t  the points xi, in which case we can write a linear smoother as a linear map 
S: Rn - R defined by 3 = Sy. The smoother matrix Sdepends on x,, x,, ...,xn 
as well as the particular smoother, but not on y. 

Given a linear smoothing algorithm, we can produce the corresponding 
smoother matrix S by smoothing unit basis vectors: The result of smoothing the 
i th  unit vector is the i th column of S [sometimes referred to as the "impulse 
response function"; see O'Sullivan (1986b)l. Note that this cannot be done for a 
nonlinear smoother since the estimates depend on y in a nonlinear way. The 
present paper is concerned with properties of these smoother matrices and their 
use in iterative procedures. Our focus does not imply that in practice we always 
prefer to use linear rather than nonlinear smoothers; we are simply dealing with 
the analytically more tractable situation. 
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The following examples contrast some of the properties of linear smoothers 
with which we will be concerned: (a) speed and simplicity of computation, 
(b) endpoint bias, (c) influence of individual points, (d) symmetry of the smoother 
matrix and (e) "shrinkage" properties. 

Our "running example" will be a data set from meteorology, consisting of 330 
observations and 9 covariates, analyzed by Breiman and Friedman (1985). The 
response is Ozone Concentration (ppm) and the goal is to investigate its relation- 
ship with a number of atmospheric measurements. For our purposes we will 
restrict attention to three covariates: Daggot Pressure Gradient (mm Hg), 
Inversion Base Height (ft) and Inversion Base Temperature ( O F  X 10). 

EXAMPLE A running-mean smoother produces a 1.Running-mean smoother. 
fit a t  x i by averaging the data points in a neighborhood Niaround xi.The 
neighborhoods that are commonly used are symmetric nearest neighborhoods. 
Assuming, for w between 0 and 1, that [wn] is odd ( [ a ]  denoting integer part), 
these consist of [wn] points, ([wn] - 1)/2 to the left and right of x i  plus x i  
itself. The number w is called the span and controls the smoothness of the 
resultant estimate-larger spans tend to produce smoother functions. Assuming 
the data pairs are sorted by increasing xi,a formal definition of the symmetric 
nearest neighborhood is 

...,min i i + [wnl - ',n ) ) .  

Notice that the neighborhoods are truncated near the endpoints if 
([wn] - 1)/2 points are not available. Figure 1shows the smoother matrix for a 
running mean of span 0.5, with n = 10. 

FIG. 1. Smoother matrix for a running-mean smoother, n = 10, span = 0.5. Notice the truncated 
neighborhoods near the boullclaries. 
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-1 00 -50 0 50 

Daggot Pressure Gradient 

100 150 

Running Mean Running Line Cubic Smoothing Spline 

Gaussian Kernel Lowess Binning 

FIG.2. Plot of Ozone Concentration vs. Daggot Pressure Gradient along with various scatterplot 
smooths. The upper panel superimposes all the fits, whereas the lower panel ident$es the individual 
curves. 
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Figure 2(a) shows a plot of 128 values of Ozone Concentration and Daggot 
Pressure Gradient, from the meteorological data set (the original 330 data points 
were collapsed onto 128 points with unique values of Daggot Pressure Gradient 
for the demonstrations in this section). Also shown are a series of scatterplot 
smooths, one of which is a running mean [identified in Figure 2(b)] with a span 
of 0.27. Each smooth shown has a smoothing parameter, chosen in this plot so 
that they all do about the same amount of smoothing (see Section 2.7; in these 
examples the "degrees of freedom" .was set at  4). Running-mean smoothers 
produce somewhat wiggly functions and are biased at the endpoints. This is the 
price to be paid for simplicity, speed and the local nature of the fit. 

EXAMPLE A running-line smoother fits a line by 2. Running-line smoother. 
least squares to the data points in a symmetric nearest neighborhood Ni around 
each xi. The estimated smooth at xi is the value of the fitted line at  xi. This is 
done for each xi. Figure 2 shows a running-line smooth of span 0.45. The 
running-line smoother is considered to be an improvement over the running 
mean because it reduces bias near the endpoints. Through the use of updating 
formulas, a running-line smoother can be computed with only O(n) calculations 
(once the data are sorted). The running-line smoother matrix is also zero outside 
the banded diagonal, and the nonzero elements in the i th row are given by 

where ni denotes the number of observations in the neighborhood of the ith 
point, j subscripts the points in this neighborhood and Zi denotes their mean. 

The running-line smoother often produces quite jagged output. When used in 
an iterative procedure, it is often desirable to resmooth the final function. 
Alternatively, it can be modified to produce smoother output, at  the cost of 
increased computations (see locally weighted running lines below). 

EXAMPLE3. Bin smoother. A bin smoother is similar to a running-mean 
smoother, the difference being that the average is computed in nonoverlapping 
neighborhoods. The data are partitioned into contiguous regions, each containing 
[wn] data points (the rightmost region might contain fewer than [wn] points). 
The fit for a given point is the mean of the points in its neighborhood. A bin 
smoother is not a very practical tool but is an example of an orthogonal 
projection. Figure 2 (step function) shows the result of a bin smoother, each 
partition consisting of one-fifth of the data. 

EXAMPLE4. Simple and polynomial regression. Denote by X the design 
matrix (1, x), and by H the matrix that projects onto the space spanned by the 
columns of X. The simple least-squares line is a linear smoother, with S = H. 
This S is an orthogonal projection matrix. Least-squares polynomial regression 
results in linear smoothing as well, with a smoother matrix which is the hat 
matrix of X = (1, x, x2,. . . ,~ 9 ) ;in this case, the order of the polynomial is the 
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smoothing parameter. The use of monomials for polynomial regression has poor 
numerical properties however, and orthogonal polynomials are recommended 
instead. 

EXAMPLE5. Cubic smoothing spline. Consider the following minimization 
problem: Find g to minimize 

over the Sobolev space W, of functions with g' absolutely continuous and 
g" E L,, where A is a fixed tuning constant. 

The solution g(x) is a cubic spline with knots a t  each distinct xi [Reinsch 
(1967) and de Boor (1978)l. The constant A plays the role of the smoothing 
parameter, trading off the smoothness of the curve with its closeness to the y 
values. When A = 0, the solution is any interpolating function, while if A = + co, 
the solution is the least-squares line. One can use other orders of derivatives in 
the penalty term, and these in turn generate different degree piecewise polynomi- 
als. Since cubic splines are by far the most popular, we will use the term 
smoothing spline to refer to cubic smoothing splines. One can also show that the 
smoothing spline is a linear smoother, and hence we can write down a smoother 
matrix. The following is taken from Green and Yandell(1985). Let h i  = xi+ - xi, 
i = 1,2,. ..,n - 1, A be a tridiagonal (n  - 2) x n matrix with Aii = l /hi ,  
hi,i + l  = -(l /hi  + l/hi+l), hi, i+2  = l /hi+,  and let C be a symmetric tridiago- 
nal matrix of order n - 2 with Ci-l, = Ci,i- l  = hi/6, Cii = (hi  + hi+,)/3. 
Then if jji = =(xi), it  can be shown that solving (4) is equivalent to minimizing 

where K = AtC- l A, with solution 3 = Sy, where S = (I+ AK)-l. Figure 2 also 
shows a cubic spline smooth with X chosen so that roughly the same amount of 
fitting is performed (degrees of freedom = 4). 

If we isolate a particular region (in x) of the curve, there is some additional 
intuition in the objective function (4). If the data density is high in that region, 
the first term dominates (4) there, and the curve reflects its local behavior; if the 
data are sparse, the penalty term dominates and the function will be nearly 
linear in the region [Silverman (1984) and O'Sullivan (1986a)l. By exploiting the 
banded nature of the matrices involved, cubic spline smoothing takes O(n) 
operations to compute; in fact approximately 35n [Silverman (1985)l vs. 7n for 
the running-line smoother. 

EXAMPLE Regression spline smoothing [de Boor (1978), 6. Regression spline. 
Stone and Koo (1985) and Ramsay (1988)l is a projection method for fitting 
splines. In this case S is a projection onto k basis or B-splines placed a t  
judiciously chosen knots in the range of x. The number k and positions of the 
knots are all parameters of the procedure. We find fixed knot cubic splines less 
appealing than their immediate competitors, smoothing splines. Although k, the 
number of knots, is usually considered to be the smoothing parameter, one has 
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also to determine the placement of the knots. The nature of these "parameters" 
makes i t  hard to vary the smoothness of the resultant estimate in a somewhat 
continuous fashion [Hastie and Tibshirani (1988)l. 

EXAMPLE7. Kernel smoother. The kernel smoother matrix has elements 
s,, = cidA(xi, xi), where d is an inverse distance measure, h is the window size 
and ci is chosen so that the rows sum to unity. An example is the Gaussian 
kernel with 

( ( xi  xi)').dA(xi, xi) = exp - -

Kernel smoothers are expensive to compute [O(n2) for the whole sequence], but 
are visually smooth if the kernel is smooth. A Gaussian kernel smooth with 
h = 0.13 is shown in Figure 2, and we notice that it also has bias problems at the 
ends. We could easily correct this by using running lines, weighted by a Gaussian 
kernel. Some key references for kernel smoothers are Rosenblatt (1971), Priestley 
and Chao (1972) and Hiirdle (1987) who also provides an O(n log n) approxima- 
tion for computing a kernel smooth. 

EXAMPLE8. Locally weighted running-line smoother. This smoother com- 
bines the strict local nature of running lines, and the smooth weights of kernel 
smoothers, in a locally weighted running-line smoother. Cleveland's (1979) imple- 
mentation ("LOWESS") uses the tricube weight function in each neighborhood. 
Specifically, if hi  is the distance to the wnth nearest neighbor, then the points xi 
in the neighborhood get weights wii = (1 - ((xi - The fit at point i is ~ ~ ) / h ~ 1 ~ ) ~ .  
then computed by a weighted least-squares straight line, using these weights on 
the points in the neighborhood. Since the weights have to be recomputed for 
each neighborhood, locally weighted running-line smoothers require O(n2) com- 
putations; however, the current implementation of LOWESS in the S language 
[Becker and Chambers (1984)l computes the running lines at a default (50) 
number of "knots," and evaluates the fits at other points by interpolation. This 
makes it O(n) to compute, like splines and running lines. 

LOWESS has a robustness option which can be used to downweight outlying 
responses, which, when used, causes it to be a nonlinear smoother. On a more 
subtle note, LOWESS uses nearest neighbors, whereas the running means and 
lines described earlier use symmetric nearest neighbors. Without smoothness 
weights, running-line fits tend to be jagged; the symmetric neighborhoods tend 
to alleviate this (Werner Stuetzle, personal communication). 

2.2. Choice of smoothingparameters. Many of the aforementioned smoothers 
require a choice of a smoothing parameter. The running-mean and running-line 
smoothers rely on a span size w, the cubic spline smoother has a penalty factor h 
and the kernel smoother has an inverse penalty factor, also A. In practice these 
parameters are chosen either a priori, through visual inspection of the curve, or 
by an automatic method such as cross-validation. Some details may be found in 
Silverman (1985) and Craven and Wahba (1979). If the smoothing parameter is 
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chosen a priori, then the resultant smoothers are linear for the above examples. 
If the smoothing parameter is selected by using the y-values as in cross-valida- 
tion, the smoothers are (strictly speaking) nonlinear, and the results developed 
here for linear smoothers do not apply. This paper avoids the issue entirely, and 
we assume the smoothing parameters are known and fixed. In Section 2.7 we 
suggest a linear method for fixing the degree of smoothing. 

2.3. Smoother matrixplots. One way to compare the various linear smoothers 
is to plot the rows of their smoother matrices against x [e.g., see Silverman 
(1984), O'Sullivan (198613) and Rice (1986)l. These plots, also known as the 
equivalent kernels, show explicitly the form of neighborhoods used and the 
weighting function. Figure 3 gives such a display for some of the smoothers used 
in Figure 2, and plots rows 1, 20 and 64 of the 128 x 128 smoother matrices. 

The rectangular windows of the running-mean and running-line smoothers 
account for the discontinuous appearance of their output. Locally weighted 
running lines appear to be a hybrid, mixing kernels and nearest neighbors. Spline 
fits have global support, and splines, running lines and locally weighted running 
lines can have negative weights. The slope of the "roof" for the running-line 
smoother can change frequently, depending on which side of the neighborhood 
mean f i  the target point xifalls. 

Spline smoother matrices are symmetric, a property we will find increasingly 
useful in later sections. One consequence of this symmetry together with the fact 
that  splines reproduce lines is that we get the global least-squares line whether 
we fit a straight line to the original data or to the spline smoothed data: 
H S y  = (StHt)ty = (SH)ty = H t y  = Hy,  where H is the least-squares "hat" 
matrix for straight-line regression. This is not true of nonsymmetric smoothers 
such as the running-line and locally weighted running-line smoothers (although 
one can correct them to ensure this property if desired). 

Figure 4 contains "self-influence" plots for various smoothers. These show the 
diagonal elements of the smoother matrix as a function of x, and are especially 
useful for understanding the endpoint behavior. We see that self-influence is very 
small except near the endpoints of the data, where the running lines have the 
most self-influence. I t  is clear that as the endpoint becomes more separated from 
the rest of the data, the self-influence of the endpoint for running lines and 
locally weighted running lines can approach 1. The self-influence for running 
means, however, does not depend on the data ( l /ni  for the i th  neighborhood). 

