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Preface

This book is a. reflection of my limited experience with calculations in-
volving polynomial splines. It stresses the representation of splines a.s_linea.r
combinations of B-splines, provides proofs for only some of the results
stated but offers many Fortran programs, and presents only those parts
of spline theory that I found useful in calculations. The particular litera-
ture selection offered in the bibliography shows the same bias; it contains
only items to which I needed to refer in the text for a. specific result or a.
proof or additional information and is clearly not meant: to be representa-
tive of the available spline literature. Also, while I have attached names to
some of the results used, I have not given a. careful discussion of the his-
torical aspects of the field. Readers are urged to consult the books listed in
the bibliography (they are marked with an asterisk) if they wish to develop
a. more complete and balanced picture of spline theory.

The following outline should provide a. fair idea. of the intent and content
of the book. e

The first chapter recapitulates material needed later from the ancient
theory of polynomial interpolation, in particular, divided differences. Those
not familiar with divided differences may find the chapter a. bit terse. For
comfort and motivation, I can only assure them that every item mentioned
will actually be used later. The rudiments of polynomia.l approximation the-
ory are given in Chapter II for later use, and to motivate the introduction
of piecewise polynomial (or, pp) functions.

Readers intent upon looking at the general theory may wish to skip the
next four chapters, as these follow somewhat the historical development,
with piecewise linear, piecewise cubic, and piecewise parabolic approxima-
tion discussed, in that order and mostly in the context of interpolation.
Proofs are given for result‘s that, later on in the more general context
of splines of arbitrary order, are only stated. The intent is to summarize
elementary spline theory in a. practically useful yet simple setting-

The general theory is taken up again starting with Chapter VII, which,
along with Chapter VIII, is devoted to the computational handling of pp
functions of arbitrary order. B-splines are introduced in Chapter IX. It is

V



vi Preface

only in that chapter that a formal definition of “spline” as a linear combi-
nation of B-splines is given. Chapters X and XI are intended to familiarize
the reader with B-splines.

The remaining chapters contain various applications, all (with the no-
table exception of taut spline interpolation in Chapter XVI) involving
B-splines. Chapter XII is the pp companion piece to Chapter II; it contains
a discussion of how well a function can be approximated by pp functions.
Chapter XIII is devoted to various aspects of spline interpolation as a par-
ticularly simple, computationally efficient yet powerful scheme for spline
approximation in the presence of exact data. For noisy data, the smooth-
ing spline and least——squares splineapprommation are offered in Chapter
XIV. Just one illustration of the use of splines in solving differential equa-
tions is given, in Chapter XV, where an ordinary differential equation is
solved by collocation. Chapter XVI contains an assortment of items, all
loosely connected to the approximation of a curve. It is only here (and in
the problems for Chapter VI) that the beautiful theory of cardinal splines,
i.e., splines on a uniform knot sequence, is discussed. The final chapter
deals with the simplest generalization of splines to several variables and
offers a somewhat more abstract view of the various spline approximation
processes discussed in this book.

Each chapter has some problems attached to it, to test the reader’s "un-
derstanding of the material, to bring in additional material and to urge, at
times, numerical experimentation with the programs provided. It should
be understood, though, that Problem 0 in each chapter that contains pro-
grams consists of running those programs with various sample data in order
to gain some first-hand practical experience with the methods espoused in
the book. - u

The programs occur throughout the text and are meant to be read, as
part of the text.

The book grew out of orientation lectures on splines delivered at Red-
stone Arsenal in September, 1976, and at White Sands Missile Range in
October, 1977. These lectures were based on a 1973 MRC report concerning
a Fortran package for calculating with B-splines, a package put together in
1971 at Los Alamos Scientific Laboratories around a routine (now called
BSPLVB) that took shape a year earlier during a workshop at Oberlin orga-
nized by Jim Daniel. I am grateful for advice received during those years,
from Fred Dorr, Cleve Moler, Blair Swartz and others.

During the writing of the book, I had the benefit of detailed and copious
advice from John Rice who read various versions of the entire manuscript.
It owes its length to his repeated pleas for further elucidation. I owe him
thanks also for repeated encouragement. I am also grateful to a group
at Stanford, consisting of John Bolstad, Tony Chan, William Coughra11,
Jr., Alphons Demmler, Gene Golub, Michael Heath, Franklin Luk, and
Marcello Pagano that, through the good oflices of Eric Grosse, gave me
much welcome advice after reading an early version of the manuscript. The
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programs in the book would still be totally unreadable but for William
Coughran’s and Eric Grosse’s repeated arguments in favor of comment
cards. Dennis Jespersen read the final manuscript with astonishing care
and brought a great number_of mistakes to my attention. He also raised
many questions, many of which found place among the problems at the end
of chapters. Walter Gautschi, and Klaus Bohmer and his students, read a
major part of the manuscript and uncovered further errors. I am grateful
to them all.

Time for writing, and computer time, were provided by the Mathematics
Research Center under Contract No. DAAC-}29—75—C-0024 with the U.S.
Army Research Office. Through its visitor program, the Mathematics Re-
search Center also made possible most of the helpful contacts acknowledged
earlier. I am deeply appreciative of the mathematically stimulating and free
atmosphere provided by the Mathematics Research Center.

Finally, I would like to thank Reinhold de Boor for the patient typing of
the various drafts.

Carl de Boor
Madison, Wisconsin

February 1978

The present version differs from the original in the following respects.
The book is now typeset (in plain TEX; thank you, Don Knuthl), the For--
tran programs now make use of FORTRAN 77 features, the figures have been
redrawn with the aid of MATLAB (thank you, Cleve Moler and Jack Littlel),
various errors have been corrected, and many more formal statements have
been provided with proofs. Further, all formal statements and equations
have been numbered by the same numbering system, to make it easier to
find any particular item. A major change has occurred in Chapters IX—XI
where the B-spline theory is now developed directly from the recurrence re-
lations without recourse to divided differences (except for the derivation of
the recurrence relations themselves). This has brought in knot insertion as
a powerful tool for providing simple proofs concerning the shape-preserving
properties of the B-spline series. ‘ '

I gratefully acknowledge support from the Army Research Office and
from the Division of Mathematical Sciences of the National Science
Foundation. -

Special thanks are due to Peter de Boor, Kirk I-Ialler, and S. Nam for
their substantial help, and to Reinhold cle Boor for the protracted final
editing of the TEX files and for all the figures.

Carl de Boor
Madison, Wisconsin

October 2000
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Notation

Here is a detailed list of all the notation used in this book. Readers will
have come across some of them, perhaps most of them. Still, better to bore
them now than to mystify them later. ,

:== is the sign indicating “equal by definition”. It is asymmetric as such a
sign should be (as none of the customary alternatives, such as E, or cg,

' or 2, etc., are). Its meaning: “a := b” indicates that a is the quantity
to be defined or explained, and b provides the definition or explanation,
and “b _: -:1” has the same meaning.

{:1:, 3;, z, . . := the set comprising the elements at, y, z, ..

{zr E X : P(:1:) } := the set of elements of X having the property P(:r).
(ac, y, . . :== the sequence whose first term is rs, whose second term is y,
#5 := the number of elements (or terms) in the set (or sequence) S.

ill := the empty set.
IN := {1,2,3. ..

ZZ := {...,—-2,—-1,0,1,2,...}.

IR := the set of real numbers.
C ' the set of complex numbers. I
ET := the complex conjugate of the complex number z.
[a . . b] := {s G IR. : a §_ :1: 5 b}, a closed interval. This leaves [a, b] free to

denote a first divided difference (or, perhaps, the matrix with the two
columns a and h).

(a . . b) := {:11 G IR. : a < :1: < b }, an open interval. This leaves (a, b) free tc
denote a particular sequence, e.g., a point in the plane (or, perhaps, the
inner product of two vectors in some inner product space). Analogously,
[a . . b) and (a . . b] denote half-open intervals.

co11st,.,,,,____,,_, :== a constant that may depend on Cr, . . . ,w.

XV

r



xvi Notation

f:A -—-1 B: a 1-> f (1.1) describes the function f as being defined on
A =: dom f (called its domain) and taking values in the set B =1 tar f
(called its target), and carrying the typical element cr. G A to the el-
ement f(a) G B. For example, F:IR ——+ IR.:$ |—-> exp(:.1:) describes the
exponential function. I will use at times f: a r——> f(a) if the domain and
target of f are understood from the context. Thus, ‘,u.: f 1-> fol f(;1:) d:1:
describes the linear functional p that takes the number fol f (:1:) dx as
its value at the function f, presumably defined on [0. . 1] and integrable
there.

suppf := {:1: G dom f : f(:r) 75 0 }, the support of f. Note that, in Analysis,
it is the closure of this set that is, by definition, the support of f.

f|; := g:I --1 Bta l——> f(o.), the restriction of f to I.
+ ' r n

h --1 {g_ := h approaches 0 through Eggglliii values.

rw) == hglg, re +_ h). re-> == ,,1_i_%1_ re + h).
jumpnf := f(a+) — f(a'), the jump in f across a. _ .

g(a:) = 0(f(:1:)) (in words,“g(:1:) is of order f(:1:)”) as :1: approaches a :=
lim sup | -9-E-“ill < oo. The lim sup itself is called the order constant of

1'1:-"-I'll If Z)

this order relation.
g(::.:) = 0(f(:r:)) (in words, “g(:1:) is of higher order than _f(:r)”) as :1:

approaches 1:1 := %% =-- O. _.

_f(-,y) := the function of one variable obtained from the function
f:X >< Y --1 Z by holding the second variable at a fixed value y.
Also, If G(-,y) dy describes the function that results when a certain
integral operator is applied to the function g.

(:1:)+ :--= max{:1:,O}, the truncation function.

ln:1: := the natural logarithm of :1:.

|_:...r] := max{ n G Z : n ii :1: }, the floor function.

[ml := min{ 11 G Z : n Z :1: }, the ceiling function.

6, := a Lagrange polynomial (p. 2).

(—-)” :-== (-1)’. -

:= , a binomial coefficient.

5,, := The Euler spline of degree n (p. 65).
Boldface symbols denote sequences or vectors, the ith term or entry is

denoted by the same letter in ordinary type and su bscripted by i. Thus,



Notation xvii

‘T, (Ti), ("r,)"f, ('T¢)?=], (T, :1 == 1, . . . ,1-*1), and (T1, . . .,1',.,) are various ways
of describing the same n-vector.

m:= (m,...,'m.), for m G Z.
X” := ::1:¢ G X, all

Ar, := 'r,.,.1 —— 11,, the forward difference.
V11 := T»; — 'r,_1, the backward difference.
S“'r := number of strong sign changes in "r (p. 138).
S+'r := number of weak sign changes in "r (p. 232).

iqh-__ T1--l-T,-_|.1-|-----I-T3, ifrgs;
,=,.1' 0, ifr>s.

-5

Z, ‘T-,-_ := 2 1",, with r and s understood from the context.
'1 T

fa T _:: T}'lfi~f1"'7s1 HIT E131
.,-_=,_ 1' 1, if'r>s.

For nondecreasing sequences or meshes 1", we use
['r| := max, Ari, the mesh size.
1141- := maxilj Ar,/Arj, the global mesh ratio.
m»; := max|,_._.;|=1 AT,/Ar,-, the local mesh ratio.