2.4. Eigenvalue and singular value decompositions of a smoother matrix. 
For a symmetric smoother, the eigendecomposition of S can be used to describe 
the smoother based on S [Demmler and Reinsch (1975); see also O'Sullivan 
(1986b) and Utreras (1979)l. This is much like the use of a transfer function or 
spectrum to describe a linear filter for time series. Let {u,, u,, . . . ,u,) be an 
orthonormal basis of eigenvectors of S with eigenvalues 8, 2 8, . 2 On, 
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Row 1 Row 20 Row 64 

FIG.3. Selected rows of the smoother matrix for a variety of linear smothers. These are the 
natrices used to smooth the air pollution &tu in Figure 2. For the ith row, we graph s( j, x i ,x) 
against x j .  Each column of figures is plotted on the same scale, and all the smoothers are calibrated 
so that the overall amount of smoothing is approximately the same. 
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a 
-1 00 -50 0 50 100 150 

X 

FIG.4. Sell-i&enceplots for the running lines (solid), splines (dashes), locally weighted running 
lines (dots) and running means (solid-lowest). 

The cubic spline smoother is an important example of a symmetric smoother, 
and its eigenvectors look approximately like polynomials of increasing degree 
[see also Eubank (1984) and Mallows (1986)l. In particular, it  is easy to show 
that the first two eigenvalues are 1, with eigenvectors which correspond to linear 
functions of x. Figure 5(a) shows the eigenvalues for the cubic spline smoother 
used in Figure 2. Figure 5(b) shows the third to sixth eigenvectors. Demrnler and 
Reinsch (1975) give some theoretical support for these empirical findings. They 
show that for k 2 3, the number of sign changes in the k th  eigenvector of a 
cubic spline smoother is k - 1. They also derive asymptotic approximations for 
the eigenvalues which show that they decrease fairly rapidly with increasing 
order. 

The bin smoother, least-squares line, polynomial regression and regression 
splines are other symmetric smoothers which we have discussed. They are all in 
fact orthogonal projections arising from different spaces of fits. Thus their 
eigenvalues are 0 or 1 only, with corresponding eigenspaces consisting of the 
spaces of residuals and fits, respectively. The smoother or projection matrices are 
the familiar hat matrices of one-way analysis of variance and simple and 
multiple regression. 

What if S is not symmetric? Then the eigendecomposition is no longer useful 
because the eigenvalues and vectors may be complex, and algebraic and geomet- 
ric multiplicities may differ. One can, however, turn to the singular value 
decomposition of S, which is always real. Figure 5(a) also includes the series of 
singular values for both the running-line and locally weighted running-line 
smoothers. The smoothing parameters for these smoothers were chosen such that 
they all do approximately the same amount of smoothing (in terms of total 
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FIG.  5(a). The first 25 ordered ezgenvalues for the (symmetric) cubic spline smoother used in Figure 
2 (solid curve with clots). Also shown are the first 25 singular values for the running-line (dotted) 
and locally weighted running-line (dashed) smoothers. 

variance of the fit). We will see later that this implies that tr(SSt) is the same for 
all the smoothers (approximately 4 for all the smoothers in Figure 2), and thus 
the sum of squares of the eigen/singular values is 4. The most noteworthy 
feature of this singular value decomposition is the largest singular value. For the 
running-line smoother used in Figure 2, this is 1.065. Since this value is larger 
than one, the singular value decomposition tells us that running-line smoothers 
(including locally weighted running lines) are not members of the class of 
shrinking smoothers, which we discuss in the next section. Since the running-line 
output is typically rough, we are not surprised that the singular values approach 
0 more slowly than for splines. In fact, if one smooths a genuinely smooth curve, 
such as a cubic polynomial, the running-line smoother can put wiggles in the 
output! (This is due to the discrete nature of the neighborhoods.) For the 
running-line smoother, the first two (left and right) singular vectors are approxi- 
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FIG.  5(b). The eigenvectors corresponding to the third to sixth eigenvalues of the cubic spline 
smoother used in Figure 2 (since constants and linear are not shrunk, they are omitted). The dotted 
curves are the smoothed functions, and demonstrate the amount of shrinking. 

mately linear, while the remaining ones are approximately orthogonal polynomi- 
als of increasing degree (not shown). 

2.5. Shrinking and strictly shrinking smothers. We call the smoother based 
on S "shrinking" if llSyll I llyll and "strictly shrinking" if llSyll < llyll for ally. 
This will be the case if all of its singular values are I 1and < 1, respectively. 
We use the Euclidean norm, but other vector norms could be used. In the second 
part of this paper we discuss procedures that use smoothers iteratively, and show 
in some cases that their convergence is guaranteed if shrinking or strictly 
shrinking smoothers are used. 

In some special cases we can give conditions to guarantee that S is shrinking. 
For example, if S is doubly stochastic (all elements nonnegative, rows and 
columns sum to I), then i t  is easy to show by Jensen's inequality that S is 
shrinking. Therefore symmetric smoothers with nonnegative elements are shrink- 
ing if each row adds to 1.We saw earlier, however, that not many smoothers are 
likely to have smoother matrices with exclusively nonnegative elements, so this 
condition is limited. A case in point is the cubic spline smoother; its smoother 
matrix typically has negative elements. We can show directly, however, that a 
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cubic spline smoother matrix has real positive eigenvalues less than or equal 
to 1 (and hence is shrinking) and furthermore, IISy 1 1  < 1 1  y 1 1  unless y is a 
linear function of x. We can verify this through the representation S = 

( I  + X At C- 'A)-', where C, X and A are defined in Example 5. First note 
that  C is positive definite since i t  is diagonally dominant [Golub and 
van Loan (1983), page 71. Thus C-' exists, AtC-'A is nonnegative definite 
and hence ( I  + XAtC-'A)-' has eigenvalues I1. Now Ilyll = IISyll can 
only hold if S y  = y since S has nonnegative eigenvalues. Suppose then that 
( I  + AAtC-'A)-'y = y. Then AtC-'Ay = 0, ytAtC-'Ay = 0 and thus Ay = 0 
(since C and hence C-' are positive definite). Now A takes second differences 
and hence y must be a linear function of x. This result is also contained in 
Craven and Wahba (1979), Lemma 4.3. 

2.6. Smothers and penalized least squares. The minimization problem (4) 
leading to cubic spline smoothing can be reexpressed in terms of a quadratic 
penalty function, 

where K = AtC-'A as defined in Example 5. The solution to (8) is [= &(xi), 
where &(x) is the minimizer of (4). This leads us to ask: Is there a larger class of 
smoothers which can be characterized as solutions to penalized least-squares 
problems? The penalization term X f  tKf depends only on the symmetric part of 
K,  since i t  is a quadratic form. Hence only symmetric penalization matrices K 
should be considered. Assuming that inverses exist, the stationarity condition for 
(8) implies f = ( I  + XK)-'y, that is, S = ( I  + XK)-'. We see that only sym- 
metric smoothers Scan be obtained by penalized least squares. Conversely, given 
a symmetric invertible smoother matrix S, we can characterize f = S y  as a 
stationary solution of 

In order to cover noninvertible smoothers as well, we have to resort to a linear 
constraint. Let S be an arbitrary symmetric matrix with range W(S) and 
nullspace N ( S ) ,  and let S- be some generalized inverse (SS-S = S). In this 
case we can obtain f = S y  as a stationary solution of 

under the constraint f E W(S). 
I t  is illuminating to work with the eigendecomposition of S, although a 

coordinate-free approach using directional derivatives confined to B(S)  is equally 
straightforward. Let S = UDUt, and partition U = (U,: U,) where U2 corre- 
sponds to the zero eigenvalues of S. Thus S = UID,U,t, where Do is diagonal of 
size dim(g(S)). The matrix Ul spans W(S), and we can represent any f E W(S) 
as f = Ulp for some vector b of length dim(B(S)). Any generalized inverse can 
be written as Ul D i  'U: + L, where L operates in X ( S ) .  Then (10) reduces to 

with stationarity condition dQ/df! = 0 * f3 = DoU,ty, or f = UID,U,ty = Sy. 
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We should add a warning: The characterization of smooths has been expressed 
in terms of stationarity w.r.t. the penalized least-squares criteria. Such smooths 
are minimizers only under additional conditions on the smoother matrices. 
Writing 

we see that the quadratic behavior of the criterion is solely determined by f tS-f. 
The stationary solution f = S y  becomes a minimizer iff S is nonnegative defi- 
nite, since S- as a linear map is positive definite on g ( S )  in this case. If S is 
indefinite, we have the curious situation that f = S y  minimizes the penalized 
least-squares criterion in some directions, but maximizes it in others, that is, the 
stationary solution is a true saddle point. 

The eigenvalues of S-- I in g ( S )  are l/di - 1, where di # 0 with eigenvec- 
tors the same as those of S. Hence the term ft(S-- I)f does not penalize in 
directions contained in &,(S). If, for example, the eigenvectors of Sare orthogo- 
nal polynomials of increasing degree with first two eigenvalues 1, and the rest 
decreasing from 1 to 0, the criterion does not penalize the constant and linear 
components, but puts an increasing penalty on the higher-order polynomial 
components. From this we also see that if K = S-- I is positive semidefinite, 
then the resulting smoother will be shrinking. 

We can go a step further and make explicit a smoothing parameter in (10): 

with the stationary solution f = where S(A)S(A)y, has the same eigenvectors as 
S but eigenvalues 

for eigenvalues di > 0 of S. In addition S(') has the properties that 

where HM denotes the projection onto the subspace M. 
In a trivial sense ordinary least squares is just a special case of penalized 

constrained least squares. If S is an orthogonal projection (hat matrix), then 
W(S) is just the space of fits and the penalization term vanishes: Since S is its 
own generalized inverse, we have ft(S-- I)f = 0 for f E 9(S) ,  and thus the 
problem reduces to ordinary least squares, 

min Ily - f 1 1 2 .  
f EWs) 

A final remark concerns the generality of the penalized constrained least- 
squares approach. Although it helps our intuition to think of S as a smoother 
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matrix, all that matters is that S represents a symmetric linear mapping, and 
many other applications unrelated to smoothing are conceivable. 

2.7. Remarks on inference for smothers. In this section we discuss consis- 
tency, the variance and the number of parameters or "degrees of freedom" of the 
fitted smooth. We have already made use of the latter quantity in order to 
render different smoothers comparable with respect to the amount of "fitting" 
they do; both of these notions are also useful when a smoother is used in a data 
analysis. For the remainder of this section we assume that yi = f i  + E ~ ,where f i  
is the true function and the errors E~ are uncorrelated with zero expectation and 
common variance a2. 

2.7.1. Bias and consistency. An interesting question arises in smoothing 
situations: What is being estimated? All the smoothers we consider are biased for 
arbitrary f ,  and we can represent the bias a t  the n sample xis by b = f - Sf. 
They will be unbiased for a restricted class of functions, for example, cubic 
smoothing splines and running lines are exactly unbiased for linear functions. 
Linear least-squares estimates, by comparison, are unbiased for the elements of 
their spaces of fits. 

One approach is to define the estimand as the expected value of the estimator. 
With this definition, different smoothers might be estimating different quantities 
in a given problem. Another approach is to consider what happens asymptoti- 
cally. If the smoothing parameters are held fixed, asymptotic bias will generally 
result. If however the amount of smoothing is decreased at  an appropriate rate 
as we approach the limit, then under regularity conditions, the estimates should 
be consistent for the underlying functions. 

We do not go into details here. See Stone (1977) for consistency results for 
nearest-neighbor-type smoothers. Results for cubic splines are given by many 
authors, for example Cox (1983) and Rice and Rosenblatt (1983), while results for 
kernel smoothers are derived, for example, by Gasser and Miiller (1979). 

2.7.2. Variance. The covariance matrix of the fits Q = S y  is simply 

Under normality assumptions, this can be used to form pointwise standard error 
bands for the estimated smooth (see Figure 7, section 3). These standard error 
bands should not be confused with confidence bands, since they apparently 
contain no information on the bias of Q; they are confidence bands for what the 
smoother is estimating, that is, E(Sy). We do have to estimate a2, however, and 
if i t  is based on the residual sum of squares, it will be biased (see below). So, 
perversely, the standard error bands are spread out due to this bias, although in 
an average sense. Wahba (1983) discusses a Bayesian approach to confidence 
bands for smoothing splines in some detail, and gives a frequentist interpreta- 
tion. 
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2.7.3. Degrees of freedom. Given an estimate y, it would be useful to know 
how many "degrees of freedom" we have fitted to the data, a notion borrowed 
from parametric linear regression. I t  is not immediately clear how to quantify 
this notion. There are at  least three possible definitions of degrees of freedom 
depending on the context in which it is to be used. All three are derived by 
analogy to the linear regression model. 

DEFINITION1. Degrees of freedom = tr(SSt). For the linear model, 
C var(ji) = pa2 ,  where degrees of freedom =p is the number of parameters. The 
analogous definition for smoothers is degrees of freedom = tr(SSt). This is the 
definition we have used to calibrate the various smoothers in the previous 
sections with regard to the choice of smoothing parameter, where by trial and 
error we achieved tr(SSt) = 4. The more "parameters" we fit, the rougher will be 
the function and the higher its variance. 

DEFINITION 2. Degrees of freedom = tr(2S - StS). The residual sum of 
squares RSS = (y - Q)yy - Q) has expectation 

where the last term measures bias. Here we are motivated to define degrees of 
freedom = tr(2S - StS) since once again in the linear regression case this is p. If 
we are smoothing noise (f = 0), then degrees of freedom corresponds to the 
expected drop in the RSS due to overfit. 

This definition is useful when comparing two smooths. Suppose that we have 
two fitted responses Q, and Q,, say Ql = Sly = Hy, the linear fit, and Q2 = S,y, 
a running-line smooth a t  some span. Then we ask the following: Given that the 
fit based on smoother 1is adequate, what is the expected decrease in RSS due 
to fitting the second smooth? Our "null hypothesis" says the "model" E(y) = 

ax + b is correct. 
Letting RSS, and RSS, be the residual sum of squares for the two fitted 

responses, i t  is clear from (13) that 

Thus in comparing two smooths, we can compare the decrease in RSS due to 
fitting a more complex smooth with the increase in the degrees of freedom 
tr(2Si - SiSi), in units of a2. 

This definition involves only the expectation of the residual sum of squares. I t  
turns out that the distribution of the residual sum of squares is not X2 as in the 
linear case, but fairly close to it. For results on X2 approximations to the RSS 
see Cleveland (1979), Cleveland and Devlin (1988) and Tibshirani and Hastie 
(1987). Devlin (1986) explores these issues in considerably more detail. She 
considers using RSS terms from different smoother-based models in approximate 
F-tests, and explores two moment corrections for the relevant distributions. 
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DEFINITION 3. Degrees of freedom = tr(S). One interpretation of the C, 
statistic [Mallows (1973)l is that it corrects RSS to make. i t  unbiased for the true 
MSE for prediction by adding a quantity 2pS2, where S2 is an unbiased 
estimate of a 2 and p is once again the number of parameters. The appropriate 
number for smoothers in this context is degrees of freedom = tr(S). This is the 
popular definition in the spline smoothing literature [Green and Yandell (1985), 
O'Sullivan, Yandell and Raynor (1986) and Silverman (1985)], where Sa2 emerges 
as the posterior covariance of Q, after appropriate Bayesian assumptions are 
made. 

For symmetric smoothers with eigenvalues Oi, the following relationships are 
immediate: 

Consequently, for symmetric shrinking smoothers with nonnegative eigenvalues 
tr(SSt) I tr(S) I tr(2S - StS). Since tr(S) is easiest to compute, i t  may be the 
logical choice if a single parameter is desired. 

Any of the above degrees-of-freedom measures can be used to determine a 
value for the smoothing parameter, and will produce a curve using roughly that 
many degrees of freedom. This provides a reasonable method for calibrating 
smoothing parameters amongst a class of smoothers, and gives a useful a priori 
choice in situations where automatic choice is not feasible. 

Empirically, we have found that there is a relationship that seems to hold 
approximately for running-line smoothers (for which the three definitions of 
degrees of freedom coincide): l/span + 1Idegrees of freedom Il/span + 2. 

3. The additive model. 

3.1. Introduction. So far we have discussed scatterplot smoothers for a 
response and a single predictor. When there are two or more predictors, there are 
a number of possibilities for estimating the regression surface. Probably the most 
straightforward is through the use of a p-dimensional scatterplot smoother. 
Cleveland and Devlin (1988) discuss the multidimensional extension of locally 
weighted running-line smoothers. However, there are a number of problems 
~ssociated with p-dimensional smoothers: 

1. The "curse of dimensionality" [Friedman and Stuetzle (1981)li When p is 
large, the neighborhoods are less local for a fixed span than for a single 
variable smoother and hence large biases can result. 
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2. When finding neighborhoods in two or more dimensions, there is usually some 
metric assumption made which can be hard to justify when the variables are 
measured in different units or are highly correlated. 

3. The multivariate versions of all the smoothers mentioned in Section 2 are 
expensive [>  O(n2) operations] to compute. 

We take a different approach and use the one-dimensional smoother as a 
building block for a restricted class of nonparametric multiple regression models. 
Suppose our data consist of n realizations of random variable Y at  p design 
values, denoted by {(y,, x,,, x,,, . . . ,x,,), .. . ,(y,, x,,, x,,, . . . ,x,,)). Then the 
additive model takes the form 

P 


(15) E ( Y , I x ~ ~ ,,xip) = C fj(xij). 
j= 1 

This model is a special case of both the PPR (projection pursuit regression) 
model proposed by Friedman and Stuetzle (1981), the ALS (alternating least 
squares) model of van der Burg and de Leeuw (1983) and the ACE (alternating 
conditional expectation) model of Breiman and Friedman (1985). Wahba (1986) 
refers to additive models as main effect 'partial splines. The additive model 
avoids all the pitfalls of the p-dimensional smoother listed above-at the cost of 
approximation errors in using an additive function to model the p-dimensional 
surface. 

The additive model has a stronger motivation as a useful data analytic tool. 
Since each variable is represented separately in (15), the model retains an 
important interpretation feature of the linear model: The nature of the effect of 
a variable on the response surface does not depend on the values of the other 
variables. In practice this means that once the additive model is fitted to data, 
we can plot the p coordinate functions separately to examine the roles of the 
variables in predicting the response. 

The additive model can be fitted by an algorithm which consists of estimating 
each smooth holding all the others fixed, then cycling through this process. Thus 
if the current estimates are fk, k = 1,.. . ,p ,  then [. is updated by smoothing 
the partial residuals rij = yi - Zk+ ,fk(xik) against xi,. The procedure imple- 
menting this idea is called the backfitting algorithm [Friedman and Stuetzle 
(1981)], described later. 

Figure 6 is a scatterplot matrix which shows the relationship between Ozone 
Concentration and Daggot Pressure Gradient, as well as two additional vari- 
ables, Inversion Base Temperature and Inversion Base Height discussed earlier. 
Figures 7(a), (b) and (c) show the functions produced by backfitting Ozone 
Concentration jointly on these variables. All the curves have been centered at  0. 
The Daggot Pressure Gradient curve looks much like it did for the univariate 
smooths (Figure 2). This is not surprising, since it does not exhibit a strong 
relationship with either of the other two covariates (Figure 6). This is not the 
case with the other two covariates. Figure 8(a) shows the univariate spline 
smoother together with the additive model fit for both Inversion Base Tempera- 
ture and Inversion Base Height. For Inversion Base Height the two fits are quite 
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Daggot Pressure Gradient Inversion Base Height Inversion Base Temperature 

FIG.6. Scatterplot matrix of the Ozone Concentration data with three covariates: Daggot Pressure 
Gradient, Inversion Base Height and Inuersion Base Temperature. 

different. Since the two variables are negatively correlated, it seems possible that 
height is acting as a surrogate for temperature when temperature is not in the 
model. In Section 4.2 we discuss convergence of backfitting using these data. We 
deliberately entered Inversion Base Height before temperature; consequently 
some iteration was needed to change the fitted function. Figure 8(b) shows the 
fitted functions on the same scale so that the relative strengths of the effects can 
be compared. We see that Inversion Base Temperature exhibits the strongest 
effect. I t  is also possible to perform crude F-tests to judge the importance of 
variables-see Cleveland and Devlin (1988) and Hastie and Tibshirani (1987). 
The broken lines in the figures are pointwise 2 X estimated standard error 
curves, based on the estimating equations of the full additive fit. They will 
reflect high variance regions of the fitted curve, which could be a result of sparse 
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Daggot Pressure Gradient Inversion Base Height 

Inversion Base Temperature 

FIG.  7. Estimated functions for the three covariutes in the additive model (solid curves). The 
broken lines in the plots are curves representing the fitted curve +2 X its estimated standard error. 
A cubic smoothing spline was used for all three terms, and the smoothingparameters were chosen so 
that the univariate degrees of freedom tr($Sj) = 4. 

marginal data there, or interactions with other variables. We discuss these 
standard errors and methods for calculating them in more detail in Section 5. We 
will see that backfitting is one of several iterative methods for solving a system 
of normal equations appropriate for estimating the model (15). 

3.2. The additive model as a tool for data analysis. The additive model 
prdvides a logical extension of the standard linear regression model by allowing 
arbitrary smooth (rather than just linear) functions of the covariates. The 
backfitting algorithm allows us to use a set of tools or models for summarizing 
simple x ,  y data as building blocks in constructing the additive model. We will 
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Inversion Base Height 

lnversion Base Temperature 

FIG.8(a). The solid curves are the additive model fitsfor Inversion Base Height and Inversion Base 
Temperature as in Figure 7. The broken curves are the simple spline smooths of the response against 
the respective variables (with the mean removed). 

touch on some of these here, referring the reader to Hastie and Tibshirani 
(1986a) and the discussion therein, for further details. For example, if a covariate 
is categorical in nature, then it does not make sense to consider an arbitrary 
smooth function of that variable in the additive model. Instead we could model 
it with a constant for each level. On the other hand, a variable may take on 
continuous values but for reasons specific to the data at  hand we may want to 
restrict the fit for that variable to be linear or to be of some other parametric 
form. This semiparametric approach is also advocated by Denby (1984), Green 
and Yandell(1985), Green, Jennison and Seheult (1985) and Engle, Granger, Rice 
and Weiss (1986): They allow a single variable to be nonparametric in its effect. 
(They also allow the nonparametric component to be a function of more than 
one variable.) More subtly, we may choose a special smoother for a particular 
variable; for example, if a variable takes on values that are periodic in nature, for 
example, day of the week, we would want a smoother that "wrapped around" at 
the endpoints [see Breirnan and Friedman (1985)l. We do not want to go into 
details here: The point is that a mixed strategy may often be used. See also van 
der Burg and de Leeuw (1983) for a psychometric view. 

In our discussion of backfitting below we sometimes assume implicitly that 
the same smoother is used for each of the variables, but this is only for ease of 
presentation. The results are general in nature and apply to any backfitting 
procedure in which any linear smoother is used for any of the variables. 
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FIG.8(b). The fitted functions as in Fgure 7 ,  plotted on the same scale. 

The question of interaction is also important. The additive model generalizes 
the additive structure of the linear model but retains the no-interaction assump- 
tion. By defining a new variable to be a function of two or more existing 
variables (e.g., the product of two variables), one can introduce selected interac- 
tions into the additive model. Alternatively, one can model a pairwise interaction 
quite generally by a two-dimensional surface [e.g., using the surface smoother of 
Cleveland, Devlin and Grosse (1988)l within the additive model framework. An 
effective strategy for introducing nonlinearity and interaction into a model is not 
obvious. These issues are discussed in Hastie and Tibshirani (1986a) and also 
Wahba (1986). 

Finally, in order to use an additive model for data analysis, one needs some 
tools for inference. We discuss "number of parameters" and standard error bands 
for the fitted functions in Section 5. 

3.3. The additive model and its normal equations. The additive model (15) 
with unrestricted transformations is not meaningful when applied to finite 
samples; naive least-squares estimation leads to degenerate solutions. The stan- 
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dard parametric approach is to restrict the form of the functions fj (e.g., to 
polynomials) and then estimate the parameters by least squares. The approach 
taken here is a nonparametric one based on smoothers. 

We outline two general approaches to motivate the normal equations for the 
nonparametric case: (a) least squares on populations (as opposed to finite 
samples) and (b) penalized least squares. 

3.3.1. Least squares on populations. For a pair of random variables (Y, X)  
the conditional expectation f (x) = E(YIX = x) minimizes E(Y - f (X))2 over 
all L2 functions f . The idea is to solve the problem in the theoretical setting in 
terms of conditional expectations, and then estimate the conditional expecta- 
tions by scatterplot smoothers. We carry this idea a step further for additive 
models. 

Let Xi, i = 1,.. . ,p ,  denote the Hilbert spaces of measurable functions c&(Xi) 
with E+,(X,) = 0, E+:(Xi) < co and inner product (G~(X,), +:(Xi)) = 

E(c)~(X~)+:(X~)).In addition, denote by X the space of arbitrary, centered, 
square-integrable functions of XI, X2, . . . ,X,. We consider the Xi as subspaces 
of X in a canonical way. Furthermore, denote by Xaddc X the linear subspace 
of additive functions: Xadd=Xl + X2+ .,.. +Xp, which will be closed under 
some technical assumptions. These are all subspaces of P y x ,  the space of 
centered square-integrable functions of Y and XI, ...,X,. 

The optimization problem in this population setting is to minimize 

(16) E(Y - g(x)I2 

over g(X) = CjP=, fj(Xj) E Xadd.Of course, without the additivity restriction, 
the solution is simply E(Y1X); we seek the closest additive approximation to this 
function. Since by assumption Xaddis a closed subspace of X this minimum 
exists and is unique; the individual functions fi(Xi), however, may not be 
uniquely determined. Denote by Pi the conditional expectation E(.  [Xi) on Xyx; 
as such Pi is an orthogonal projection onto Xi. 

The minimizer g(X) of (16) can be characterized by residuals Y - g(X) which 
are orthogonal to the space of fits: Y - g(X) 1Xadd.Since Xaddis generated 
by Xi ( c X a d d ) ,  we have equivalently: Y - g(X) l X i ,  V i = 1,. . . , p ,  or 
Pi(Y - g(X)) = 0, V i = 1,.. . ,p. Componentwise this can be written as 

Equivalently, the following system of normal equations is necessary and suffi- 
cient for f = ( f l y  f2,..., f,) to minimize (16): 
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where P and Q represent a matrix and vector of operators, respectively, and 
operator matrix multiplication is defined in the obvious way. 

The data version of the normal equations described above is obtained by 
replacing in (18) the random variables (Y, X) by their realizations (y,, xi),and 
conditional expectations P,= E ( . IX,) by smoothers S, on x,, 

Recall that the S, are n x n smoothing matrices, and f j  are n vectors, and hence 
(19) is an np X np system of equations. 

We note that the solutions to (19) automatically satisfy f, E 9(Sj), since 
f j  = Sj(y - Ck+jfk). We have assumed here that the components of each xi are 
in the same order as the components of y. As a technical point, this means that 
Sj will denote here EJ.'SjEj, where Ej is the permutation matrix that sorts in the 
order of x,. 

The justification for using (19) as estimates for (18) is not entirely ad hoc. 
Breiman and Friedman (1985) proved asymptotic consistency results for 
nearest-neighbor smoothers in this situation. On the other hand, asymptotic 
results do not solve basic questions such as whether (19) has solutions and under 
what conditions (consistent equations). 