Ti+1/2 3=- (T-1'. +'»"-1+1)/2 - '
Matrices are usually denoted by capital letters, their entries by corre-

sponding lower_case letters doubly subscripted. A, (11,,-), (aw-)I“'”,
C11] _ £11-,1

(a,J-)'§[l1;;?=1, E Q are various ways of describing the
anal - ' - amn

same matrix.

AT := (:1,-,)_‘,)§"=1;{‘;1, the transpose of A.

AH := (fifi)f,7‘=1 ; 111, the conjugate transpose or Herrnitian of A.
det A := the determinant of A.

1'i='
5,5; :- {O . 75; , the Kronecker Delta.

'1

span(<,0i) := ago, : ctr, G IR}, the linear combinations of the sequence
((0,)? of elements of a linear space X. Such a sequence is a basis for
its span in case it is linearly independent, that is, in case 2, C1,-_<,0i : O
implies that or = 0. We note that the linear independence of such a se-
quence (<,0,)'i"' is almost invariably proved by exhibiting a corresponding
sequence (A1)? of linear functionals on X for which the matrix (A.,<,0,) is
invertible, e.g., Ago, = 55, for all i,j. In such a case, dim span(<,0,)"f‘ = n.



xvi11 Notation

II_.,;;,, := l'I;,_.1 := linear space of polynomials of order ls: (p. 1).

11..-;;._,_,,._~ := l'I;,_1,5 := linear space of pp functions of order k with break
sequence 5 (p. 70). .

Djf := jth derivative of f; for f G 1.11;-;,,5, see p. 70.

11...;-;,,,5,,, := l'I;,_1,,\;,,, := linear subspace of l'I<;,,,5 consisting of those
elements that satisfy continuity conditions specified by 1/ (p. 82).

$1,; := span(B,,;,,t), linear space of splines of order It with knot sequence
t (p. 93).

B, := B,,;,,_t :--= ith B-spline of order ls: with knot sequence t (p. 87).

$k,r|. 5: L-J{f G $k,t:t1= : tk = a1t11.+1 = = tn-kk : (P11
1239). 1

:= “natural” splines of order k for the sites x (p. 207).

C[a . . b] := {f: [a . . b] —> IR: f continuous

||_f[| :—— max{ |f(:r)| :11 5 :1: 5 b}, the uniform norm of f G C[a . . b]. (We
we that uf + gn s ||f|| + ugu and ||-on = Ielllfll for 1.9 E <11» - ~ 11
and oz G

11:(f; h) := ma.x{ lf(:1:) — f(y)| : :1:,y G [a . . b], |:1: — y| 5 h}, the modulus of
continuity for f G C[a . . b] (p. 25). _

dist (g, S) :-— inf{ Hg -'—--f|| If G 5'}, the distance of g G C'[a . . b] from the
subset S of C[o. . . b]. -

C(”)[a . . b] := { f: [a . . b] -> IR. : f is n times continuously differentiable

[11, . . . ,1",-]f := divided difference of order j ——i of f, at the sites T1, . . . ,1",-
(p. 3). In particular, [Ti]: f 1—+ f(T,).

Special spline approfimation maps:

I1, := interpolation by splines of order k (p. 182),

L1, := Least-squares approximation by splines of order ls: (p. 220),

V := Schoenberg’s variation diminishing spline approximation (p. 141).
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Polynomial Interpolation

In this introductory chapter, we state, mostly without proof, those ba-
sic facts about polynomial interpolation and divided differences needed in
subsequent chapters. The reader who is unfamiliar with some of this ma-
terial is encouraged to consult textbooks such as Isaa.cson Sc Keller [1966]
or Conte & de Boor [1980] for a more detailed presentation.

One uses polynomials for approximation because they can be evaluated,
differentiated, and integrated easily and in finitely many steps using the
basic arithmetic operations of addition, subtraction, and multiplication. A
polynomial of order n is a function of the form

Tl-

(1) p($)=a1 +a3:1:+---+a.,,._:1:”_1 =ZC1:,:$“_1,
J'=1

i.e., a polynomial of degree < 11.. It turns out to be more convenient to
work with the order of a polynomial than with its degree since the set of
all polynomials of degree 11 fails to be a linear space, while the set of all
polynomials of order n forms a linear space, denoted here by

1-[<_'11. = II-[§n—-1 = Hn—1-

Note that a polynomial of order n has exactly 11. degrees of freedom.
Note also that, in MATLAB, hence in the SPLINE TOOLBOX (de Boor

[199O]2), the coefiicient sequence a = [a(1) , . . . ,a(n)] of a polyno-
mial of order 11. starts with the highest coefficient. In particular, if x is a
scalar, then the MATLAB command po1yval(a,x) returns the number

a(1)*x“(n-1) + a(2)*x“(n—2) + ... + a(n—1)*x + a(n)

1
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2 I. Polynomial Interpolation

Polynomial interpolation: Lagrange form Let 1 := (1,)? be a
sequence of n distinct sites. Then

11 .
f.II—T_-,1

(2) €,(:1:):= H ——-—~—~j=1 ‘T-,1 -- ‘Tj

1151

is the ith Lagrange polynomial for T. It is a polynomial of order n and
vanishes at all Tjls except for ‘T-5 at which it takes the value 1. 'We write this
with the aid of the Kronecker delta as _

0, ;

Hence, for an arbitrary given function g,
Tl-

P 5= E9(T-ilg-.-:
1I=1

is an element of 11.4,, and satisfies

P('T-,1) =g(T,), ‘i=1,...,’l"t.

In this way, we obtain, for arbitrary g, a- function p in 11.,-_-,., that matches
it at the 11. sites ‘T1,. .. . ,T,,. This shows that the linear system

r|.—1_ -=
0.1-l—£I12T-,;-l""'-l-C1-n,T,, —-1),, *2. 1,...,?'t,

has a solution for arbitrary right sides, and, since this linear system is
square, this implies that the solution is unique, that is, p = 1g(T,)E, is
the only interpolant from 11.,-;,, to g at T.

(3) Theorem. IfT1, . . . ,‘T,-,_ are distinct sites, and g(-r1), . . . ,g(T,.,) are the
given data, then there exists exactly one polynomial p G l'I.<,., for which
p(T,;) = g(T,.-_), 11 = 1, . . . ,n. This polynomial can be written in -Lagrange
form

P =” ig(T'i)£i 1
i=1

with_€.,_(:1:) given by

The Lagrange form is certainly quite lelegant. But, compared to other
ways of writing and evaluating the interpolating polynomials, it is far from
the most efiicient. To illustrate this point, we consider briefly the compu-
tational cost of evaluating the Lagrange form at a site. We denote by A an
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addition or subtraction, and by M/D a multiplication or division. Straight
evaluation of the Lagrange form takes

(2n.— 2)A+ (n. -—- 2)M + (11. — 1)D

for each of the 11. numbers £.,(:.1:), and then

(11. —- 1)A + nil/I

for forming (4) from the g(T,) and the £,(:c). Even if one is clever about it
and computes

lQ:===g(T._.;)/1__[(T,-—Tj), 1l=1,...,n.,
.1551

once and for all, and then computes p(:1:) by
'1-"1.

10(1) == 111- 1.).
i=1

11.

P(=1=) = <.@(-T)

it still takes
(211 -— 1)A + nlld + n.D

per site, compared to
(211. — 1)A + (n -—- 1)M

for the Newton form to be discussed next. And things get much worse if
we want to compute derivatives!

Of all the customary forms for the interpolating polynomial, I prefer
the Newton form. It strikes me as the best compromise between ease of
construction and ease of evaluation. In addition, it leads to a very sim-
ple analysis of interpolation error and even allows one to discuss and use
osculatory polynomial interpolation with no additional effort.

Polynomial Interpolation: Divided differences and Newton form
There are many ways of defining divided differences. I prefer the following
(somewhat nonconstructive)

(5) Definition. The kth divided difference of a function g at the
sites T,, . . . ,T,.,_;, is the leading coefiicient (that is, the coefficient of 1:“)
of the polynomial of order ls: + 1 that agrees with g at the sequence
(T,, . . . ,T,_,.;,) (in the sense of Definition (12) below). It is denoted by

[T-5, . . . , T,+;,]g.
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This definition has the following immediate consequences.
(i) Ifp, G l'I.<, agrees with g at T1,...,'T,; for i = k and k + 1, then

pl’-?+1(I) = pl¢($) + (L. '7' Tl) ' ' ' (3: _ 7-fill?-11 ' ' '1Tk+llg-

For, we know that p;,+1 — pi, is a polynomial of order k + 1 that vanishes at
’T1,..., Ti, and has [T1, . . . ,T;,+1]g as its leading coefficient, therefore 1nust
be of the form

PA=+1(I) — PHI) = Cl‘-F T T1)"'(f-1? T Th)
C = [T1, . . . , T;,;.|_1]g.

This property shows that divided difierences can be used to build up the
interpolating polynomial by adding the data sites T, one at a time. In this
way, we obtain l

P-.(11=) = P1(f-")+(P2(1~") T P1(I)) + ' " + (P1411?) 1- P-n-1(1Y=))
= [T119 + (r — T1)[T1, T219 + (1: —— T1)(I -— Tz)[T1, T2. 'Tsl9+

---+(:1:——T1)---(:1:—T,,_1)[T1,...,T,,]g.

This is the Newton form,
TI-

<1> p..(=c> =2(a-T1)---(I-11._1)[r1.---.1119.
i=1 '

for the polynomial p,, of order n. that agrees with g at 1'1, . . . ,T._..,. (Here,
_

(ii) [1-,, . . . , T,+,,]g is a symmetric function of its arguments 1,, . . . , T,_,_;,,
that is, it depends only on the numbers T,, . . . ,T,+;, and not on the order
in which they occur in the argument list. This is clear from the definition
since the interpolating polynomial depends only on the data points and not
on the order in which we write down these points._

(iii) [T,,...,T,.,.;,]g is linear in g, that is, if f = crg + Bh for some
functions g and h and some numbers 1:1 and ,8, then [T,,...,T,_,_;,]f =
o:[1-,,...,T,_,.,,]g + ;6[T,,...,T,_,.;,]h, as follows from the uniqueness of the
interpolating polynomial. '

The next property is essential for the material in Chapter X.
(iv) (Leibniz"' formula). If f = gh, that is, f(:1:) = g(:1:)h(:1:) for all 11:,

then 1+1,
[T,, . . . , T,.,.;,]f = Z(['T.,,...,’T,-]_g)([T,-,...,T,;_|.,1,,]l'L).