3.3.2. Penalized least squares. In the single-smoother case we showed how 
symmetric linear mappings can be viewed as stationary solutions of penalized 
constrained least-squares problems. We can extend this approach to additive 
regression by penalizing the RSS separately for each component function, 

where each Sj is a symmetric mapping, and f j  E .9?(Sj), V j. I t  is easily verified 
that the normal equations (19) are exactly the stationarity conditions for the 
above criterion. We concentrate on variable j and the eigendecomposition of 
S, = U,Djv. As before, we partition U, = (U,,: U,,) and Dj = diag(Doj,0) and 

.write f j  = Ulj$,. The stationarity condition for pj is 
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which simplifies to Bj = DB/U:j(y - Ck+ jfk), or equivalently f j  = Sj(y - Ck+ jfk) 
as in (19). 

As a leading example, let us look again at cubic smoothing splines. I t  is 
natural to generalize the univariate penalized least-squares problem (4) to: 

P , P 

minimize y - x f j  1 + C hjJ( fjn(t))' dt 
j=l j = /  

over all functions fj(.) E W,, where for brevity we have written f j  for 
( fj(xlj), ..., fj(xnj))t. We prove in Theorem 1in the Appendix that this system 
has a solution, that each of the minimizing functions is a natural cubic spline, 
and that the problem is equivalent to the finite-dimensional problem (20) with 
each Sj the appropriate cubic spline smoother matri'x (and Kj  = S '  - I, the 
penalty matrix for the j th  variable). The theorem, which is an additive extension 
of the similar single-smoother result in OYSullivan, Yandell and Raynor (1986), is 
given, as they did, for the more general problem of penalized likelihoods. 

3.4. Algorithms for solving the normul equations. For the moment we 
assume that solutions for the system (19) exist. In subsequent sections we 
establish conditions for their existence. There are np equations in (19), and 
although a direct solution is possible, it would be prohibitively expensive except 
for small data sets. Later we discuss cases in which the effective dimension is 
substantially less than np and hence a direct solution is feasible. 

There are a variety of efficient methods for solving the system (19), which 
depend on both the number and types of smoothers used. The Gauss-Seidel 
method, applied to blocks consisting of components f,, .. . ,f,, exploits the special 
structure of (19). I t  coincides with the backfitting procedure described earlier. 

The backfitting or Gauss-Seidel algorithm 

Initialize: f = ff, i = 1,2,...,p 

Cycle:j = l,2, . . . ,p,  1,2, . . . ,p ,  . . . , 


Until: the individual functions do not change. 

Convergence of the Gauss-Seidel procedure in this setting is not immediate. 
In the population setting, Breiman and Friedman (1985) proved convergence for 
compact projection operators. Bickel, Klaassen, Ritov, and Wellner (1989) prove 
under milder conditions that the Gauss-Seidel algorithm (22) converges to a 
solution of (18) in the population setting. The nature of the solution depends on 
the joint distribution of the Xj's. However, the convergence proof for the 
population version of (22) does not help much in proving convergence in the data 
case. The main stumbling block is that most reasonable smoothers Sj are not 
projections, whereas conditional expectations are. In addition, standard conver- 
gence results for Gauss-Seidel and related procedures [cf. Golub and van Loan 
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(1983), Chapter 101 assume that the matrix of the linear system is symmetric and 
positive definite. In the present setting P is not symmetric so these results 
cannot be immediately applied. I t  is true, however, that in an appropriate 
coordinate system, P is symmetric, but usually not positive definite. Breiman 
and Friedman proved convergence for strictly shrinking smoothers. I t  turns out 
that this implies positive definiteness, and so convergence is immediate. We 
derive specialized convergence results for the semidefinite case in Section 4. 

The Gauss-Seidel method is only one technique in the large class of iterative 
schemes called successive over-rehation (SOR) methods. They differ from 
ordinary Gauss-Seidel procedures by the amount one proceeds in the direction 
of the Gauss-Seidel updates, 

We will see that if the Gauss-Seidel algorithm converges, so do successive 
over-relaxation iterations for relaxation parameters 0 < w < 2. Experience and 
some limited theory for special cases indicate that some over-relaxation ( o  > 1) 
can be beneficial, whereas under-relaxation is generally detrimental. 

The numerical analysis literature also distinguishes between successive and 
simultaneous iterations, usually also referred to as Gauss-Seidel and Jacobi 
iterations, respectively. The Gauss-Seidel schemes update one component a t  a 
time, based on the most recent components available. In contrast, Jacobi schemes 
fonn a complete new set of updates from a complete old set. The difference 
between the two approaches is made explicit in the notation 

Gauss-Seidel: f;CX + s,(~- x fpW- x f;ld) , 
k < j  k > j  

Jacobi: fYW+ s,(~- f;ld). 
k + j  

However, as written here, Jacobi iterations do not converge; they require 
so-called "under-relaxation;" see Section 4.3. 

If the smoothers are chosen so that the effective dimension of (19) is less than 
np, then direct solutions become feasible. An important special case is when each 
of the S, are orthogonal projections onto a small (relative to n) subspace of R ". 
Binning smoothers, linear and polynomial regression and fixed knot regression 
splines are in this class. The corresponding projection matrices have the form 
S.J XJ.(XtX= J J.)-'Xf, where the subdesign matrices X, are generated by dummy 
variables, (orthogonal) polynomials of increasing degree or basis spline functions, 
respectively. I t  can then be shown that the system (19) is equivalent to the usual 
least-squares system 

(24) XtXb = Xty, 
where X = (X,, X,, .. . ,X,). This is seen as follows: With Sj= X,(XfXj)-lXf 
and f j  = Xjp, the normal equations (19): f, + Sj(Ck+jfk) = Sjy become 
(XfXj)pj + XfCk+ jXkpk = Xfy after left multiplication by Xf. This is just 
XfCkXkpk= Xfy, equivalent to (24). 
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The customary numerical procedures for solving linear least-squares problems 
are not iterative. They either use a Cholesky or other type of decomposition of 
XtX, or avoid forming the normal equations altogether and decompose X 
directly either through a Q-R decomposition based on Householder, modified 
Gram-Schmidt, or Givens transformations, or a singular value decomposition. 
Avoiding the normal equations is recommended for near degenerate data 
[Lawson and Hanson (1974)l. 

In the class of projection smoothers, regression spline smoothing is closer to 
the present discussion of nonparametric additive models. In this case each X, 
has k ,columns consisting of B-splines placed at  the kj  judiciously chosen knots 
for each variable x,, and evaluated at  the data. The numbers kj  and positions of 
the knots are all parameters of the procedure. Assuming we use k, = k knots and 
therefore k parameters per covariate, (24) consists-of kp equations. For small to 
moderate k and p ,  the problem can thus be solved directly without the use of 
backfitting; for large k,however, backfitting is a numerically stable alternative 
to solving a large system of equations. The placement of the knots, however, has 
remained a problem in this otherwise attractive approach. Recently, however, 
Friedman and Silverman (1989) proposed a promising stepwise procedure for 
selecting knots in this context. 

Although unnecessary, one can still solve (24) iteratively if all the S, are 
projections, and the Gauss-Seidel procedure will converge to the projection of y 
onto the column space of X. The real need for iterative schemes, however, arises 
from problems which cannot be reduced in size by reparametrizations, such as 
the normal equations (19) with at  least some smoothers S, not of the projection 
type. 

3.5. A summary of the consistency, degeneracy and convergence results. I t  
is not a priori clear when the normal equations (19) are consistent, that is, when 
solutions exist. Nor is it clear when the equations are nondegenerate, that is, 
when the solutions are unique. This contrasts with the normal equations from 
ordinary least-squares problems which are always consistent, but possibly degen- 
erate. 

In both cases, nondegeneracy implies consistency. However, the normal equa- 
tions (19) are almost always degenerate, and we need to understand these 
degeneracies. In the remainder of this section and the next section we derive the 
following results: 

1. For symmetric smoothers with eigenvalues in [O,11, the normal equations 
~f = Qy always have at  least one solution. 

2. The solution is unique unless there exists a 	g # 0 such that pg = 0, a 
phenomenon we call "concurvity." This implies that for any solution f to (19), 
f + ag is also a solution for any a. 

3. 	For this same class of smoothers, (exact) concurvity can only occur if there is a 
linear dependence among the eigenspaces of the Sj9s corresponding to eigen- 
value +1. 

4. For this same class of smoothers, tke Gauss-Seidel and related procedures 
always converge to some solution of Pf = ~ y .  
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In some instances, more general results than these are established, especially 
in the two-smoother case. 

3.6. Consistency. To show consistency of the normal equations (19), we need 
to establish that Qy E 9 ( ~ )for arbitrary data y E Rn.In this section we give a 
number of propositions for establishing consistency. We prove consistency for 
the general p-smoother case for symmetric smoothers with eigenvalues in [O,l], 
and we examine the two-smoother case in detail to develop slightly stronger 
results for that case. 

These and all subsequent results for symmetricsmoothers with eigenvalues in 
[O, 11apply to, amongst others, cubic spline smoothers, simple linear, polynomial 
and B-spline regression and bin smoothers. They also can be applied to normal 
equations comprised of a mixture of these smoothers, that is, a cubic spline 
smoother for one variable, a simple linear fit for another variable, and so forth. 
The smoothers need not even be univariate; the results apply to shrinking two-
or higher-dimensionalsurface smoothers as well. 

THEOREM2. If each S, is symmetric with eigenvalues in [0, 11, the normal 
equations (19) are consistent for every y: 

REMARK.This result generalizes the fact that least squares always leads to 
consistent normal equations. 

PROOF.We use the penalized least-squares approach of Section 3.3.2. The 
penalized least-squares criterion (20) Q(f) = 1 1  y - f + 1 1 2  + Cf;(SJ: - I)fj is a 
quadratic function in f for f, E 9(Sj), that is, it is the sum of a quadratic form, a 
linear form and a constant. Under the stated conditions, Q(f) is nonnegative for 
all f such that f, E 9(S,), since each of the penalizations fj(SJ: - I)fj  is 
nonnegative on 9(Sj) (SJ: - I has eigenvalues 1/8 - 1where 0 < 0 5 1). The 
stationarity conditions (19) then characterize the minima of Q(f), which must 
exist since every multivariate quadratic function bounded below has at least one 
minimum. 

For the case in which the symmetricsmoothershave eigenvalues in [0, 1) only 
(i.e., +1excluded), we can write down closed formulas for the solutions. 

PROPOSITION3 [Breiman and Friedman (1985)l. If the smoothers Sj are 
symmetric with eigenvalues in [0, l), the solutions of the normal equations (19) 
can be written f, = A,(I + A)-ly, where A, = ( I  - Sj)-IS, and A = CjAY 

. PROOF.The normal equations are equivalent to ( I  - Sj)f, = S,(y - f+), 
j = 1,...,p. Thus f, = Aj(y - f +) and f+=A(y - f +). Since A, is symrnetnc 
and nonnegative definitive under the assumptions on S,, the same holds for A. It  
follows that f + =  ( I  + A)-lAy exists, and f, = Aj[I - ( I  + A)-lA]y = 

A,(I + A)-'y. 
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Below is a less stringent necessary and sufficient condition on the Sj for 
consistency of the normal equations which leads to a more general result for the 
two-smoother case. 

THEOREM4. For arbitrary linear mappings Sj, the normal equations (19) 
are consistent for arbitrary y iff one of the following two equivalent conditions 
hold: 

1. f + =  0 whenever etf = 0. 
2. f j  E&,(S') for at least one and hence all j whenever Ptf = 0. 

We prove Theorem 4 in the Appendix. The two-smoother case is of special 
interest, and simplified conditions can be given. 

COROLLARY4.1. For arbitrary linear mappings S, and S,, the two-smoother 
normal equations are consistent for arbitrary y iff f,  = S;f, whenever f,  = 

(SlS, Yf 1. 

PROOF. The second condition of Theorem 4 becomes Sff,= f ,  whenever 
f, = -Slf, and f, = -Sif,,which is equivalent to the condition above. 

COROLLARY4.2. If in the two-smoother case both smoothers are symmetric 
with eigenvalues in (-1,1], then the normal equations are consistent for 
arbitrary y.  

PROOF. The proof follows from the fact that such smoothers are shrinking: 
llSjfjll I Ilfjll, and equality holds iff Sjfj= fj. We verify the conditions of Corol-
lary 4.1: I f f ,  = S,S,f,, we get llflll = llSzSlflllI llSlflll, hence S,f, = f,. 

The conditions of Theorem 4 and Corollary 4.1 above are difficult to establish 
for arbitrary smoothers. As we have seen, some commonly used smoothers 
(running lines and locally weighted running lines) may have singular values 
larger than 1.We have empirical evidence, however, that: 

1. The spectral radius p(S) equals one for both these smoothers, with the 
constant and,linearterms belonging to the eigenvalue 1, 

2. for the two-smoothercase, the constant is the only eigenvector of (SIS,)t with 
eigenvalue 1(unless x, = x,), and 

3. no complex eigenvalue of absolute value 1other than 1exists. 

Thus the conditionsof Corollary 4.1 may be empirically verified in most cases. 
Figure 9 shows (a) the eigendecomposition of S, for a running-line smoother 
based on 50 pseudorandom Gaussian observations x, with span 50%,and (b) the 
decomposition of (SIS,)t for this variable and a similar (correlated) vector x,. 
The eigenvalue 1 has multiplicity 1 for the constant term. If x, and x, were 
exactly collinear, it would have multiplicity 2. 
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real eigenvalues . 
FIG.9(a). The (compkx) eigendecomposition for a running-line smoother matrix S, based on 50 
pseudorandom Gaussian observations, using a span of 50%. The eigenvalue 1 has multiplicity 2, 
corresponding to the constant and linear terms. 

real eigenvalues 

FIG.9(b). The eigendecomposition of (S,S2)t for S z  similar to 8.Here 1 has multiplicity 1 for the 
constant term. This is an empirical demonstration that the conditions for Corollary 4.1 are satisfied 
for these data. 

A condition like IISIII < 1, IIS211< 1 for some matrix norm would also be 
sufficient to  guarantee consistency, since any matrix norm dominates the spec- 
tral radius [Householder, (1964),Section 2.21, and the condition of Corollary 4.1 
would be vacuous. Since most smoothers reproduce constants and linear func- 
tions of the predictor on which they are based, this condition would seldom 
apply. A less stringent condition is given by Corollary 4.3. 

COROLLARY If in the two-smoother case, the smoothers are arbitrary 4.3. 
but llSISzll< 1 for an arbitrary matrix norm, then the normal equations are 
consistent for all y. 
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PROOF.If we use the two-norm llCl12 = supa+ ollCall/llall, then the proof is 
simple, since 11SlS2112= II(S1S2)tl122 P ( ( S ~ S ~ ) ~ ) .Thus 1 is not an eigenvalue of 
(S1S2)tand the conditions of Corollary 4.1 are vacuous. In fact, for any other 
matrix norm one can show [Householder (1964), Section 2.21 that JIS,$JI2 
p((SlS2)t)and so the result is true in general. 

3.7. Degeneracy of smoother-based normal equations: collinearity and con-
curoity. The problem of nonunique solutions of normal equations is a standard 
topic in the teaching of multiple linear regression. Collinearity detection as part 
of regression diagnostics is a must in every good regression analysis. Practioners 
are usually concerned with approximate collinearity and its inflationary effects 
on standard errors of regression coefficients. Exact (up to numerical precision) 
collinearity is rare and usually results from "underdetehined models" with too 
many or redundant variables included. Just the same, exact degeneracy of 
normal equations is an extreme case worth exploring. Its structure should be 
fully understood before approximate degeneracies are tackled. In this paper we 
deal only with exact degeneracy of smoother-based normal equations. 

While the term "collinearity" refers to linear dependencies among predictors 
as the cause of degeneracy, the term "concurvity" has been used [Buja, Donne11 
and Stuetzle (1986)l to describe nonlinear dependencies which lead to degeneracy 
in additive models. In a technical sense, concurvity boils down to collinearity of 
(nonlinear) transforms of predictors. Consider, for example, additive regression 
where we allow linear and quadratic transformations of the predictors. This 
amounts to multiple linear regression including the square of each predictor. 
Although collinearity among raw and squared predictors describes degeneracy in 
a technical sense, it is more intuitive to think of i t  as an additive dependence 
f += 0, where each component fj is a quadratic polynomial in the predictor xj. 
Similarly, we can describe degeneracy in terms of general polynomial transforms, 
B-splines and others, by associating with predictor xj a linear space V, of 
transformations, and defining concurvity to hold if there exist nontrivial f j  E V, 
such that f += 0. This covers a t  least the situation of additive models where each 
smoother is an orthogonal projection with .%'(Sj) = V,.. 

For general smoother-based normal equations, exact concurvity is defined as 
the existence of a nonzero solution of the corresponding homogeneous equations 

(25) pg= 0. 
I t  is clear that if such a g exists, and if f is a solution to ~f = Q ~ ,then so is 
f + wg for any a,and thus infinitely many solutions exist. The set of all nonzero 
solutions to the homogeneous equations pg = 0 will be called concurvity space 
for the normal equations and the additive model defined by them. I t  is easy to 
check that 

lies in the concurvity space of the two-smoother problem if they both reproduce 
constants. Similarly, for p such smoothers, the concurvity space has dimension 
a t  least p - 1. 
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For the general p-smoother case, we again must restrict attention to symmet-
ric matrices with eigenvalues in [0, 11. For its formulation, we use the quadratic 
form of the penalized least-squares criterion obtained by setting y = 0, 

defined for g j  E g(Sj). 

THEOREM5. Ifthe smoothers Sj are all symmetric with eigenvalues in [0, 11, 
a vector g # 0 with g j  E 9(Sj) represents a concurvity (Pg = 0) iff one of the 
following equivalent conditions is satisfied: 

1. Q(g) = 0, that is, g minimizes Q. 
2. g j  €&,(Sj), j =  1,...,p ,  and g + =  0. 

PROOF. Under the given assumptions, Q is minimized iff the normal equa-
tions are satisfied. Setting y = 0 in ~g = Q ~ ,this shows the equivalence of 
concurvity and condition (1).The quadratic form Q(g) = 1 1  g + 1 1  + Cjgj(S; - I )g  
is minimized iff all its summands are minimized, that is, llg+112= 0 and 
gj(SJ:- I ) g j  = 0, j = 1,...,p. Since the eigenvalues of SJ: are 1/8 for eigenval-
ues 8 of Sj, the equivalence of conditions 1and 2 follows. 

As mentioned above, condition 2 implies that exact concurvity is exact 
collinearity if, for example, all smoothers are cubic spline smoothers. Approxi-
mate concurvity, however, can be described by approximate minimizers of Q(g), 
which leads to approximate nonlinear additive relations among the predictors. 
The authors and D. Donne11 are working on a theory of approximate concurvity. 

REMARK. If Sj, j = 1,...,p ,  are symmetric with eigenvalues in [0, I), then P 
is nonsingular. We had this result implicitly in Proposition 3, where an explicit 
solution was given. 

This remark seems irrelevant if most smoothers reproduce constants. How-
ever, in practice we usually separate the constant tenn in the additive model, 
and adjust each of the smooth terms to have mean 0. This means that implicitly 
we have redefined our smoothers to S*= S - l l t /n ,  and S*has eigenvalue 0 for 
the vector of constants. Many smoothers also reproduce linear functions as well, 
so more adjustments would be needed. 

The work of O'Sullivan (1983) can be extended to complement the results 
found here. He established (for more general loss and penalty functions) for the 
single function version of (21) that existence and uniqueness of a minimizer of 
(21) depend on the existence and uniqueness of the linear minimizer of the 
least-squares part. We have thus extended these results to the additive case; 
uniqueness of the additive minimizer is guaranteed if there is no collinearity! 

We now examine in more detail the two-smoother case. 
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PROPOSITION6. For two smothers, there exists exact concurvity iff f, = 

(S,S,)f, for some f, # 0. 

PROOF. The homogeneous equations are f, = -Slf2 and f, = -S,f,. I t  fol-
lows that f, = (S,S,)f,. On the other hand, if f, = (S,S,)f,, set f, = -S2f1,which 
will satisfy the homogeneous equations. 

COROLLARY6.1. If IIS1S211< 1 for some matrix norm, concurvity does not 
exist. 

PROOF. AS mentioned earlier, any matrix norm is a bound on the spectral 
radius. Thus +1cannot be an eigenvalue. 

COROLLARY6.2. For two symmetricsmothers with eigenvalues in (- 1, +11, 
concurvity exists iff A,(S,) nAl(S2) + 0. 

PROOF. The condition f, = (S,S,)f, of Proposition 6 is satisfied under the 
given assumptions iff f, = S2f1and f, = S,f ,, 

Corollary 6.2 has again the consequence that exact concurvity, for example, 
for a pair of cubic spline smoothers, can only be an exact collinearity between the 
untransformed predictors, since cubic splines preserve constant and linear fits. 
Such results have to be taken with a grain of salt when it comes to approximate 
concurvity, which can be generated by eigenvalues close to, but not exactly equal 
to 1. Cubic splines, especially in large samples with suitably small bandwidths, 
tend to have a good number of eigenvalues near 1.The outcome of all this is that 
even though the covariates may lie exactly on a lower-dimensionalmanifold (i.e., 
a curve for two predictors), this will not constitute an exact degeneracy unless 
the components of the additive function defining the manifold are preserved by 
the respective smoothers. 

The definition of concurvity carries over immediately to function space, that 
is Pg = 0. If the operators in P are all conditional expectations, exact concurvity 
may be defined as the existence of a set of p functions g,, ...,gp, not all zero, 
such that 

If the covariates are real-valued, and if the functions gj are smooth, such a 
relationship means that the covariates are contained in a p - 1-dimensional 
manifold of R P. 

One of the most important cases of concurvity, however, arises from non-
smooth functions gj, which may indicate the presence of multivariate clusters. 
As a simple example, consider random variables X,, X, with a joint distribution 
which satisfies P(Xl < 0, X, < 0) = $, P(Xl 2 0, X, 2 0) = $, that is, the 
values lie in only two of the four quadrants of the plane. The step functions 
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gl(xl) = 1(,,20) - ;and g2(x2) = 1(X2<o)- $ lead to gl(Xl) + g2(X2)= 0 as., a 
nontrivial degeneracy which qualifies as concurvity like any other. For a develop- 
ment of such phenomena in the context of ACE, see Buja (1989). In finite 
samples rather than distributions, we observed that sufficiently flexible smoothers 
will try to approximate step functions in such situations. 

4. Convergence of the Gauss-Seidel (backfitting) algorithm and related 
procedures. In this section we prove that the Gauss-Seidel and related 
algorithms converge for the normal equations ~f = Qy if suitable conditions are 
imposed. The general result establishes convergence for symmetric smoother 
matrices having eigenvalues in [0, 11. Slightly stronger results are derived for the 
two-smoother case. 

Consistency is obviously a necessary condition for convergence. We show, 
however, that degeneracy (concurvity) does not need to be avoided to assure 
convergence. This is in contrast to the treatment of Gauss-Seidel and Jacobi 
iterations in the literature, where linear systems are usually assumed nondegen- 
erate. An exception is Keller (1965) who deals expressly with degeneracy and 
produces results of great generality for symmetric nonnegative definite systems. 
These results would not cover indefinite systems in the two-smoother situation, 
where we can prove sharper results than Keller's. Rather than mechanically 
verifying Keller's conditions in the p-smoother case, we prefer to derive conver- 
gence of backfitting from a more intuitive descent principle for seminorms which 
is of interest in itself. Interestingly, most of Keller's results follow from it. 

4.1. The convergence of backfitting: p smothers. In this section we show 
that for symmetric, smoothers with eigenvalues in [O, 11, the backfitting algo- 
rithm always converges. 

We begin by centering the normal equations a t  an arbitrary solution f" to 
reduce the problem to that of solving the homogeneous equations, a common 
tactic in problems of this sort. Thus ~ f "= Q~ and we need to find f such that 
~ ( f- f") = 0. We have to show that for y = 0, backfitting converges to some 
solution of ~f = 0. If the normal equations are nonsingular, this means conver- 
gence to f = 0. 

To  describe the effect of updating the j t h  component under Gauss-Seidel on 
the homogeneous equations, we define the linear map 

=A full cycle of backfitting is described by the map *,, while m 
full cycles correspond to 'f'm. The problem is to show that f = TmfO converges 
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to a solution f "O of the homogeneous equations ~f = 0, for arbitrary initialization 
f O .  A relation between + and P is given by Proposition 7. 

PROPOSITION7. For arbitrary smothers, ~f = 0 iff % = f. 

The proposition is proved in the Appendix. In formal terms i t  says X(P)  = 

A,($).The solutions of the homogeneous system are exactly the fixed points 
under Gauss-Seidel iterations, and P is nonsingular iff there are no fixed points 
other than 0. 

The convergence proof is then complete if we can show that all (complex) 
eigenvalues X of 9 are either + 1or in the interior of the unit disk (IX( < I), and 
that  the Jordan blocks of + for X = 1 do not contain-off-diagonal (nilpotent) 
components. In other words, the geometric and algebraic multiplicity of the 
eigenvalue X = 1 are the same. This is formalized by Lemma 8.1 in the Ap- 
pendix. Rather than verify the conditions of this lemma directly, we take an 
intermediate step. Exploiting the fact that the Sj's are symmetric and have 
eigenvalues in [0, 11, we can interpret $' as a descent method for the correspond- 
ing penalized least-squares problem. In particular, the following theorem gives a 
sufficient condition for convergence and is a consequence of Lemma 8.1. 

THEOREM8 (Seminorm descent principle). If (f1 is a complex seminorm and + a linear mapping on C satisfying (%(< If( unless If( = 0, and % = f for 
If ( = 0, then $'m converges to a limit qrnwith the properties ~ + ~ f= 0 for all f,( 
($rn)2 = +m and +fm = +m+ = +ma 

The theorem is proved in the Appendix. I t  is easily applied to the Gauss-Seidel 
iteration + under the assumptions that all smoothers are symmetric with 
eigenvalues in [0, 11. In this case, the complex quadratic form 

is nonnegative for f, E B(Sj), and If( = I/Qo defines a complex seminorm. Its 
space of degeneracy (f I f, E B(S,), Q(f) = 0) coincides with X(P)  (by Theorem 
5) and A,(+)by Proposition 7. Thus the condition % = f for If( = 0 is verified. 
To  show that < If 1 unless If 1 = 0, we notice that +jf is the minimizer of Q(f) 
over the j t h  component of f. This ensures that ~ % l  IIf 1. If ( % I  = If 1, no strict 
descent is possible along any component, hence +jf = f, j = 1,.. . ,p. This 
implies 'h= f, and If1 = 0 follows. We have thus proved 

THEOREM9. If all the smothers S, are symmetric with eigenvalues in [0, 11, 
then the backfitting algorithm converges to some solution of the normal equa- 
tions. 
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If f" is an arbitrary solution of (19): ~f = ~ y ,the effect of the iterations can be 
described by 

f m - f =  +m(fo- f ) .  