For the proof, observe that the function

1+1, 1+1
2($—-‘T-,1) ' - ' ('.|".7-—'l',-_1)[‘7',;, . . . ,1“,-lg 2(I-1-T_,+1) - ' - (33-T-,j.,.]¢)['T,.,, . . . ,T,;+;.;lh
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I

agrees with f at 1",, . . . ,T,+,, since, by (7), the first factor agrees with g
and the second factor agrees with h there. Now multiply out and split the
resulting double su1n into two parts:

1+1:2-2+2
r,s=i r§s T31-B

Note that 2 vanishes at 1",, . . . ,T,+;,. Therefore, also Z must agree with
rps ' rgs

f at 1",, . . . ,1",+;,. But 2 is a polynomial of order k + 1. Therefore, its
r§s

leading coefficient which is

Z(l1"=» - - - 11119) ([1,. - - - .1"1+i=lh)

must equal [T,, . . . ,T,_,_;.,]f. (I learned this particular argument from W. D.
Kammler.) '

(v) Ifg is a polynomial of order k + 1, then [1",, . . . , 1",+,,]g is constant as
a function of 1",, . . . ,1",.,_;,. In particular

[7',;.,...,T,.|_,l,;lg=0 1601' allg E l.—.[.<-_',I¢.

This, too, is quite clear since, in this case, the polynomial of order k + 1
that agrees with g at T,, . . . ,T,+;, (or at any It + 1 sites for that matter)
must be g itself, by the uniqueness of the interpolating polynomial. In
particular, every g G 171.,-; ,1, has leading coefficient 0 when it is considered as
a polynomial of order k + 1.

As for specific values, we have at once

p [T119 = 9{1"1)
Also,

(8) [T1-.-‘T219 = f if ‘T1 7'5 ‘T2
T1 —- T2

from the familiar two-point formula for the secant,

<9) pa) = gm) + <1 -~ 11> i(-"i»‘~‘)—T-El"?
T1 — T2

But if g is continuously differentiable, then, for T3 —> T1,

hmi= ,-,»(.,,,
T2-""T1 T1 — T2
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and the secant (9) goes over into the tangent

(10) I Pl“-1) =9(’l'1)‘l'lI --T1)Ql(T1)
that agrees with g in the value and slope at T1. This justifies the statement
that the polynomial p given by (10) agrees with g at the sites T1 and T1,
that is, two-fold at T1 . With this wording, the definition of the first divided
difference implies that 1

(11) [T1,T2]Q=QI(T1) 1fT1 =Tg.

Also, we see that [T1, T2]g is a continuous function of its arguments.
Repeated interpolation at a site is called osculatory interpolation

since it produces higher than first order contact between the function and
its interpolant (osculeri means “to kiss” in Latin). The precise definition
is as follows. '
(12) Definition. Let T :=- (T,)‘f be a sequence of sites not necessarily
distinct. We say that the function p agrees with the function g at
T provided that, for every site (I that occurs 1n times in the sequence
T1, . . . ,1‘,-1, p and g agree Tn.-fold at (I, that is,

p<**1>(c) = g<*"1>(<:) 1011- 1. . .
The definition of the kth divided difference [T,, . . . ,T,+,,] g of g is to be

taken in this sense when some or all of the sites T,, . . . ,1",+;., coincide.
For the proof “of the following additional properties of the lcth divided

difference, we refer the reader to Issacson 8.5 Keller [1966] or to Conte 35 de
Boor [1980] (although these properties could be proven directly from the
definition).

(vi) [T,, . . . , T,_|_;,] g is a continuous function of its ls: + 1 arguments in case
g G C'(“), that is, g has k continuous derivatives.

(vii) If g G Cf“), that is, g has k continuous derivatives, then there exists
a site (I in the smallest interval containing 1",, . . . , T,+;, so that

[Til 1 ' ' 1 Ti-+3719 =

(viii) For computations, it is important to note that
(F1) .

[T11---.T1+kl9 =_ if T,=---=T,_|_,,, gGC'(“),

while

[T-5, .. . . , T-i_|_,I,-;]g -"=

(13)
_ l:7-ii ' ' ' 1T'I‘—-11TT'+11 - 1 1 1'1‘-£+klQ _ 17-i'1 - - - 11-S-117-5+1: ' ' ' 1Ti-+l¢lg

' l Ts -7-T

if T,-, T, are any two distinct sites in the sequence T,, . . . , T,_|_,i,. The arbi-
trariness in the choice of 1-,. and T, here is to be expected in view of the
symmetry property (ii).

I r'I‘

|r
-'
In

B-."'."'F,“I1

5
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(14) Theorem (Osculatory interpolation). If g E C("), that is, g has
n continuous derivatives, and 1' = (Ti)? is a sequence of n arbitrary sites
(not necessarily distinct), then, for all ac,

= P71-(I) + (I "_ 1-1)' ' ' (‘T — 7-fl)lT1: - - - =Tr.~.-$l§~.~

with _

P-n_($) I:-" $3-T1)"'(.."I'—'1',,.;_1)[’:1'1,...,T.;;]_g.

In particular, pr, is the unique polyiiomial of Order n that agrees with g at
1'.

Note how, in (15), the error g(..'t) — p,-,(::::) of polynomial interpolation
appears in the form of the “next” term for the Newton form. One obtains
(15) from its simplest (and obvious) case '

(17) _ 9(f'-Y) = 9('1'1) + (HI -— 'r1)lT1= I19
by induction on n, as follows. If we already know that

9(3) = Pk(3-7) + (I _" 1-1)' ' ' (3: '_ 7-P:)lT1: ' - ' :1-F5: $191

then, applying (17) (with T1 replaced by "r;,,+1) to ['r1,...,r;,,,..'c]g as a
function of 11:, we get

[7-11' ' - iTP:i$lg = ll:-1: ' ' - :Tk+1lg + (‘T _ Tk+1)lTk+1:Il(lT11' ' '71-k-'1

which shows that -

9(=I-‘) = P:=+1(I) + (I - 1'1) - - - (I — r:.+1)[n=+1.I]([r1. - - - ,1':., -]9)-
This implies that, for any y =,é 1'1, . . . , 'n.+1, the polynomial

'1-
-.

P1=+1(I) + (1-F — T1) ' ' ' (Y-F "" Tk+1)lTk+1#£ll(lT1=- - - =Tk='l9)

of order k + 2 agrees with g at 1'1, . . .,*r;,+1 and at y, hence its leading
coefficient must equal [T1, . . . , "r;,,+1, y] g, that is,

lTk+11yl(lT1i ' - ' :Tki Z l1-11' ' ' 1 Tk+11_?:/lg

for all y 75 'r1,...,'r,:,,_|_1. But then, the continuity property (vi) shows
that this equality must hold for y = T1,. . . ,'r,:,,_|_1, too. This advances the
inductive hypothesis. It also shows that, for y at 1';,,_|.1,

[T1,---.Ta+1.'£ll9'= ['1'1=+1=?Jl(l1'1.---1'1‘!-=.'l.€-J)

T1 Ta 9-" '1' Ts '1'J=+19=l 1"‘: iyi ll:-'-1 1 l

Zl_Tk+1
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and so provides, incidentally, -a proof for (viii) and shows explicitly how the
(ks + 1)st divided difference arises as the first divided difference of a kth
divided difference, thus explaining the name.

The notion that osculatory interpolation is repeated interpolation at sites
is further supported by the following observation: In (15) and (16), let all
sites 1'1, . . . , Tn coalesce,

T1:---=Tn=T.

Then we obtain the formula (using (viii) and (vii))

(11)
(18) g(..'t) = p,-,(:c) + (rt — '1')" %%-1 , some (1,, between '1' and ac,

with

T‘ (1-*1)r- ('1')<19) pm) = Xe - T) 1
" r=1 — '

which is the standard truncated Taylor series with differential remainder
(or error) term. Note that the truncated Taylor series (19) does indeed agree
with g n-fold at '1', that is, pi-f—1)(*r) = g("';'1) ('1') for t = 1,. .., n.

Divided difference table The coefficients

[r1]9. ['1'1='1'2]9= [T1,---,'e.]Q
for the Newton form (7) are efficiently computed in a divided difference
table:

interp. first second (11. -— 2) nd (n —- 1)st
sites values div. diff. divided diff. . .. divided diff. divided diff.

T1 Q(T1)
[T117219

1'2 9(1'2) lT1. 1'2. rely
[r2.'-"sly

T3 lT2:T31T4]g ' [T11"'1T1"l--119

_ [T31 1-4lg - _ i1-11' - ' 1T"-lg
1'4 g(*r4) ' ' [T2,. ..,T,.,]g

1'1».-1 9(1'1».-1) [T'r1.—21 1'1».-1. T1119
[Tn.—1 i T1119

TH Q07"-)

Assume that the interpolation sites are so ordered that repeated sites
occur together, that is, so that 1', = 'ri_|_,. can only hold if also 1-,; == 'r,_|_1 =

= 'rH.,.._1 = 'r¢_|.,.. Then, on computing ['11, . . . ,'ri+.,.]__o, either '1', = 'r¢+,.-,
I

- \-
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in which case l1‘-,1, . . . , T,-__|_,.]g = g("') (Ti)/Tl must be given, or else 1",; =,é 'r,-,+,.,
in which case

[7-1i+11 1 ' 1 1 T'i.-l“-"lg "_ [7-1'.1 ' ' ' 1 Ti-l—1"—1lg
120 -;,...,T1j -Pl =( l [T + .9 1_£+T__7_£

hence can be computed from the two entries next to it in the preceding
column. This makes it possible to generate the entries of the divided differ-
ence table column by column from the given data. The top diagonal then
contains the desired coefficients of the Newton form The (arithmetic)
operation count is

- — 1
- n(n — 1)/1 + ?'—£E;——-1 D.

(21) Example: Osculatory interpolation to the logarithm For
g{..'t) = ln.1':, estimate g(1.5) by the number p4(1.5), with P4 the cubic
polynomial that agrees with g at 1, 1, 2, 2 (that is, in value and slope at 1
and 2). We set up the divided difference table _

'1' g("r) 1. div. diff. 2. div. diff. 3. div. diff.

1 0 '
1.

1 O —.306853
693147 113706

2 .6931-47 -193147
.5

2 593147 '

Note that, because of the coincidences in the data sites, the first and
third entry in the first divided difference column had to be given data. We
read off the top diagonal of the table that -

p4(...".':) = 0 + (1: - 1)1 + (.1: - 1)2(-306853) + (J3 - 1)2(s:'-— 2)(.113'r0s)
and then compute, by hook or by crook, that p4(1.5) = .-409074 m
405465 = ln 1.5. E]

Evaluation Of the NEW’EOfl form Given an arbitrary sequence
1'1, . . . ,'r,.,__1 of sites, any polynomial p of order n can be written in exactly
one way as

TI.

(99) P(I) = Z31? -" T1) ' ' ' (5? — ‘T1-ila-1
i=1
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for suitable coefficients a1, . . . ,o,,. Indeed, with "r,., an additional site, we
know that the particular choice

CI.-5=i_T]_,...,T-ilp, T.--=1,...,Tt,

makes the right side of (22) into the unique polynomial of order rt that
agrees with p at 1' = (‘T1 , . , Tn), hence, since p is itself such a polynomial,
it must agree with the right side for that choice of the oi. We call (22) the
Newton form centered at 1-1, . . . ,1-.,.,_1 for p.

The Newton form (22) ca.n be evaluated at a site in

(n — 1)(2A—l- M)

arithmetic operations since it can be written in the following nested form

PCP) = '11 + (I — '1'1){@2 + (I '" '*'2)l*13+
1+ (I -: 'Fn—2)('~'11=—1 + (I - Tn--1)@-H) ' - ll-

This suggests the following algorithm.