Letting m + a,this becomes 

f W  - f = +m(fo- f) ,  

where f m  is the solution of ~f = Qy which backfitting produces from the 
initialization f O. The mapping +m is an oblique projection (i.e., idempotent linear 
transformation) which maps R nP onto concurvity space 9(+"0) = N(P). If the 
normal equations are nonsingular, that is, N(P) = 0, the limiting map +m is 0, 
and the backfitting iterates converge to the unique solution f" = P ' Q ~ .  

The speed of convergence of the sequence $'m to Tmdepends on the largest 
absolute eigenvalue IXI < 1, which can also be described as the spectral radius 
p(* - $'m). The reason is that 9" is exactly the part of the Jordan decomposi- 
tion of 9 which belongs to h = 1.The asymptotic rate of convergence for $'m is 
p(* - +m)m [Householder (1964), Section 7.41. 

If, for instance, + - +m has an eigenvalue very close to 1 (1-lop3 say), it 
might as well be considered equal to 1for all practical purposes, because the 2 to 
100 iterations one allows in practice will be unable to power it down far below 1 
(1-2 . to 1-10-I approximately). These simple considerations suggest that 
there is a link between the total number of iterations applied and the strength of 
the effect of approximate concurvity. 

Later we describe modified algorithms that partially account for these situa- 
tions by removing A1(Sj) from each of the smoothers. 

4.2. Convergence of backfitting for two smoothers. We examine the two- 
smoother case separately because we can show stronger results than for p 
smoothers, and the effect of concurvity on the behavior of the backfitting 
algorithm can be worked out explicitly. 

The normal equations 

can be formally solved in closed form in some cases: 

( I  - SlS2)fl = Sl ( I  - S2)Y, 

( I  - S,Sl)f2 = S,(I - Sl)Y, 

which leads to the unique solutions 

if the inverse exists. A common sufficient condition is (ISlS2(I< 1for an arbitrary 
matrix norm [Householder (1964), Section 2.51. In Section 3.5 we saw that this is 
sufficient for consistency and nondegeneracy. 
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We wish to obtain a formal solution of the normal equations (19) and to 
exhibit the convergence points of backfitting in the face of exact concurvity. We 
will do so under the assumption of symmetric smoothers with eigenvalues in the 
half-open interval (- l , l] .  The results are therefore more general than for p 
smoothers. 

We decompose S, = $ + Hu and S2= g2+ Hu, where Hu is the orthogonal 
projection onto U = A,(S,) n A,(S2). We have # j ~ U  = ~~g~= 0 and 
11$g211, < 1.This latter inequality is immediate from the fact that Al(S,S2) = 

A,(S2Sl) = U under the present assumptions. Invariance of U and U' under S, 
and S2allows us to examine separately the Gauss-Seidel process on the two 
subspaces. 

Consider first y and f,O in U L: For such data and initialization, the normal 
equations have only one solution which is the convergence point of Gauss-Seidel, 

Second, for y and f,O in U, the Gauss-Seidel process comes to rest after one cycle 
of updates, 

and f,' = f? = f?, f i  = fp = f,". Putting pieces together, we get Theorem 10: 

THEOREM If S, and S2are symmetric with eigenvalues in (- 1,1], then10. 
the Gauss-Seidel algorithm converges to a solution of the normal equations, 
and 

where U = A,(S,) n A,(S2), gj = Sj- HU and f,O is the initialization. 

Interpretation. The components f," and f," can be decomposed into 
(a) the part within U Lwhich is uniquely determined and depends on the data y 
only; (b) the part within U which depends on the sequence of iteration (we 
started updating f from f,O) and the initialization f,O. The corollary shows that 
the concurvity component Huy of the response y gets absorbed into the first 
component f?. Indeed, the absorption of Huy occurs a t  the very first update 
f i  H f,' and does not change any more as we see from (30). The situation is 
opposite for the concurvity component HUf i  of the initialization f,O. Since i t  is 
part of f;, i t  stays part of all iterates fp [see (30)], while the iteration f f"  gets 
suitably adjusted by subtracting out HUf,O. The terms HU y and Huf,Orepresent 
the arbitrariness of choices in decomposing 9 into the two components fr and f," 
in the presence of concurvity. The backfitting algorithm imposes a choice by 
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FIG.10. Backfitting to the least-squares linear fit with two couariates. The residual rmconverges to 
the least-squares residual yL in a zigzag fashion. In the figure, aM vectors are projected onto the 
%,,ir, plane. 

forcing a user to make a decision on the sequence of iteration and the initializa- 
tion. This corresponds to picking a specific generalized inverse of @ in the normal 
equations (19). 

I t  is worthwhile to examine some special cases in detail. 

(a) Linear regression. Suppose both S, and S, produce least-squares fits 
with an intercept, and we start with both functions 0. Then f, absorbs the 
means, and the algorithm converges to the least-squares projection Q onto the 
space spanned by 1,x, and x,. I t  can be shown that 11gl8,l1, = cos(8), where 8 is 
the angle between 4, and 4, (see Figure lo), where gj  denotes centered xj. The 
matrices g, and g2correspond to simple regressions through the origin on 4, 
and 4,. 

Since in addition the Sj are projections, i t  can be shown that a t  the mth 
iteration, the residual rmis given by 

where y' is the true least-squares residual. Thus convergence is geometric with 
rate equal to the cosine of the smallest angle between the two spaces [see 
Deutsch (1983) for this and more general results]. When 118,8,~1,= 1 (8 = O), 
then 4, = c%,, and the algorithm converges in one step with f, = Q and f, = 0. 
(b) ~ u n n i ~ y l i n e  One show that back-smothers. can numerically the 

fitting algorithm may not converge in this case. For example if n = 5 
and x, = (1,2, 3,4, 5)t, x, = (1,2,4,3,5) and both spans are 0.5, then 
((SlS2112= 1.07. The algorithm will not converge if, for example, y = 

(0.687,0.230, -0.003, -0.287, -0.626)t. In a later section we propose an improved 
algorithm that converges empirically for this example. 

(c) Analysis of variance. Consider a two-way design with unequal numbers 
of replications in each cell. As an (inefficient) alternative to the usual least-squares 
estimation, one can estimate the row and column effects alternately, iterating 
until convergence. This is a case of backfitting with two bin smoothers (see 
Section 2.1, Example 3). When only means are used, this approach has little 
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value. However, if the means are replaced by medians or some other robust 
measure of location, a resistant method for analysis of variance can be produced. 
This is discussed by Mosteller and Tukey (1977) who call it  "median polish." Its 
convergence is studied by Siege1 (1983), Kernperman (1984) and Light and 
Cheney (1985). Because of the nonlinear nature of medians, this case is outside 
the scope of this paper. 

4.3. Successive over-relaxation. In its simplest form, successive over-relaxa- 
tion is a modification of the Gauss-Seidel procedure in the following sense: The 
update of component j is a linear combination 

of the old vector and the Gauss-Seidel update. For the homogeneous problem we 
therefore consider the update mappings 

Under the condition of Theorem 9 the quadratic form &(Tjf) as a function of the 
relaxation parameter oj is a parabola symmetric about it: minimum a t  oj = +1. 
Therefore, ~ ( $ ~ f )  < Q(f) for all values 0 < oj < 2 iff Q(Tjf) < Q(f). AS a conse- 
quence, the reasoning which lead to Theorem 9 applies to $ = $p'$,-l . q1as 
well as for arbitrary fixed values oj E (0,2). 

PROPOSITION Under the assumptions of Theorem 9, the successive over- 11. 
relaxation modification of the backfitting algorithm for oj E (0,2) converges to 
some solution of the normal equations. 

PROPOSITION12. Make the assumptions of Theorem 9,  and consider the 
two-smoother case. If we allow only one nontrivial reluxation parameter o,, 
while w2 = 1, then the value of ol  that decreases Q the most, for a given 
f E w($~) ,is 
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Note that considering only f E ~ ( 4 ' ~ )is no essential restriction: This is always 
satisfied after the first iteration 

since we leave o, = 1unrelaxed. 
For more than two smoothers, we cannot expect a general result on speed-up 

for over-relaxation. The analytical reason is that the product of more than two 
orthogonal projections can have negative eigenvalues, while a product of two 
cannot. This fact could be used to construct examples where over-relaxation is 
detrimental. This may be an atypical case, however, and some over-relaxation 
may still result in speed-up in most cases. 

We conclude this section with a remark on Jacobi or simultaneous iterations. 
The naive (generally divergent) version is f y w  = Sj(-Ch + ,f;ld) for the homoge- 
neous normal equations. This can also be written as f """ = (I - @)fold. We 
mentioned in Section 3 that a certain amount of under-relaxation is necessary to 
achieve convergence: 

As for the Gauss-Seidel iterator $' it  is immediate that &,(I - a@)= N(P) for 
w # 0.We wish to examine for which o # 0 the iteration I - o @  has no absolute 
eigenvalue 2 1other than possibly +1.Lemma 8.1 in the Appendix will assure 
convergence of (I - to an oblique projection onto N(@). 

One can show that @ is diagonalizable, that its eigenvalues are real, nonnega- 
tive and bounded by p [Buja, Donne11 and Stuetzle (1986)l. zf A is an eigenvalue 
of P, so is 1- oh for I - w@, and we recognize that (I - UP): converges to the 
eigenprojection of @ for the eigenvalue A = 0 iff 0 c q < 2/p(P). A conservative 
choice would therefore be o = 2/p, since generally p(P) c p. 

4.4. An improved backfitting algorithm. Practical experience with the back- 
fitting algorithm has shown that for correlated covariates, a great many itera- 
tions can be required to get the correct average slope of the functions. We have 
seen (Section 4.2) that for linear fitting, the rate of convergence for two variables 
is equal to their correlation. Since smoothers typically contain eigenspaces with 
eigenvalue +1, it makes sense to extract these "projection parts" from the 
smoothers and perform the projection in one multiple linear regression step. 
Denote by Hi, the  orthogonal projection onto &,(Si). Define the modified 
smoother Sj* = Hj + (I- Hj)Sj = Hi + 4.(if Sj is symmetric, then Sj* = Sj). 
We now define the modified backfitting algorithm. 

0. Initialize f;,...,fa and set f + =  f, + f, + . . a  +fp. 
1. Regress y - f"+ onto the space spanned by Al(Sl), ...,Al(Sp), that is, set 

g = H(y - f",), where H is the orthogonal projection onto Al(Sl) + 
. . +A',(SP) in Rn. 

2. 	Fit an additive model to y - g using smoothers gi; this step yields an additive 
fit f + =  f ;  + . .  +fp. 

3. 	Repeat steps 1 and 2 until convergence. The final estimate for the fit is-
f + =  g + f + .  
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Step 2 is deliberately vague, since a number of possibilities exist; we consider 
two: 

2(a) The additive fit is obtained by one backfitting loop based on S,,. ..,gp, that 
is, p smooths in all; 

2(b) as in (a), but the backfitting loop is iterated until convergence. 

THEOREM13. If S,, j = 1,2,...,p, are symmetric with eigehvalues in [O,l], 
then the modified backfitting algorithm converges in the sense that g, 6,...,fp 
converge. 

PROOF. We prove convergence for both versions corresponding to steps 2(a) 
and 2(b) given above. 

(a) The convergence with step 2(a) follows immediately from Theorem 9. I t  is 
a backfitting algorithm with p + 1smoothers: H, S,,...,Sp. 

(b) For the algorithm with step 2(b), the inner loop converges (each time) once 
again by Theorem 9. In fact, since all the smoothers $ are strictly shrinking, the 
inner loop converges to a unique solution f;,...,fa. To show that the outer loop 
converges, we can apply the result from Section 4.2 on backfitting with two 
smoothers, H: the least-squares projection matrix, and B, the linear operator 
resulting from the converged inner loop. Notice that neither H nor B are 
univariate smoothers! We will show that llBl12 < 1 which implies IIHB1I2 < 1 
since 1 1  H1 1  = 1.Let A, = ( I  - $,)- and A = C,P_,A,as in Section 3.6, Propo-
sition 3; thus B = (I+ A)-lA. From the proof of Proposition 3, A is symmetric 
and nonnegative definite, and thus B is symmetric with nonnegative eigenvalues 
less than 1, as eigenvalues 8 of A translate into eigenvalues 8/(1 + 8) of B with 
the same eigenvectors. 

One might compromise between steps 2(a) and 2(b) and perform a fixed 
number q > 1of inner loops. In practice, none of these alternatives appears to 
dominate, and all dominate the original backfitting algorithm. We discuss 
convergence issues further in Section 5.3. 

If the S, are symmetric with eigenvalues in [O,11, then g, = Sj- Hi,and 
11$11 < 1.Cubic smoothing splines belong to this class, and hence the algorithm 
always converges for them. Running-line smoothers are asymmetric and may 
have a singular value > 1, so the result cannot be applied. If cubic smoothing 
splines are used for all predictors, H is the projection matrix corresponding to 
the least-squares regression on (1,x,, ...,x,). The nonlinear functions f" are 
uniquely determined. Exact concurvity (collinearity) can show up only in the H 
step, where it is dealt with in the standard linear least-squares fashion. At 
convergence, one may then decompose g = Cg,, g, E M,(S,), and reconstruct 
final components f, = g j  + f";. If S, is a cubic spline smoother and if y was 
centered initially, then g, = 4.x,, where B,, ...,P*, are the coefficients from the 
multiple linear regression of y - Cf",on x,, ...,x,. 
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THEOREM 14. Suppose the modified backfitting algorithm has converged 
with smothers g, and projection H, yielding functions fj  and g j  E Xl(Sj). 
Then the components f j  = g j  + fj  are solutions to the normal equations wzth 
smothers Sj* = Hj + ( I  -Hj)S,. 

We prove Theorem 14 in Appendix A.2. Notice that we are not assuming 
symmetry in contrast to most previous results. For symmetric smoothers (Sj* = 

Sj), the theorem says that the modified backfitting algorithm solves the original 
system of equations. Using this result, together with the closed form expression 
in Proposition 3, it is easy to arrive at Proposition 15. 

PROPOSITION With H and B defined above, the closed form expressions 15. 
for the normal equation solutions are f+=( I  - BH.)-lB(I - H)y and g = 

H(y - #+). These can be combined to form 

f + =  S+Y 

and 

f j  = g j  + 4, 
where the gj's are any vectors g j  EA,(Sj) such that Cgj = g. 

5. Further features of additive models. 

5.1. Weighted penalized least squares. In many situations, one prefers 
weighted least squares. This is the case if the observations have known but 
unequal relative precisians, or when the least-squares problem is part of another 
iterative procedure, for example, the local scoring procedure of Hastie and 
Tibshirani (1986a, b). An additional complication may arise when the data are 
correlated with a covariance matrix which is known up to a constant. All these 
cases are covered by the penalized least-squares criterion 

which is to be minimized under the constraints f, E U,. The matrix W is a 
symmetric positive-definite matrix (generally the inverse of the covariance ma- 
trix up to a scale factor), Kj is the positive semidefinite penalization matrix and 
Uj is the constraint space for the j t h  predictor. The customary coordinate 
transformation 9 = W'/Zy, f; = wl/zf,, ifj= ~ ~ - 1 / 2 ~ ~ ~ - 1 / 2 ,  J'q.= W1/ZU. 
brings us back to unweighted penalized constrained least squares. Thus, all 
results on existence, degeneracy and convergence of algorithms apply to this 
situation as well. We may just add that in the unconstrained case the smoother 
matrix associated with the j t h  predictor can be written Sj = ( I  + W-lKj)-'. 
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This is obviously not symmetric in the canonical coordinate system, but it is so 
after the above coordinate transformation. 

5.2. Remarks on inference for additive models. For the remainder of this 
section we will assume that yi = g(xi) + E ~ ,where g(xi) is the true regression 
function and the errors ei are uncorrelated with zero expectation and common 
variance a2. 

5.2.1. Bias and consistency. As in the univariate case, a fitted additive 
model will typically be biased, unless rigid assumptions are made. For example, if 
we assume that g(x) is a polynomial of fixed degree, then the appropriate 
least-squares fit will be unbiased. If we assume that g is additive but otherwise 
arbitrary, the additive fits will be biased just as in the univariate case. Typically 
investigations of finite sample bias involve simulation and bootstrap methods. 

Asymptotic consistency is a more manageable issue that has been studied in 
the literature. Either we assume the additive model is correct, or study consis- 
tency for the projection of g onto the space of additive fits. Breiman and 
Friedman (1985) discuss consistency using simple running-mean smoothers. Stone 
(1985) gives a detailed study of rates of convergence for additive model fits using 
regression splines, and shows that they have the same rate as a univariate fit. 
The details are beyond the scope of this paper. 

5.2.2. Variance. From the previous sections we note that each estimated 
smooth from the backfitting algorithm is the result of a linear mapping or 
smoother applied to y. This means that the variance and degrees-of-freedom 
formulas developed earlier can be applied to the backfitting algorithm. At 
convergence, we can express the np vector of fits as f = i)-Qy = Ry. If the 
observations have i.i.d. errors, then cov(f) = RRta2, where a2  = var(yi). As in 
the least-squares case, if P has eigenvalues close to 0, this will be reflected in 
cov(f) as large variances and covariances. In this setting eigenvalues equal to 0 do 
not result in infinite variances; since they are ignored in the generalized inverse 
they do not contribute to the covariance matrix. The covariance matrix is 
restricted to the subspace for which the estimates are unique. Rather the infinite 
variances are reflected in our freedom of choice of the starting values and thus 
the solutions found by Gauss-Seidel. 

Direct computation of R is formidable; instead we apply the backfitting 
procedure to the unit vectors. The result of backfitting the ith unit vector is the 
i th  column of R. The confidence bands in Figure 7 were constructed using 
+twice the square root of the diagonal elements of RRt. Hastie (1988) has 
developed parametric approximations to the additive model fit; amongst other 
uses, they provide useful approximations to such second-order information as is 
sought here, without any iterations. They are also useful for demonstrating the 
effects of approximate concurvity on the standard errors. 

5.2.3. Degrees of freedom. I t  would be convenient if the degrees of freedom 
of the additive model were additive; that is, if the total degrees of freedom were 
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simply Z,P tr(2Si - SiSi). This is the case if each Siis an orthogonal projection. If 
this held true, the computation of degrees of freedom would be much easier, for 
one would have only to compute the degrees of freedom of each individual 
smoother. We will briefly investigate the additivity of degrees of freedom in an 
additive model. 

Consider first a single-smoother situation. We assume that all smoothers are 
centered, shrinking and symmetric, with nonnegative eigenvalues. Denote the 
eigenvalues of the smoother by 12 7, 2 7, 2 . . 2 r n 2  0. The expression 
tr(2S - S S )  equals ZPi(2 - ri). NOW consider a multiple predictor backfitting 
algorithm with smoothing matrices S,, S,, .. . ,S,. It turns out that the exact 
degrees of freedom of the fitted model is difficult to compute analytically; in 
order to get an upper bound we consider the extreme case of concurvity in which 
the p-smoother matrices are identical. A fairly straightforward calculation using 
the expression for the fitted model given in Appendix A.2 shows that the degrees 
of freedom of the resultant fit is CfOi(2 - Bi), where Oi =pri/( l  + ( p  - l)ri). 
Now if we simply were to add up the degrees of freedom of the p smoothers, the 
estimated degrees of freedom would be pZPi(2 - ri). How do these quantities 
relate? It is easy to show that 

We see that (1) smoothing on the same covariate increases the degrees of 
freedom and (2) adding up the degrees of freedom of the individual fits provides 
an upper bound on the true degrees of freedom of the fitted model. 

Does this relationship hold in intermediate situations, that is, if the smoother 
matrices are not identical? We ran a small experiment to investigate this further. 
Two samples of size 20 were generated fpom the standard normal distribution 
and the second sample was adjusted so that its sample correlation with the first 
sample took on the values 0, 0.5, 0.9 and 1.Then we computed the quantities 
Cf13,(2 - 13,) and 2Cfri(2 - ri) for a cubic spline smoother with various values of 
the smoothing parameter. The results are shown in Figure 11. (When we 
repeated this experiment so that different sets of design values were generated, 
the results changed very little.) 

We see that adding up the degrees of freedom of the two smoothers is quite a 
good approximation, and is only inaccurate when a small smoothing parameter is 
used or the covariates are very highly correlated. 

5.3. A closer look at convergence. In this section we demonstrate the con- 
vergence patterns for the algorithms presented so far, as well as for other 
variants and algorithms for solving the system (19). 

Consider the case of extreme collinearity, where we have two identical covari- 
ates and a cubic spline smoother matrix S. Some simple calculations show that 
starting the backfitting algorithm from 0, the residual after m smooths is given 
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FIG.11. The "true" DF of the additive fit, based on the formula tr(2 R - RtR) us. the DF obtained 
by adding D 4  for the individual smoothers. 

This shows us a number of things: 

1. The residuals (and their norm) oscillate as they converge. 
2. 	The converged model is rougher than a single smoother. This is true since the 

eigenvalues of ( I  + S)-l(I  - S)  are at most those of I - S, so the residuals 
are "smaller." 

3. By looking at every other iteration, 

(35) r2m = ( I  + ~2 + ~4 + . .. +~2(m-1)) ( I  - sI2y9 

i t  is clear that the norm of the residuals converges upwards, after every even 
number of steps. 
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' 4. 	r2 is the same as the "twicing" [Tukey (1977)l residual, where twicing 
enhances a smooth by adding in the smooth of the residual. If twicing is 
continued, however, the "ning" residual is (I- S)" which converges to 0 for 
shrinking smoothers. 

We have seen similar behavior in real data examples where the variables are 
strongly correlated. One point is clear: I t  is not appropriate to track the residual 
sum of squares to test for convergence when backfitting with smoothers. This 
should not surprise us, since we are minimizing a penalized residual sum of 
squares. 

Figure 12(a) shows the convergence patterns for the ozone data analyzed in 
Section 3.1. Spline smoothers were used, standardized to have the same degrees 
of freedom of approximately 4. The upper curve (dots) is log(RSS - 5800) for the 
ordinary backfitting algorithm, plotted against the'number of smoothers. The 
middle curve labeled "m" is the same for the modified backfitting algorithm, 
with one inner backfitting iterations per least-squares fit. We have counted the 
least-squares fit as one smooth in this comparison. The modified algorithm is 
clearly an improvement. The lower curve is once again the regular algorithm, but 
with special initial functions. If s j  is the vector of fitted values obtained from the 
simple spline smooth against variable j, then the initial function for this variable 
is ajlxj + aj,s j, where the aji are chosen globally by least squares. This has the 
same flavor as the augmented partial residual plots of Mallows (1986), and in 
this example does very well. I t  is interesting to note again that for the "s" curve 
the RSS increases initially! 

We use as convergence criterion A, = ZiP_,l(fT- fy-l(l2,the sum of squares 
of the changes in the functions after each inner loop. An alternative would be to 

number of smooths 

FIG.  12(a). Convergence patterns for three different backfitting algorithms. The dotted curve is the 
standard algorithm starting from 0, the curve labeled "m"t h  modified algorithm, and the curve 
labeled "s" the modified algorithm with special initial functions. 
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outer loop iterations 

FIG.12(b). The change in the squared norm A ,  for the three algorithms, plotted on the logarith- 
mic scale. Each point corresponds to a complete cycle of the inner loop. 

use the penalized residual sum of squares itself. Figure 12(b) plots log(A,) vs. m 
for the three algorithms above. The modified algorithm appears to have a higher 
convergence rate than the unmodified algorithm. Our experience to date indi- 
cates that it is hard to improve dramatically over the regular algorithm, 
provided good starting values are used. 

5.4. Related p.ethods: linear models with a single smooth term. Consider 
an additive model in which all but one term is assumed to be linear. The 
corresponding backfitting algorithm can be thought of as having two smoothers, 
one representing a least-squares fit XD on one or more covariates (represented by 
the design matrix X) and the other a smoother S, producing an estimate f?. 
The backfitting steps are f, = Sl(y - f,) = X(XtX)-lXt(y - f,) = xD, and 
f, = S2(y - xD). I t  turns out that we can solve for D and f," explicitly, 

Green and Yandell (1985) derived (36) and a more general version of it in their 
work on semiparametric generalized linear models. Within a general likelihood 
model they allow a smooth function of one or more variables, and base its 
estimation on a penalized likelihood approach. . 

Denby (1984) derived (36) as a method for discovering nonlinearity for a single 
covariate in regression. Her starting point was not the backfitting algorithm; 
instead, she considered the penalized least-squares criterion 
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where K is the penalty matrix discussed earlier. Clearly (37) is a special case of 
(20). Denby also considered an alternative criterion. She chose to minimize 

Surprisingly this has a solution different from (36): f," = S2(y - xB) but 

Denby's investigation suggests that in many practical cases the differences will 
not be substantial. 

The solution (36) requires the condition that ( I  - S2)X has full rank; this is 
met if the covariate in the smoother is not collinear with any of the columns of 
X. The estimates require O(n) operations to compute, since we apply S succes-
sively to each of the columns of X, and this operation is O(n). In general, such 
explicit expressions for the solution are cumbersome and very expensive to 
compute. Even in the two-smoother case the expression given by (29) is O(n3) to 
compute. In that case backfitting is a much more efficient method for obtaining 
the solutions. 

Hastie and Tibshirani (1987) discuss this special case of the backfitting 
algorithm as a technique for nonlinear analysis of covariance, and contrast it 
with other methods in the literature. 

Notice that the first equation in (36) is the solution to a generalized least- 
squares problem with variance ( I  - S2)-'. Denby (1984) and Green (1987) 
explore this connection between generalized least squares and smoothing. 

5.5. Convergence of the ACE algorithm. The ACE algorithm [Breiman and 
Friedman (1985)l estimates an additive model with a transformation of the 
response as well as each of the predictors. I t  does so in an alternating fashion, 
iterating between a backfitting algorithm applied to the current estimate of the 
response transformation, and a smoother of the current additive fit on the 
response. Let S,, . . . ,S, be the linear smoothers for the predictors, symmetric 
with eigenvalues in [O,l] to ensure the convergence of backfitting. Let Sybe the 
linear smoother for the response. Further, let S+ be the linear operator defined 
in Proposition 15 that produces the additive fits. Then Breiman and Friedman 
show that the ACE procedure converges if the largest eigenvalue of the product 
operator SyS+is real and positive. Using this, we can show that ACE con- 
verges if Syis symmetric and nonnegative definite. From Proposition 15, S + =  
(H + ( I  - H)(I - BH)-lB(I - H). One can check that S+ is symmetric and 
nonnegative definite. Hence if Syis symmetric and nonnegative definite, then 
S,S+ is the product of two symmetric, nonnegative definite matrices and 
therefore has real, nonnegative eigenvalues. 

I-t is interesting that we do not require Syto be shrinking. The reason is that 
in the ACE algorithm the transformation for y is rescaled after each iteration, 
and thus Syis effectively scaled so that its eigenvalues are in [0, 11. 
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6. Discussion. In this paper we have looked a t  linear smoothers and their 
use in additive models. We summarize the main points. 

1. Many useful smoothers, in particular the running-line and cubic spline 
smoothers, are linear and hence are easily accessible to analysis through the 
corresponding smoother matrix. 