(23) Algorithm: Nested Multiplicationl We are given the centers
1'1, . . . ,'r,.,_.1 and associated coefficients e1, . . . ,o,., in the corresponding
Newton form (22) for some p G II..;,.,, and also another site 1-0.
1 b.,., := an
2:fork="n.-—1,n—2,...,1,do: <"
2/1 bk Z= (1,l;-|- (TU-T;¢)b;¢_|_]_.. '

Tl-

Then b1 = p(1'0) == Z (T0 —'r1) - - - (T9 T1'i_1)ai. Moreover, all the bi, carry
i=1 ' '

useful information about p, for we have the important property that

_ p(:t)= b1 + ($—-TQ)b2+ (a:——rg)(a:—'r1)b3+
(24) + (..'c—-'n;;)(..'t—'r;,)---(rt: ~ 'r,.,_g)b,.,.

1

In words, the algorithm derives from the Newton form for p based on the
centers 1'1, . . . ,'r.,,_1 the Newton form for the some polynomial p but now
based on the centers 1'0, 1'1, . . . , 1-,.,_2.

One way to prove (24) is to observe that, from the algorithm,

bk+1 = (bk - as)/(T0 "‘ Th)

so that, since b1 = p('rg) and oi, = [T1, . . . ,'ri]p for all 14:, we must have
bi, =, [T0, . . . ,'ri._1]p for all k by induction on 11:. Therefore, the right side of
(24) is -the polynomial of order rt that agrees with p at‘ 113,, . . . ,1-,.,__1, hence
must be p itself. I

‘This argument brings up the important point that the algorithm may
be visualized as a scheme for filling in an additional diagonal on top of the

,p1—I'|";-".ll"'—I-I.*|""'-1""-1

l‘.
'1
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Computing the derivatives _ 1 1

divided difference table for p, but working from right to left as shown here.

interp. first second (n -—- 2)nd (n — 1)st
sites values div. diff. div. diff. div. diff. div. diff.

‘T_ 1 C1

132
T0 b1 C3

52
'1'1 (11 be 611- 1

_ 32 an
T2 - 0-s 511- 1

. bu
T3 ' 3'11.-—~ 1

an

We can repeat the algorithm, starting with the sites 113,. . . ,1',.,_g and
the coefficients b1, . . . ,b,., and an additional site 1'_1, obtaining then the
coefficients c1, . . . , cn that fit into the diagonal on top of the bi,’s, that is,
for which

1>(~'»'I) = C1 + (I — 1'-1)¢2 + - - - + (I —- 1'-1) ---(~11 — 'e.-1)cn-

We leave it to the reader to invent the corresponding algorithm for filling
in additional diagonals on the bottom of the divided difference table.

The algorithm is particularly handy for the efficient calculation of deriva-
tives of p at a site siiice pm (1') /j! appears as the (j + 1)st coefficient in any
Newton form for p in which the first j + 1 centers all equal 1-.

‘H

_ i

(25) Example: Computing the derivatives of a polynomial in ‘New-
lIOI1 form We use the algorithm to fill in three additional diagonals in
the divided difference table for p4 constructed in (21)Example, using each
time the point 1.5 as the new site. The last computed diagonal (see the full
table on the next page) then gives the scaled derivatives of p4 at 1.5, that
is, the Taylor coefficients.

ln particular, .p4(.."c) = 409074 + .664721(:.-3: — 1.5) —— .25(.1:: —- 1.5)? -\-
.113106(.1; - 1.5)3. 1

We note in passing that this algorithm provides the most efficient
(known) way to shift the origin for polynomials in the ordinary power form
(1)-
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1' g(1') 1. div. diff. 2. div. diff. 3. div. diff.

1.5 .409 0735
.664 7205

1.5 .409 0735 —.25
.664 7205 .113 706

1.5 .409 0735 -—.306 853
.818 147 .113 706

1.0 O —.363 706
1.0 . .113 706

1.0 0 -.306 853
.693 147 .113 706

2.0 .693 147 -—.193 147
.5

2.0 .693 147 El

Other polynomial forms and conditions We have mentioned so
far only two polynomial forms, the Lagrange form a.nd the Newton form.
The power form which we used to define polynomials is a special case of
the Newton form. There are several other forms in common use, chiefly
expansions in orthogonal polynomials. Such expansions are of the form

Tl-

(26l P = Z6-'»1P1-1
-i=1

with (Pi) a sequence of polynomials satisfying a three-term recurrence,

P_1(.1r:) := 0, Pg($) := 1,
(27) Pi+1(I) I: -' Bi)Pi(I) — CiPi_1($), '1 '-'-'1 0,1,2, . . .

for certain coefficients Ai 75 0, Bi, Ci. Note that the Newton form (22)
(although not based on orthogonal polynomials) fits this pattern, with Ai =1‘
1, Bi = 1-i.,.1, Ci = 0, all i. A surprisingly simple and very effective such
basis is provided by the Chebyshev polynomials for which

Ag =1, BQZO

A,-=2, B,-= 0., C,-=1, j=1,2,3,... .._

Evaluation of such a form (26) is efficiently accomplished by a gener-
alization of the Nested Multiplication algorithm, based on the three-term
recurrence (27) (see, for example, Conte 8.: de Boor [1980:6.3]).

One is tempted to use such forms in preference to the power form because
of considerations.of condition. The condition of the representation (26) in
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terms of the basis (Pi)? for l'I.i-_-ii measures the possible relative change in p
as a result of a unit change in the coefficient vector a = (oi). To be specific,
we consider all polynomials as functions on the interval [o. .b], and measure
the size of a polynomial p by the number

llPll == fl12§%¢blP(1l3)l-

Also, we measure the size of the vector a = (oi) by the number

nan == ,1i1,1i<, lol-
Then, for all coefficient vectors a,

<28) m||1|| 1: || Zi.P.-.|| s M111
1

with '

<29) m == mi11|1Z‘1iPi_.||/||1||. M == mi»<||Zi.-e_i||/||1||.
The condition (number) of the representation (26) is then defined as

M
COHd(Pi) I= 1;”-

and is used as follows.
In constructing that representation (26), we are bound to make rounding

errors so that, instead of the vector a, we actually produce the perturbed
vector a + ba. Consequently, we_ will not have the polynomial p, but the
perturbed polynomial p + bp = E,-_(oi + 5o,;)Pi_1. Now, by (28),

mllfilall <5 ||6p|| _,_. M||11||M111 - ||1=»|| - -m||-1|| ,
showing that a change in a of relative size ||c‘ia|| / |[a|| may result in a relative
change in p as large as cond(R-_) times the relative change in a
(and at least 1/ cond(P_.;) as large). The larger the condition, the greater
the possible effect of a “small” relative change of error in a on the function
represented.

If Pi(:1;) := (.1:/b)i‘"1, 1 = 1, . . . ,n, and, without loss of generality,

lal 3 bi

then
M = I113;-E ||2a,P,_,|1= -.1...

<1||-=||_ _,



” Il

14 I. Polynomial Interpolation

For the lower bound 1n, we use the ‘identity

1" (1-1) 0 51-1 3, 1-1
1 3'uP€H<111

to conclude that _ _| <1 (0)b‘I
y m_1 = max max0§1_§11.pE1'I..-;.-i

If now 0 $ o < b, then it is known (see, for example, Rivlin [1974:p. 93])
that (Q . _

lP i (0)l (1) *1+b Q 2 )1 -.______ =1‘ .____ __.__. 1i2"1ii‘. llpll "-111»-il b--G.
with T.,,_1 the Chebyshev polynomial of degree 11. —- 1. Further,

niI1T""’ (——“+b>-—%£ —'1' <51“-59>,=0 "*1 b—a 11 ' "'1 11-ii‘

We conclude that

+3b 1 +3b
Tn-1(%f_";)/‘(IS ST1-.-1(EJb-_'fEl

Since T _.1 :1: ~ 1 2 :1; -— 1/1:9 + 1)'"_1 for large [:11], it follows that the1. ( ) ( / )(
condition of the scaled power basis /b)"i')g_1for polynomials on the in-
terval [a . . b] becomes very large, even for fixed 11., as the interval length
b - a becomes small compared with the right end point b.

At the very least, then, a local power basis (( -,-5%‘;-)1): 1 should be used
on an interval [o . . b]. Its condition is between T,,_.1(3) and nT,.i_1(3); the
first few values of T,.,_1(3) are F

T1 ‘Ill;-|__..1(3) TL ‘Ti-i__1(3)

1-1 C-‘J1 3,36319,601
114,243
665,851

517 , 3,830,899Cfliih-MM

101-1 (D-10-‘J
1-1 CJKDOO-l

By contrast, W. Gautschi [1972]g has shown that the condition of the
Chebyshev form is no larger than ‘Th/2. Finally, the condition of the
Lagrange form (4) is easily seen to be the number i|)\,,ll, with ,

n .

)\.,.,(:r:) := Z |£i(:1.':)|.
i=1
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Problems 1 5

As is pointed out in the next chapter,

IIMII ~ (2/'")111"» +1
if we choose the Chebyshev sites II(9) as the sites '1'. Thus, the Lagrange
form based on the Chebyshev sites is about the best conditioned polynomial
form available.

Nevertheless, we will use the local power form throughout this book be-
cause of its simplicity, the easy access to derivatives it affords, and because
we do not intend to deal with polynomials of order higher than 15 or 20.
Still, the reader should be aware of this potential source of trouble and
be prepared to ._switch to some better conditioned form, for example the
Chebyshev form, if need be. For this, see Problems 7 and II.3.

Problems

1. Given the divided difference table for the polynomial E l_I..___-_6, based
on the sites 1'1, . . . ,'r6, locate in it the coefiicients for the Newton form
for p using the centers (a) *r3,'r4,r;,'r5,'r1,1-6; (b) 'r@,'r5,'r4,'r3,'rg,'r1; (c)
'F4>'F5,'Fa-.-'1'3='1'2='1'1; (d) T4,'F5-.»'1's,Ts,T2='F2-
2. Assume that TAU(i) = 'r,.;, D(i) = g("r,;), i = 1,. . . ,n.

(a) Verify that, after the execution of the following statements,
1 for k = 1,...,n—1, do:

1/1 for i = 1,...,n-k, do:
1/1/1 D(i) := (D(i+1) — D(i))/(TAU(i+k) — TAU(1))

we have D('i) = ['r:,...,'r,.,]g for i = 1,...,n.
(b) Hence, verify that the subsequent calculation

2 value := D(1)
3 for k = 2,...,n, do: .

- 3/1 value := D(k) + va1ue*($ — TAU(k)) _
produces the value p,.,(a':) at It of the polynomial pr, of order n that agrees
with g at 1". ‘-

(c) Finally, verify that the subsequent calculation
4 for k = 2,...,n, do:

4/1 for i = 2,...,n+2—k, do:
4/1/1 D(i) := D(i) + D(i—1)*($ - TAU(i+k—2))

produces the coefficients in the Taylor expansion around :1: for p,,, that is,

nu) = p,$,n—l)(I)/(R - ¢)!, t= 1, . . . , n.

3. Let p4 be the polynomial of order 4 that agrees with the function ln
_at 1, 2, 3, 4. Prove that p4(::.':) '> ln(:c) for 2 < :1: < 3.