2. Smoother matrix plots, singular value decompositions and self-influence plots 
are useful ways of investigating the operating characteristics of smoothers. In 
our limited experience locally weighted running lines and the cubic spline 
smoother seem to be quite similar in the way they smooth data. 

3. 	The cubic spline smoother matrix is particularly tractable because it is 
symmetric and has eigenvalues I1. Only constant and linear functions are 
passed through a cubic spline smoother unchanged. 

4. 	The additive model is a useful nonparametric regression model that is more 
flexible than the standard linear model and at  the same time much more 
interpretable than a general high-dimensional regression surface. 

5. 	Estimation of the additive model with linear smoothers leads to a linear 
system of equations for the unknown functions. The backfitting algorithm 
provides an efficient method for solving this system and is equivalent to the 
well-known Gauss-Seidel procedure. 

6. 	We have established consistency of the system of equations and convergence 
of the Gauss-Seidel procedure (and related methods) when .symmetric shrink- 
ing smoothers are used. Nonuniqueness occurs when "concurvity" exists and 
we have studied this phenomenon in some detail. 

7. 	A penalized least-squares criterion has been derived, whose minimum is given 
by this same system of equations. This connection was exploited in establish- 
ing the consistency, degeneracy and convergence results. 

8. We have developed modified backfitting algorithms that separate out the 
eigenspaces of eigenvalue 1. The resultant procedure is faster than the usual 
algorithm and we have proven its convergence for symmetric, shrinking 
smoothers. 

9. We have described some inferential tools for linear smoothers and additive 
models including estimation of the number of parameters of the fitted model 
and standard error bands for the functions. 

This work leaves open a number of issues for further study. Many of these 
have been mentioned already. We raise some additional questions below. 

(i) How do the various smoothers perform with real data? This is a very 
complex question that might be addressed with a large-scale simulation study. 

(ii) Can the results for additive models be extended to algorithms that use 
nonlinear smoothers? Many simple smoothers are nonlinear, for example, the 
running-median smoother. Also, as mentioned earlier, if a data-based criterion is 
used to pick the smoothness parameter the resultant smoother is nonlinear. 
More complicated smoothers, such as the "supersmoother" [Friedman and 
Stuetzle (1982)l which is used in the ACE algorithm, are also nonlinear. Nonlin- 
ear smoothers are difficult to analyze theoretically but seem to work well in 
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practice. In the experience of Breiman and Friedman (1985), the backfitting 
algorithm, using supersmoother, rarely fails to converge. Degrees of freedom and 
variance of the fit are difficult to compute analytically but simulation can 
instead be used. 

(iii) Can the results for additive models be extended to more complicated 
models? A number of extensions of additive models have been proposed, all using 
the backfitting algorithm as part of the estimation process. These include 
generalized additive models [Hastie and Tibshirani (1986a)l and semiparametric 
generalized linear models [Green and Yandell (1985)], which extend the class of 
generalized linear models and other nonlinear models, and projection pursuit 
regression [Friedman and Stuetzle (1981)l which allows arbitrary linear combina- 
tions of the covariates. Hastie and Tibshirani (198613) have used the results of 
this paper to establish convergence of the local scoring 'algorithm for generalized 
additive models, under suitable conditions. 

(iv) How do we assess and deal with approximate concurvity? 
(v) Can computable measures for influence and lack of fit be developed for 

additive models? 
(vi) What are the operating characteristics of the standard error curves? Are 

they approximate confidence curves, in a pointwise or uniform sense? 

APPENDIX 

A.1. Proofs of results in Section 3. 

Existence of penalized likelihood solutions. O'Sullivan, Yandell and Raynor 
(1985) proved an important result which makes existence and uniqueness proofs 
for certain penalized likelihood models simpler-they show that a finite-dimen- 
sional approximation always does better for the criterion. We first state their 
result for the univariate cubic smoothing spline. 

Let Y be the Sobolev space of real-valued functions f defined, for simplicity, 
on D = [O, 11, with penalty functional J2( f ) = /,1[ f 12  dt, and inner product 
( f 7 g )  = f (O)g(O) + f (o)~(o)+ /;fi t)g( t)  dt. 

Consider penalized likelihoods of the form 

Let ei be the piecewise cubic polynomial representers of evaluation, such that 
f ( t i )  = ( f ,  ei). Finally, let Y n  = Y o  $ {ei)r=l, where Y o  is the class of linear 
functions [for which J2( f O) = 01. Then for all f E 9 ,  

where f l is the projection of f onto Y ". This shows that the maximizer of l,,, if 
it  exists, lies in the finite-dimensional subspace Y n  of Y .  
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The proof of O'Sullivan, Yandell and Raynor has two steps: 

1. f ( t i )  = f '(ti), and 
2. J2(f ) = J2(f ') + J2(f 2),where f = f + f with f E Y n L,and this estab-

lishes the result. 

Our penalized likelihoods, which include penalized residual sums of squares as 
a special case, have the form 

n P 

(40) ln,( f )  = C l i (~ i2fl(ti1) + fi(ti2) + +fp(tip)) - C AjJ2( fj), 
i=  1 j=1 

where f is the vector of functions f,. 
Let 3 denote the Sobolev space (defined above) for functions of variable t,, 

and define the Cartesian product space YProd= Pl X Y2 X . . XYp. A natural 
inner product on Yp,, is 

P 

(41) ( f 7 g )  = C Aj( fj, gj). 
j=1 

YP,, is a Hilbert space for which the natural imbeddings of Y, are all closed 
linear subspaces. Also, the norm topology of Yprodcoincides with the product 
topology inherited from the factors q. 

The representers have the form ei,= (0, ...,ei,/A ,, 0, ...,O), where ei,is the 
it h  representer for q,and ( f ,  eij) = fj(tij). 

THEOREM1. Denote by qnthe version of Yn for q ,  and let Ypk, = 

Y: X ... X Ypn be the appropriate subspace of Yprod.For any function f E 

Yprod, let f 1E Yp:+ denote the vector of functions whose elements are the 
coordinate-wise projections onto Yjn. Then In,( f )  II,,( f l )  for all f E YPIod. 

PROOF, The proof follows very closely that of O'Sullivan, Yandell and 
Raynor. For each j, 

fj(tij) = ( f ,  ei,) 

= ( f ',eij) + ( f 2,e,,) 

= ( fjl, eij) 

= fjl(tij). 

Also Z,Aj J2j( f,) = (f - f O, f - f O), where f O is the vector of functions 
with elements the coordinate-wise projections onto To.This implies that 
C J2 ,( fj) = C J2,( f;) + C,A J2;( f;). 

THEOREM4. For arbitrary linear mappings, the normal equations (19) are 
consistent for arbitrary y iff one of the following two equivalent conditions 
holds: 

1. f + =  0 whenever ptf  = 0. 
2. f, E Xl(S')for a t  least one and hence allj whenever ktf = 0. 
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PROOF.We wish to show that Qy E W(9) iff the conditions of this proposi-
tion are met. The proof consists of a specialization of the general fact W(p) = 

M(P~)' . Consistency is thus equivalent to Qy I.N(pt), or Zk(Sky,f,) = 0 for 
f E .N(pt), that is, Ptf = 0. The condition Zk(Sky,f,) = 0, if rewritten as 
(y,CkSifk) = 0, is seen to be equivalent to CkSifk= 0 since we require this 
condition to  hold for arbitrary y E Rn. Thus consistency is equivalent so far to 

P 

Skf, = 0 whenever ptf = 0. 
k = l  

An additional simplification occurs by noticing that the if-part is equivalent to 
P 

S / f j - f j = c ,  j =  1,..., p f o r c  = SLf,. 
.,=I 

Summing up, we obtain c - f + =pc ,  or ( p  - l)ZkSifk= -f+. Thus for p > 1, 
ZkS;fk = 0 iff f + =  0. To show equivalence with condition 2, we observe that 
c = Z,Sif, = 0 iff Sjfj - f j  = c = 0 for some (and hence all) j. CI 

A.2. Proofs of results in Section 4. 

PROPOSITION7. For arbitrary smothers, ~f = 0 iff *= f. 

PROOF.Observing that each factor $, of %" = $p,. .. modifies only one 
component f j  of f a t  a time, we conclude that % = f is equivalent to 'flf = f, 
$2f = f , . .  .,$pf = f. This is the same as f j  = -S,(Ci+ jfi), j = 1,...,p ,  that is, 
Bf = 0. 

THEOREM8 (Seminorm descent principle). If If1 is a complex seminorm and 
$ a linear mapping on c Nsatisfying < If1 unless If1 = 0, and % = f for 
If1 = 0, then $" converges to a limit $m with the properties l $ m l  = 0 for all f, 
($m)2 = $m and $$" = $m$ = 

PROOF.We wish to apply Lemma 8.1 below. 

(a) We first show that the eigenvalues of $ lie in {Al [XI < 1 or X = 1): If*= Xf, then (91= ( A (  If(. However, we have either (*(< If( or If( = 0. Thus 
Ihl < 1or X = 1.. 

(b) We show W(I - 9) fl .MI($) = {O}: Let *= f and f = g - $g for some 
g. From 9= f follows If1 = 0, hence 1qg- gl = 0. For any seminorm we have 
1 J $ ~ (- JgJ1 I - g J ,hence ~$g(= )g).It follows that $g = g, hence f = 0. 

LEMMA8.1. Thepowers $" of a linear mapping $ converge to a limit $m iff 
the following two conditions are satisfied: 

(a) All (complex) eigenvalues X of $ lie in {XI [XI < 1or X = 1). 
(b) W(I - $) n .MI($) = {O}. 
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PROOF.Let * = ZC,(XP,- D,) be the Jordan decomposition [Kato (1984), 
Section 1.41 of *with eigenprojection PAand nilpotent D, for the eigenvalues A. 
We get qrn= Cx(XPx- D,)". Now a power (APA- D,)" of a Jordan block 
converges iff: Either Ihl < 1, or X = 1and Dl = 0. In the former case the limit is 
0, in the latter the sequence is fixed equal to PA=,.This can be shown along the 
lines of Householder (1964), Section 7.3. 

To finish the proof, it is easy to show that condition (b) of the lemma is 
equivalent to D,=, = 0. 

PROPOSITION12. Make the assumptions of Theorem 9, and consider the 
two-smoother case. If we allow only one nontrivial reluxation parameter w,, 
while y2 = 1, then the value of o l  that decreases Q the most, for a given 
f E W(T2), is 

PROOF.We make use of the bilinear form 

Since B(f, f) = Q(f) 2 0 under the given assumptions, the form B is symmetric 
and nonnegative definite. Thus B has all the properties of a scalar product, 
except there may exist f # 0 with B(f,f) = 0. Furthermore, the Gauss-Seidel 
updates *jare orthogonal projections w.r.t. B: = $and ~(+,f ,g) = B(f,*jg). 
We wish to examine how much *w = + 2 ( ~- ( I  - *,)w) decreases Q: 

For the second term, we made use of symmetry w.r.t. B and idempotence of *2. 

Clearly, if the coefficient of w2 vanishes, so does the coefficient of o,  and the 
criterion stays flat as a function of w. Otherwise, the coefficient of w2 will be 
positive, and the minimizing o is 

The assertion of Proposition 12 follows under the assumption f E w(*~): In this 
case q2f = f since +2 is a projection, and since I - is an orthogonal projection 
for B, we get 

Clearly, &((I - *l)f) 2 Q(+~(I- *l)f) since again !f'2 is an orthogonal projection 
under B. 

The modified backfitting algorithm as a solution to the originalproblem. Let 
Sj be the smoother matrix for the j t h  variable. Define the modified smoother 
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Sj* = H, + ( I  - H.)S. as before. Let gj = ( I  - Hj)Sj, and note that if Sj isJ. Jsymmetric and shrinking, gj is strictly shrinking. For such smoothers, we have 
proved that the modified backfitting algorithm always converges whether we 
iterate the inner loop or not. 

A question remaining is whether the solution to the modified algorithm solves 
the original normal equations. This is indeed the case as we show below. 

THEOREM Suppose the modified backfitting algorithm has converged14. 
with smothers fij and projection H, yielding functions fj  and g, EAdsj) .  
Then the components f, = g j  + fj are solutions to the normal equations wzth 
smoothers Sj* = H, + ( I  + H,)Sj. 

REMARK. If Sj is symmetric, we have Sj* = S, and 'thus the solutions to the 
modified algorithm solve the normal equations with smoothers S,. These corre- 
spond to the original backfitting algorithm. 

PROOF. Convergence implies that we have stationarity conditions for both f;. 
and gj, 

Now, since Hj projects onto we have_SjHj = Hi, hence S,H, =dl(%.), 
( I  - Hj)SjHJL= ( I  - Hj)Hj = 0. From this follows Sjgj = 0. Since H,$, = 0, we 
also have H,f, = 0. Hence g j  may be dropped from (43), and fj  from (44), and we 
get 
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DISCUSSION 

University of California, Berkeley 

After finishing the ACE paper [Breiman and Friedman (1985)l I hoped that 
others would tie up some of the significant loose ends. The work under discussion 
does a good part of that admirably. 

But is i t  interesting that since that time both Friedman and myself have 
veered off in the direction of using splines for additive and more general models, 
thus circumventing the problem of convergence of iterated smooths which 
occupies much of the present paper. 

I think it would be useful, in the context of the present paper, to give the 
itinerary of my journey from smoothers to splines. In addition, another problem 
that has occupied me is the incorporation of bivariate interaction into the model 
and I will also comment on that below. 

Bivariate smoothers, in and of themselves are not of undying statistical 
interest. The interest in them developed because of realization, in the ACE 
paper, that additive models could be fitted through an iterated sequence of 
bivariate smooths. Now additive models are very interesting, since they form a 
useful and often revealing extension to linear models. 