4. Construct the polynomial p6 of order 6 that agrees with the func-
tion sin at O, O, 1r/4, 11'/4, 1r/2, 1r/2. Use the error formula (15) along
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with the divided difference Property (vii) to estimate the maximum error
max{ |sin(:r:) - p5($)l :. 0 5 :1: 5 1r/2} and compare it with the maximum
error found by checking the error at 50 sites, say, in the interval [O . . 1r /2].

5. Prove that [T1, . . . , ‘T’-nl(l./I) = (-——l)"""1/('r1 - - - Tn). (Hint: Use Leibniz’
formula on the product (1 /a':)..'c, and induction.)

6. Prove: If p(s:) = a.,( ‘;__-L: )i~1, and all a,-_ are of the same sign, then
the relative change ||6p||/||p|| (on [a . . b]) caused by a change 6a in the
coefficient vector a is no bigger than n|\5a||/

Conclude that the condition as defined in the text measures only the
worst possible case. Also, develop a theory of “condition at a point” that
parallels and refines the overall condition discussed in the text. 1

7. The Chebyshev form for p G l'l<,, is specified by the end points a
and b of some interval and the coefficients 0:1, . . . ,o:,,_ for which pr;-;) =
Z? a:T.,;_1(y), with y = y(a:) := (2:11 — (b + (1))/(b —- o) and T0($) := 1,
T1($) I= I, T£+1(I) I: 2ITi($)—T£_1(I), = 1, 2, 3, . . .. Write ELFUNCTIUN

CHBVAL(CCDEF, NTERM, x) that has CCDEF = (a,b,o:1,...,o:,,), xrrssms
== n + 2, and argument X as input, and returns the value p(X), using the
three-term recurrence in the process. See, for example, FUNCTION CHEB,
Conte 8: de Boor [].980:p. 258].

8. Prove (for example by induction) that for arbitrary nondecreasing
1' = (T1, . . . , Tn), there exist unique constants d1, . . . , d,.,, so that the linear
functional [T1, . . . ,'r-,,] can be written

[T1, . . . , Tn] = Zd,['r,.,,(,), .' . . ,'r¢],
i=1

with
:—- rnin{j 5 2'. : '13- = T31}, _ all i.

In other words, the divided difference of g at 1' is uniquely writeable as a
weighted sum of values and certain of the derivatives of g at the '1',-_.

9. Prove lVIicchel_li’s observation that [$0, . . . , :rJ-](- --—..'"'.':g)f = [$1, . . . , .."c_,;]f.

10. Prove lVIicchelli’s handy (see Problem 5) observation that a divided
difference identity is valid for all (smooth enough) f if it is known to hold
for all f of the form f(:r) = 1/(rr -— a), ct G IR.



II .

Limitations of Polynomial ,
Approximation

In this chapter, we show that the polynomial interpolant is very sensitive
to the choice of interpolation sites. We stress the fact that polynomial inter-
polation at appropriately chosen sites (for example, the Chebyshev points)
produces an approximation that, for all practical purposes, differs very little
from the best possible approximaiit by polynomials of the same order. This
allows us to illustrate the essential limitation of polynomial approximation:
If the function to be approximated is badly behaved anywhere in the in-
terval of approximation, then the approximation is poor everywhere. This
global dependence on local properties can be avoided when using piecewise
polynomial approximants.

Uniform spacing of data can have bad consequences We cite the
(1) Runge example: Consider the polynomial pr, of order n that agrees

with the function g(:r:) := 1/ (1 + 251:2) at the following n uniformly spaced
sites in ]——1 .. 1]:

'r,:=(i-—1)h——1, i=1,...,n, withh:=2/(n—1).

The function g being without apparent defect (after all, g is even analytic
in a neighborhood of the interval of approximation [-1 . . 1]), we would
expect the maximum error

new == _,-gag, lye) — pfl(a=>|
Lo decrease toward zero as nincreases. In the program below, we estimate
the maximum error ||e,,]| by the maximum value obtained when evaluating
the absolute value of g—p,., at 20 sites in each of the 11-1 intervals [1".;._.1 . .11],
i = 2, . . . ,'n.. In this and later examples, we anticipate that, as a function of
n, |]e,,|] decreases to zero like fin“ for some constant ,8 and some (negative)

17



18 II. Limitations of Polynomial Approximation

°‘ ]/]]e ~ (n/'m)°', and we can estimate1151331113 0: If ]]6 ~ fin ,then ]]e,.,] ,,.,CO' - n
the decay exponent at from two errors ]]e,.,]] and ]]em]] by

(2) <1
N 1@s(\\@nl\) —1@s(l\e-.\\) _

log(n/m)

d ex onent is estimated in this way from
In the following program, the ecay p
successive maximum errors.

CHAPTER II. EUNGE EXAMPLE
INTEGER I,ISTEP,J,K,N,NHK,NH1
REAL ALOGER,ALGERP,D(20),DECAY,DX,ERRMAX,G,H,PNATX,STEP,TAU(20),1
DATA STEP, ISTEP /20., 20/ ~
G(X) ='1./(1.+(5.*X)*#2)
PRINT 600

600 FDRHAT(2BH N HA1.EHROR DECAY EXP.//)
DECAY = O.
D0 40 N=2,20,2 . TAU(N) EQUALLY

ERPULATIDN POINTS TAU(1), .. , , N
C CHOOSE INT
C SPACED IN (*1 .. 1), AND SET D(I) = G(TAU(I)), I=1,..., .

NH1 = N—1
H = 2./FLUAT(NH1) .
DU 10 I=1,N

TAU(I) = FLDAT(I-1)#H — 1.
D(I) = G(TAU(I)) UH THE NENTDN FORM.10

C CALCULATE THE DIVIDED DIFFERENCES F
C ___________________________________H

D0 20 KF1 NH1max = N—K 1
no 20 I-1,nnx 1,(D(I+1)-D(I))/(TAU(I+K)-TAU{I)l_20 0(1) = __

c ‘"'“"""“"'*"""“""”—""“"*""‘
c ESTIMATE MAX.INTERPOLATIDN seams on (-1 .. 1).

EBRHAX = 0.
DD 30 I=2,N

C
C

29
C

Bx = (TAU(I)-TAU(I-1))/STEP
D0'30 J=1,ISTEP

U(I—1) + FLOAT(J)#DXX = TA
EVALUATE'INTERP.PDL. BY NESTED HULTIPLICATIDN

NATX = nii)P
DD 29 K=2,NPNATX = n(x> + cx-rtu(x>>*Putr§____________________________________.
ERRMAX = AMAX1(ERRHAX,ABS(G(X)-PNATX))so ALUGER - ALDG(ERRHAX)

‘Ii
IF (N .GT. 2) DECAY =

(ALOGER — ALGERP)/ALDG(FLOAT(N)/FLUAT(N—2))
ALCERP = ALOGER
PRINT 640 N ERRHAX,DECAY40 . I

B40 FDHHAT(I3,E12.4,F11.2) STOP

assD

l

.-.-11.-\.—--.-—.—.1—
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N MAX.ERRDR DECAY EXP.

_ .9615E+O0
'707OE+OO —
4327E+OO - .

.2474E+O0 — .

.2994E+O0 .

.5567E+OO

.1069E+O1

.2099E+01 .

.4222E+01 .
20 .8573E+01 .
HHHHH mmewommoo

OOOOOOOOOO mmm#wOHHOO wmowommweo hJLO£flUJOU‘J|-l'=H|-P-O

In the program listing above, we have marked the divided difference
calculation and the evaluation of the Newton form to stress how simple
these calculations really are. .

From the output, we learn that, contrary to expectations, the interpola-
tion error for this example actually increases with n. In fact, our estimates
for the decay exponent become eventually positive and growing so that
||e,.,|] grows with n at an ever increasing rate. [I1

The following discussion provides an explanation of this disturbing
situation. We denote by

(3) Pr.-.9
the polynomial of order n that agrees with a given g at the given rt sites
of the sequence 1'... We assume that the interpolation site sequence lies in
some interval [ct . . b], and we measure the size of a continuous function f
on [a..b] by -_

(4) llfll == ma-X |f(I)|-' agrflb

Further, we recallfrorn I(2) the Lagrange polynomials

@i($) == H($ - T3‘)/(Ti r" 13),
as '

in terms of which

|<P.g>(e>| = |Z_g<e>e<e>| e Z |g<t.>|:w=>| e <me=|g(e>|>2|e<e>1.
We introduce the so-called Lebesgue function

(5) >\n(~'»'I) == Z |3t(I)]-
-.-:=1
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(6) FIGURE. The. Chebyshev sites for the interval [a .. b] are obtained
by subdividing the semicircle over it into n equal arcs and
then projecting the midpoint of each arc onto the interval.

Since maxi ]g('r¢)] 3' ]|g]|, we obtain the estimate

(7) |lPa9l| 5 llaall llgll,
and this estimate is known to be sharp, that is, there exist functions g
(other than the zero function) for which ]]P,.,g]] --= |]}\n]| (see Problem
2).

On the other hand, for uniformly spaced interpolation sites, '

- |])\,,|] ~ 2"/(en ln n)

(as first proved by A. N. Turetskii, in 1940; see the survey article L. Brut-
man [1997]). Hence, as rt gets larger, P,.,g may fail entirely to approximate
g for the simple reason that ]]'P,.,g]] gets larger and larger.

Chebyshev sites are good Fortunately, this situation can be
remedied if we have the freedom to choose the interpolation sites. .

(8) Theorem. If 1'1, . . . ,1-,., are chosen as the zeros of the Chebyshev
polynomial of degree n for the interval [ct . . b], that is,

(9) '1-J-='rJ‘,'=’:-= (a+b—(a—b)cos( ))/2, j=1,...,'n,

then, with Afi, the corresponding Lebesgue function, we have

_ < (2/'rr)1nn+4.

For a proof, see, for example, T. Rivlin [1969:pp. 93-96]. M. J. D. Powell
[1967] has computed for the Chebyshev sites for various values of n
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(10) FIGURE. The size of the Lebesgue function for the Chebyshev sites
(solid) and the expanded Chebyshev sites (dashed).

(his 'u('n) equals our 1 + Figure (10) summarizes his results. It is
possible to improve on this slightly by using the expanded Chebyshev
sites

(11) r,‘i',_:= (a+b—(a—b) )/2, j=1, .. n
cos(1r/ (211 _ ' i i

instead. L. Brutman [1978] has shown that

(2/*rr)(lnn) + .5 <1’ < (2/1r)(lnn) + .73

and that, for all n, is within .201 of the smallest value for |])\,.,]|
possible by proper choice of '1'. Numerical evidence strongly suggests that
the difference between |])\,‘E,|] and the smallest possible value for ]|)\n|| is
never more than .02.

l
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Runge example with Chebyshev sites We change our experimental

ll. Limitations of Polynomial Approximation

interpolation program to read in the 10—lo0p

with the line H=2 . /FLOAT(NI-11) beforethe 10-loop replaced by

TAU(I) = COS(FLOAT(2 1 I - 1) =11 PIUVQN)

PIUV2N = 3.11-115926535 /FLU!-iT(2 1 11)
The program now produces the output

N

hM*H+H*H- 003051-P-I\JO0JO>|-P~t\J

(with MAX.ER.ROR a.n estimate on ['11 . . 1',,] only

This is quite satisfactory, so let’s take something tougher.

(12) Squareroot example We ta.ke g(.1:) := ~,/1 + :1: on [-1 1] th t
is, we modify our experimental interpolation program further by changing

MAK.ERROR DECAY EXP.

QOOOOOOOOO

9259+00
7503+00
5559+OO
3917+00
2692+00
1828+O0
1234+O0
8311-01
5591-01
3759-01 0HnMmnoH+HDOC> -name“-marww-~1-~1o>tn1\.1oo1o1r=-

00
- . 0

line 5, from GO!) = 1./(1. + (5.*K)**2) to

This produces the output

N

t\J1-I-1-1-I-1-I-1- CHDQAHOCHDGAHO

which shows the maximum error ]]e,, to decrease only like 11. This 1s due
to the singularity of g at :1: = -1. (Thie increase in the error for 11. = 18 20

OOOOOOOOOCJ

7925-01
3005-01
1905-01
1404-01
1114-01
9242-02
7900-02
6900-02
9425-02
1061+00

c(x) = sua'r((1. + x)

MAX.ERRDR DECAY EXP.

NH-I-1-I-1-I-1-I-1-I-1-I-1-I-O

00
- 40
- 12
- 06
- 04
- 02

02
01

.65
22.98

‘BI

is due to roundoff; see Problem 3.)
If we put the singularity inside of [-1 . . 1], things get even worse E g

for g(.1:) = 1'/]:1:] on [-1 . . 1], we get

). 13
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Equareroot example 23

"N MAK.ERRDR DECAY EXP.

.8407+00 00

.5475+O0 — 62

.4402+O0 - 54
3791+O0 — 52

.3382+00 -

.3083+00 —

.2853+O0 —

.2666+00 —

.2512+O0 -

.2383+00 —rot--1-1-11-1- 00C1O>1I=t\J00C1U>|-l=t~J 0000000000 0000000000 U'lU'1U'1U'1U'IU'I Cll-'-I-'-CIII--H--¥

Our complaint here is that the error, while decreasing, decreases far too
slowly if we are seeking several places of accuracy. As the output indicates,
we have for this particular g

||e,.,|| ~ const - R-1/2.

Hence, if we wanted an error of 10-3, then we would want

10'?’ = 1|a|| - (l|@a||/l|@2o||)||@2ol| e 121*-8~<1<n/20>"/2
or

(11./20) a... (_23s4)2106,
that is, we would need 11. ~ 1.14 million. El

The following discussion might help to explain this situation. Recall from
Theorem l(14) that the interpolation error satisfies

Y @a(I) = 9(I) - P-a9(I) = (1? — 1'1) - - - (I -- T1'1.)lT1*" - ="'mIl9
while, by Property l(vii) of the divided difference,

[11, - - - -.-1'11, -"Ply = 9(“)(Ca)/H!
for some Q, in the interior of the smallest interval containing 1'1, . . . , 1',, and
:1:. This provides the estimate

' . 1 c-=11
(13) ]i9—PnQll 5 |l(- —11)---(- —ra)llflr§1g95¢b -]2—-,;,£Q-i-
Now, it so happens that '

. 5 T‘<11) ,5“ §1g1%_,nS', ||(~ -1'1) ~ 1 1 <1 - an = 2(—,—.?)—
and that this minimum is taken on when the interpolation sites are the
Chebyshev sites. This means that we have done already as well as possible
as far as the choice of interpolation sites is concerned. The difficulty in
controlling the interpolation error then must lie with the second factor in
(13),

|9(")(C)|max --——i._ agqgt n!
Indeed, in our case, gin) becomes infinitely large in [11 . . b] for all 11. Z 1.
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Interpolation at Chebyshev sites is nearly optimal Now, there
might be some hope that we could do even better if we gave up the idea
of interpolation and constructed the approximation p E lI<_,, to g by some
other means. Suppose, in fact, that we choose for p the best possible p* E
fl<,,, that is,

H9 — 1>*|| = dist (91TI<a) == min lls - Pll»P€l_l-1.-_'_n.

Then certainly
lly — 11* ll £1 ll!-1 — Paell-

But, this won’t gain us very much, as I now show. It is easy to see that the
interpolation process is additive, that is, "

P1-1(Q-l'h) :Pn9+-Pnhi

and also P,, = 1 on l'I..;-,.,, that is,

PHPIP I01‘ 3.ll.pEl._.[<-H.

This implies that
9 — Pay = (9 -P) .- P1-.».(9 -11)

for all p G l'I._.;-,, and shows that we can estimate the interpolation error by

lls-Pagll 5 ll9—Pll+|lPa(9-P)ll 5(1+ll)\1E1ll)ll9—Pll1 for 8-1111 E Hea-
This is valid for p = p"‘, too, and therefore

(15) dist (9111:-.a) 5 lls — P-asll S (1 + ll)\ii1ll)di$t(91H<n)- .
But, for 11. § 20, (1 + < 4, by Figure (10), which says that we can
hope, at-best, to cut the error by a factor of 4 by going to some other
approximation scheme.

The distance from polynomials For practical purposes, then‘, we
might as well stick with the comparatively simple scheme of interpolation
at Chebyshev sites. But this means, as the earlier example showed, that
we won’t be able to approximate some functions very well by polynomials.
Also, from (13), (14), and (15), we then have the bounds -

ll:-1 - Pasll . * 1- 1 “ 11a<">\|i
(16) (1 _]_ _ 5 d1St(g1fi<") s llg -PH-gll 5 2 4 R] .1

which may go to zero very slowly or not at all because gl"]|]may grow
too fast with 11..
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mi

-_1 - ._......_..____. 1

h

(17) FIGURE. For g(.1:) == \/E on [-11], max ]g(.1:) —g(y)] in a strip of
width h occurs when 0 lies on the boundary of the strip,
and then max]g(.1:)—g('g)] = ]g(0)—g(h)] = Therefore,
~(9; /1) = \/F

Approximation theory provides rather precise statements about the rate
at which dist (g, l'I.,;,,) goes to zero for various classes of functions g. An
appropriate classification turns out to be one based on the number of
continuous derivatives a function has and, within the class C("')[a . . b] of
functions having 1' continuous derivatives, on the modulus of continuity of
the rth derivatives. For g E C'[e. .b], that is, for a function g continuous on
[(1 . . b], the modulus of continuity of g at h is denoted by e.1(g;h) and
is defined by

<18) w(9; 1) =- sum 19(1) - 9(y)l=I.1J e 11--1-1.11 - '11.-=1 11.
It is clear that t.1(g; h) is monotone in h and subadditive in h (that is,
a1(_g; h. + It) 5 ta-(g; h) + (4J(g; k)) and that (for a finite interval [a . . b])

(19) lim :1.1(g; /1.) = 0, for all g E C'[a . . b],
1l1.—+-0+

but the rate at which t.t1(g; h) approaches 0 as h -1» 0"‘ varies widely among
continuous functions. The following are simple, yet practically useful, exam-
ples: The fastest possible rate for a function g that isn’t identically constant
is tt1(g; h) 5: consth (see Problem 5). This rate is achieved by all functions
g withcontinuous first derivative, that is,

(20) if g 6 C'(1)[a . . b], then a1(g; h.) ii ]]g']]h..
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If, more generally, w(g; h.) 5 Kh. for some constant K and all (positive)
h, then g is said to be Lipschitz continuous. Piecewise continuously
difierentiable functions in C [11, . . b] belong to this class which is therefore
much larger than the class C(1) [-11.. .b] of cdntinuously differentiable functions
on [a.. .b]. An even larger class consists of those continuous functions on [e.. .b]
that satisfy a Holder condition with exponent o1 for some or E (0 . . 1).
This means that

w(g; h.) 5 Kb.“ for some and all (positive) h.

For instance,

(21) w(g; h) 3 hf‘ for the function g(:1:) := ]:1:]"" on [--1

A typical example for the use of this classification is

(22) Jackson’s Theorem. Ifg G C(")[e. . . b], that is, g has 1' continuous
derivatives on [ct . . b,], and 11. > 1' + 1, then

_ b— " ,_ b-
dlgt (Q, S C-0I'l.$t-I- L1)(g(  ).

Here, the constant can be chosen as

const, := 6(3e)"/(1 + 1').

A proof of this theorem can be found, for example, in T. Rivlin
[1969:p. 23]. _

Our last example shows that this estimate is sharp, in general, as far
as the order of convergence, that is, thedecay exponent, is concerned. For
g(:1.:) = 1/]:1:] on [-1 ..1], we have, as already noted in (21),

'51.

w(s; h) = l9(h) — g(0)| = /11/2
and so, from (23) with 1' = 0, y

CllSt. (Q, Hqn) 2 COIISIJ ' 'l'1—1/2

which is the rate that we observed numerically in Example (12).
There are, of course, functions that are efficiently approximated by

polynomials, namely (well behaved) analytic functions. For an analytic g,

' dist (g, 1'1,-;,,,) = O (e_°""')

for some positive cc. But, if g has or1lyf]'1' derivatives, then (23) describes
correctly how well we can approximate by polynomials of order 11..

The fact that (23) is sharp in general means that the only way for making
['1
-l



Problems 2'7

the error small is to make (b — c.)/(n — 1) small. We accomplish this by
letting nr increase and/or making (b —— ct) small. Since we are given [a.. . b] in
advance, we can achieve the latter only by partitioning [(1. .11] appropriately
into small intervals, on each of which we then approximate g by a suitable
polynomial, that is, by using piecewise polynomial approximation.

Note that cutting [:1 . . b] in this way into k pieces or using polynomials
of order kn will have the same effect on the bound (23) and corresponds
either way to a ‘k-fold increase in the degrees of freedom. But these de-
grees of freedom enter the approximation process difierently. Evaluation
of a polynomial of order kn involves kn coefiicients and basis functions
whose complexity increases with the order kn, while evaluation of a piece-
wise polynomial function of order n with I: pieces at a site involves only n
coefiicients and a local basis of fixed complexity no matter how big k: might
be. This structura.l difierence also strongly influences the construction of
approximations, requiring the solution of a full system in the polynomial
case and usually only a banded system in the piecewise polynomial case.
Also, use of polynomials of order 20 or higher requires special care in the
representation of such polynomials (Chebyshev expansions or some other
orthogonal expansion must be used, see the discussion of condition in Chap-
ter I), while use of a larger number of low order polynomial pieces is no
more delicate than the use of one such polynomial. Finally, interpolation
in a table, that is, to equally spaced data, by piecewise polynomials leads
to no difiiculties, in contrast to what happens when just one polynomial is
used, as we saw with the Runge example (1).

For these and other reasons, it is usually much more efficient to make
(b — c.) small than to increase n. This is the justification for piecewise
polynomial approximation.

. Problems

1. Every continuous function g on [a .. b] has a (unique) best uniform
approximation p“‘ from 1-1.-5;, on [ct . . b], that is, there is one and only one
p"‘ E 1'l<_-;;, so that |]g—p*|| = dist (g, 1'l<;,). This best uniform approximation
p"‘ is characterized by equioscillation of the error (see, for example, Rivlin
[1969: p. 26]): Let p € 1'l.-_-;,, and e := g -p the error in the approximation p
to g. Then |}e|| = dist (g,l'l..;;,) if and only if there are sites a 5 11:1 < <
rm,-.|_1 § b for which

e(:r:,)e(:r,;.|.1) =1 —][e||2, i= 1,...,k.

(a) Conclude that a best approximation to g from HQ, on [a .. b] must
interpolate g at k distinct sites (at least) in that interval.
(b) Conclude that dist (g,l'l.,;;¢) = constggU°)(Q) for some tr. < Q < b, in case
g has is continuous derivatives, with constg depending on the sites at which
the best approximation interpolates g.
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(c) Conclude that dist (g,l_l..,;;,) Z (2(b — 0.)!“/4i°)Inin,,_5,,_.§b[g(k)(:t)/kl].
(Hint: use (14) and I(1-4).)

2. Prove that the inequality (7) is sharp. (Hint: Pick 5:‘: in [a .. b] for
which /\,.,(i') = such a site must exist since Ar, is continuous and
positive. Then choose 0', := signum £,(:'E), all i, and construct a continuous
function g'on [£1 . . b] with g(T.;_) = 0,, all i, and g“ = 1, for instance by
linear interpolation in, and constant extrapolation from, the table ('r,, 0",),
i== 1,. . .,n. Then show that HP,-,g|| =

3. The roundoff visible in the Squareroot Example (12) could be fought
by a careful ordering of the interpolation points. But, the best remedy is to
construct the Chebyshev form of the interpolating polynomial. This con-
struction is eatly facilitated by the fact that the Chebyshev polynomialsET
T0, T1, . . . , T,-,._._1 are orthogonal with respect to the discrete inner product

In -

1 <1", g> == _S_“, f(n*)g('P£“)
i=1 -

based on the Chebyshev sites 'r,* := cos((2i -— 1)'rr/(211)), i = 1, . . . ,n, for
the interval [-1 .. 1] (see for example, Rivlin [1974]). This means that
(T,,Tj) = 0 for '5 7‘: j. Also, (T,,T,) = n/2 for i = 1,...,n —- 1, while
(T9, T0) = n. Note that the Chebyshev sites (Tc) for the interval, as given
by (9), are related to the 'r,* by y(Tf) = 'r,*, with

2/(ft) == (Qt - (11 + 11))/(bi; 11)-

(a) Prove that the polynomial P,.,g of order n that agrees with g at the
Chebyshev sites can be written

1'1

(P-..g>e> = §:.e-iTi-1(:u(¢)_)=
i=1

with

a,_|_1 == Z:g(rf)T,(1-5?)/(T-,,T,), ¢= l,...,n.
i=1

(b) Developasubroutine CI-IBINT(A, B, G, N, CCDEF, NTERMS) that re-
turns, in CCOEF and NTERMS, the Chebyshev form for Pug (as defined in
Problem 1.7), given the endpoints A, B of the interval in question, the
number N of interpolation points to be used, and a FUNCTION G(X) that
provides function values of g on demand. Note that, with

Uji :2: g(T_?)rri—1(T_-it): an 'i'1j:

am“-n.-|._._-\.1.|--mu.

.m.-m.m._m-1.m_-

:-m..|_-_nr.-n-\__n__n_-
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one has or; = 23- um/N, and

y('F§), i = 1;
1_;j_,; .—_- ’Uj_.1T;, Ti = 2;

QTJFUJ-'i_1 — ’Uj‘£_2, ‘L > 2,_

Also, one can forget or overwrite 1.»,-_, as soon as vi,-,,+g has been constructed,
provided one has by then calculated CCUEF(i + 2) = 2(2, vii) /N.

Incidentally, it is also possible (for certain values of N) to make use here
of the Fast Fourier Transform.
(c) Repeat the calculations in the Squareroot Example (12) above, but use
CHBINT, and CHBVAL of Problem l.7, to uncover the amount of roundoff
contaminating the calculations reported there.

Note: A routine like CHBINT is very useful for the construction of the
Chebyshev form of a polynomial from some other form or information.

4. The calculation of = max{ |g(a:)| : tr. § :1: 5 b} is a nontrivial task.
Prove that, for p G l'l.;,,, though, a good and cheap approximation to p||
is- provided by ||p||,_, := max{ :i= 1, . . . ,n }, with (ff) given by
By what number c,, must one multiply ]|p||c to ensure that p||,,Z

5. Prove that g is a constant in case w(g; h) = o(h). (Hint: Show that
then g is differentiable everywhere and g’ = O.)

6. Prove that w(g; it) is a monotone and subadditive function of h, that is,
w(g; h.) § w(g; h.+ Ft) ii w(g; h) +w(g; Ft) for nonnegative h and Ft. Conclude
that w(g; oh) § [of|w(g; h.) for or §_>_ 0, with [oil := min{ n G Z : or <__§ n

n F
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Piecewise Linear Approximation

Piecewise linear approximation- may not have the practical significance
of cubic spline, or even higher order, approximation. But it shows most of
the essential features of piecewise polynomial approximation in a simple
and easily understandable setting.

Broken line interpolation We denote the piecewise linear, or broken
line, interpolant to g at points T1, . . . , 'r,., with

- £1=T1'<""<Tn‘:b

by Igg. The subscript 2 refers to the order of the polynomial pieces that
make up the interpolant. The interpolant is given by

(1-) I29(f'1l== 9(Ti)+(1' - Tt)iTi=Ti+1l9 011 Ti S 91 S T¢+1=
- i=1,...,n——1.

Since n

n 9(fl1)= 9(i"1)+(f~'-7 — ‘?'t)['1'e,'F'i+1l£7 + (9-'7 - Til(11? "" T£+1)lTi=Ti+1-H5191
we have, for 1-, 5' -:1: §_ r,_|_1, -

; §(=1=) — I29(f¢) = (Q1 — n)(1' — "e+1)['ts-.- 'e+1,1¢ly-
Therefore, with A-r, := ('r,_|_1 — 1-,), we get the error estimate

|g(1')— Izg(fl1)| S (An/2)2 max |9”(C)/2|T=tSCS1'i+1

in case g has two continuous derivatives, hence, with |'r| := max, An,
_ 1<2) l|9—I2g|l s ,|»r|*||g"||-

Clearly, we can make this error bound as small as we like simply by mak-
ing Ar, small for all i. And, while this increases the number of parameters
needed to describe the approximating function f == Igg, it does not really
increase the complexity of f locally since, locally, f is always just a straight
line.

31
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Broken line interpolation is nearly optimal Let $2 denote the col-
lection or linear space of all continuous broken lines on [T1 . .r,,] with breaks
at T3, . . . ,'r,,.__1. The notation “$3” reflects the fact that these are splines
of order 2, in the terminology to be introduced later. We claim that

(3) I31’ = f for all f E $3.

Indeed, on each interval ('1', . . r,.|.1], I3f agrees with the straight line that
interpolates f at 1', and 'r,.|_1. But if f G $3, then f itself is a straight line
on ['r,. .'r,_,.1], therefore I3 f must be f itself on ['r, . .'r,_|_1], by the uniqueness
of polynomial interpolation.

Further, we observe that

|lI29|l = mf»Xl(I29)(Tt)l = mf-Xl9(Ti)| Ii ||9|l

therefore

(4) |lI2§l| 3 llgll for all 9 G (3'[-*1--bl-

We combine (3) and (4) appropriately to get y

I19 — Iagll = |l(g — J’) — My — f)|| S llg — fll + lly — fll for all f G $2-

Here, we minimize the right side of the inequality over all f E $3 and so
prove the second inequality in '

(5) dist (g,$2) i Ilg -— Izgll £ 2<1iiSt(y,$z)- "

This shows that we could, at best, halve the error by going over to a best
possible approximation to g from $3.

Least-squares approximation by broken lines In preparation for
things to come, such as least=squares approximation by splines, the error in
cubic spline interpolation, and B-splines, we now discuss least-squares (or,
L3-) approximation by broken lines. For this, we need a convenient basis
for $3.

Let TO := TI, '2',,.__|_1 := T,-,_, and set

2 (3-71;--ll/(Ti"Ti-#1): Tr-1 <11-I its
(6) -H-t(1'-'!7)I= ('1'-r+1 — IL‘)/(Tr+1 — Tr), Ti § 117 < ’T£+1-.-

0, otherwise.

.-I

|
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H

T0=¢1=T1 T2 Ta 1'4 1'5 ’Tn—1 ‘Tn-.=b:'Ta-.+1

(7) FIGURE. Some of the elements of the standard basis for $3.

These functions have been called hat functions or, more learnedly, cha-
peau functions. Clearly, H, G $3, all i, and, as is obvious from Figure
(7)1

1, '= ' _ .
H,(T,) = 5,, = {O aé, for all i,_j.

This shows that g(r,)H, is an element of $3 that agrees with g at
T1, . , 'r,.,, while, by (3), I3g is the only element of $3 with that property.
This establishes the “Lagrange form"

1'1

(3) -729 = Z§(’fi)Hi
i=1

for the broken line interpolant. It also implies that (H,)‘f is a basis for
$3, that is, every broken line on [T1 .. 'r,.,] with breaks at 1'3, . . . ,r,.,__1 can
be written in exactly one way as a linear combination of the H,’s. The
coordinates of a given f G $3 with respect to the basis (Hill‘ consist simply
of its values (f('r1), . . . , f('r,,._)) at the breaks, that is,

(9) f = i f(r,)H, for 3.11 f e $3.
1.=1 _

Let L3g be the least-squares approximation to g from $3, that is,_L3g G $3
and

/ lye) I ag<o|” dt I min f |§(r~:) I foal’-‘ dx -f€$2

We determine L3g with the aid of the normal equations; that is, we find a-
minimum of H

H f|g(:r.-)—Zor,-H,(:r)|2d:r
j=1

by setting its first partial derivatives with respect to cr1,...,c1:,., to zero.
This gives the linear system

1--I1.

r/1=
I-|'

‘J-

(10) H,(:.1:)H,-(:1:) d:'1ri|‘cr, = /H,(:r)g(:1:) d:.r, i = 1, . . . ,n,

l
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for the coeficients (a,)‘{‘ of the broken-line L3-approximation to g,
71

L3g =: §:cI_,H,.
:i=1

The integrals involved are easily evaluated. We get, more explicitly, the
linear system ii

An-1 ai__1+(i),,,+(ééI1),,,,,_+, =_.
=-;@,:="/~H,(:.I:)g(a:)d:r i-=1,...,n,(11)

ith ct of no interest since Am = A'r,,,_ = 0). The coefficient matrix(W (Io, n+1
is tridiagonal, and strictly diagonally dominant. The system has therefore
exactly one solution and this solution can be obtained efficiently and stably
by Gauss elimination without pivoting (see, for example, Forsythe 8.5 Moler
(19671).

(12) Theorem. The L3-approximation L3g to g G C[a . . bl, that is, to a
continuous function g on [a . . b], by elements of $3 satisfies

(13) \lL29\l 5. 3\l9ll-
Hence, since L3 is additive and L3f -= f for all f G $3, we have

(14) H9 -' L29" S 4111511 (91$2)-

PROOF. To bound \\L3g\\ max,\(L3g)('r,)\ --= max, \c:r,\ in terms of
\\g\\, we multiply, for each i, both sides of the ith equation in (11) by
6/('r,+1 -— 'r,._.,) to obtain the equivalent linear system

A -._ A , -1
T‘ 1 (I-£._1-'i-206-,',-F -——-'-if.-'-‘-"'l'I.1t,j_|_1 ==3fi,'_, ‘.1:-"=‘ l.._,...,Tt,'?'t+1 '-“Ti--r ‘Ti-1-1 -‘Tr-1

for the coefilcients (or-,) of L3g. This system is strictly diagonally dominant
uniformly in 1' (since 'r,.|_1 - 'r,_1 = An:-1 + An), and this wecan exploit
as follows: If j is such that :_-.

larl = llall == 111§~Xl@tl=

then, from the jth equation in (15),

13-%=li=l35r :"(‘-1i—1A"F§—1 '1' @j+1AT:)/(AEI1 '1' 53Tr)l 5 3l15rl + lflrl

. or, A ___llall '5 3\5rl S 3\\5\\-

L

I
I
||

1

-n—|H‘IIF-p—_

L_-1-I-'IIl'I'I'i-‘I1-I--I-|IIi'_|-In-Q--—|I

r-—ZI-"-—m-11.-1--F1.1-II»-I|—
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On the other hand,

y fit = f so->g<1=>d1=
with

(16) 151-¢($) 1= (3/('1't+1 — ‘Pi--1))Hi($)

positive for 'r,_1 -< :1: < r,+1 and zero otherwise, and I I;l,(:t) da: =. 1. Thus
15-=¢| = |.fHt(f-Y-')9(f'1) dill 5 lHi(fl1)d$ '111&1<{|9(fF)| I ’Ti—1 5. 91 S '1'-1+1} 3
Hell-

This proves that ||L3g|| 3 3||g||. But (14) follows from this and from the
fact that L3)‘ = f, for all f G $3, and L3(f +g) = L3)‘ + L3g, much as (5)
follows from (3) and (4) (see Problem 2). E]

The use of diagonal dominance to bound the solution of a linear system
in terms of the right side has been standard in Numerical Analysis for some
time. But the first spline paper to employ the technique is Sharma 8.: Meir
[1966] in which Theorem (12) is proved this way (modulo the identification
made in Corollary V(9)). .

Good meshes ‘We observed earlier that, with [Tl := max, |A'r,|,

, 1
(2) Ila -- Ital! S 5 |rl2||§”|l

in case g G Cm and concluded that we could make the interpolation error
arbitrarily small by making |'r| small. In particular, for a uniform mesh,
we get

on i||g..- an s -2- ||g’*|| = 0 (--2).
with n, the number of interpolation points, equal to the degrees of freedom
used. Here, we have used the symbol “O (n'2)” (read “big oh of n'2”) to
express the fact that the decay exponent for the beundjn (17) is at least
as small as -2. See p. xvi for a full explanation.

Even if g is only continuous, for example g” might be infinite somewhere,
or g’ is not defined somewhere, we can still make the error small by making
\'r\ = max, A1", small. On T, § :1: ~j<_ T,.|_1, we have 1 '

(1'29)($) = (('1'i+1 "- f11)9('Tr) + (I - '1'i)9('1't+1)) /A1?

and

((r,_|_1 -— :17) + (:1: — 1',))/Ar, = (|'r,_|_1 — :r| + |:t — r,|)/A1‘, = 1,
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therefore H

l9(-*1) '" 129(1I=)\§ (("F1+1 -" 11'-')l9(-"1)* 9('T—1)l+(Y-'1 - '1'-e)l9'(°1)" 9(Tt+1)\)/AR
:3 _ni,1I§_g_-§i+1ma1{\9($) - 9('H)\-.»\9(1¢) -' 9('F-=-+1)l 1
S W(9'-.1 5'11)-

Hence, by II(19) , ‘

(13) 1 H9 - 129“ '5. w(93 l"'\) -—l-,,'*;i"_'_-_;,,"'* 0-

For the Squareroot Example II(12),

g(:i:)=~\/l?:lon[a..b]=-[-—1..1],

d interpolation sites, this gives

<19) \\g- an = @(--'1”)  .
er polynomials (except that

which is no gain in the convergence rate ov
' more complex objects than are broken linespolynonnals of order n are

with n pieces). But, because we have the location of the breaks- at our
disposal, we can do much better.

' ‘f has two continuous deriva-
(20) Theorem. If g G C12) (a . . b), that is, 1 g

' ' ' .b), and \g”\ is monotone near a and b, andtives inside the interval (a .
I: \g”(:i:)\1/2 do: < oo, then, with 1'3 < < 'r,.,__1 chosen so that

and uniformly space

T11 "_ b

on [ \g"'<=»>\””dI= [ \g"<==->\1/id-. all
we have

' Hg -- I3g\\ = O (1172) . . . .

A simple proof of this can be found in de Boor (19731. We will discuss
' ' Ch ter XII. Note that this theoremsuch theorems for arbitrary order in ap

not only claims the possibility of good convergence to functions with sin-
gularities at the ends of the interval, but it also indicates how the breaks

' ' al onvergence rate O (n"2).should be chosen to achieve the optim c
t E ample II(12) , we consider only (0. .1], for simplicity;- H __For the Squareroo x

the interval (-—-1 . . 0] can be handled by symmetry. For .1: > O, g (:i:) -
--(1/4):t"3/2 , therefore

t ‘I.

I \g”(:i:)\1/2 do: =- 1- f :'c'3/4 da: = 1-4t1(4 < oo.0 2 0 2 .
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Problems 37
. 3

We therefore want '

2(T-5) or 7'-5-51 5:? 5 Z:2._,...1T1.

For this choice, as one verifies directly (see Problem 6),

ug — aw = mg»; Kg - I2g)<=»>| s <n- 1)”/2
Tn—1__I____T-n

or

<22) ug -- Izgll = 0 (vi-2) .
This shows that, for this choice of breaks, the decay exponent is -2. This
is to be compared with the decay exponent of only -1/2 for the uniformly
spaced breaks demonstrated earlier, and with the same decay exponent
-1/2 obtained in Example II(12) when approximating g by polynomials
with the same number of free parameters.

Problems

l. Verify that broken line interpolation preserves monotonicity and
convexity.

2. For g E C‘ [(1. .b], let Pg be an approximation to g in the linear subspace
S of C'[o. . . b] so that Pg = g whenever g G S, (ii) P(g+ h.) = Pg + Ph
for every g, h. E C[a . . b], and (iii) ||P|| := sup{ : g E C[o . . b] } is
finite. Prove that then

p ug - Pgn sgl + ||P||) d1s1=<g.s>.
3. Let $1 := {f" : f E $2 }, that is, $1 is the linear space of piecewise
constant functions on [o . . b] with breaks T-3, . . . , 'r,.,__1.
(a) Show that dist (g,$1) § u.1(g; ['2']/2) for g G C'[a . . b]. (Note: We take
here := sup{|_f(I)\ : :1: E [:1 .. b] \ {'r2,...,1',,_1}} in order to avoid
discussing what the value of an _f G $1 at a break might be.)
(b) Show that ||g" -- (I2g)"|| g 2dist(g",$1) for any continuously dif-
ferentiable g, and even ||g" — (I3g)"|| = C7(|'r|) if g’ is Lipschitz
continuous.
(c) Show that, for any three times continuously differentiable g, and with
'1'-|:+1/2I=('{'¢ + Ti+1)/21

,1§,@,,><,_ |(g — I-.a_)'<s.1/=~.>| = 0 (W) _
4. Use the estimate ||é':|| § 3||,§|| obtained in the proof of Theorem (12)
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to conclude that (11) has one and only one solution for given g.

5. Let 0 § a < b, and let f be the straight line that interpolates g(:r) :=
\/E at o and b.
(3.) Show that max{ |g(:I:)—_f(:r)| = .1.-. 5 =1; ~;<__ b} = §(,/5- \/.2)?/(,/5+ (/5).
(b) Use part (a) of this problem and (5) above to prove that the distance
of g(:1:) := »,/5 on [—-1 . . 1] from broken lines with uniformly spaced breaks
goes to zero faster than n“1/2.

6. Use Problem 5(a) to verify (22). For this, show that for the interpola-
tion sites T-5 = — 1)/(n — 1))4, i = 1, . . . , n, broken line interpolation to
-,/E on [0 . . 1] has maximum absolute error in ['r, . . 'r,,.1] equal to

|.

li

12* /“‘“‘“‘ U2)‘
7.. Verify numerically that ||g — I3g|| = O (TF2) in case g{:r) = sin \/E
and Ti = ((i--1)/(n-— 1))4, i = 1,...,n.

W
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Piecewise Cubic Interpolation;
CUBSPL

Broken lines are neither very smooth nor very efiicient approximators.
Both for a smoother approximation and for a more efiicient approximation,
one has to go to piecewise polynomial approximation with higher order
pieces. The most popular choice continues to be a cubic approximating
function. In this chapter, we describe various schemes for piecewise cubic
interpolation and give a program for cubic spline interpolation with various
end conditions.

Given the data g(1'1), . . . ,g('I'.,-,._) with a = T1 < - - - < 'r,., = b, we construct
a piecewise cubic interpolant f to g as follows. On each interval ['r, . .'r,.|.1],
we have f agree with some polynomial P, of order 4,
(1)

_f(:r) =P,;(:r) for 1",; fin: g 1',.|.1 for some H G 1'I._-;-_4, i-= 1,...,n— 1.
"1.

|

The ith polynomial piece P,-, is made to satisfy the conditions

(2.) s Pi('F{)-f 9(T-1), P¢('*'i+1)= 9(Te+1) i
P-i('Ii) = 5%: Pf(Ti+1) = 5i+1

=1,...,n—1.

Here, 51 , . . . , s,.,_ are free parameters. The resulting piecewise cubic function
f agrees with g at 1'1, . . . , ‘T,-,_ and is in C'(1)[.-:1 . .b], that is, is continuous and
has a continuous first derivative on [(1. . b], regardless of how we choose the
free “slopes” (s,;)‘{".

In order to compute the coefiicients of the ith polynomial piece P,;, we
use its Newton form

Ps(9-1') = RUE) + (I -' Ti)[Ti1Ti]P£ + (IE — ’T~s.)2[T-.~:=Ti,T-£+1lPt<3) 2 P__+ (I13 - Ti) (fI7'— Ti+1)ITi-.~ '?'1:~.~'1"i+1=-'Ti+1] 1.

We determine its coefficients from a divided difierence table for H based
on the data (2) for Pi:

39
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HP ILIP [HIP [===lP
Te 9171) I

St

Ti 9('i'i)
[1-i'I1|-'I"I"1:I.g *- St

AT-5
, ..__2 . i

[.,-,:_,,-,+1]g fifl~ 

Ti+1 9('Ti+1)
312-l=1

T~£+1 §('7'£+1)

(AT5)

-5‘-.-:.+1 “ I71, 'i'i+1l9
/.'§sT._,;

This shows that, in terms of the shifted powers (:1: — T-QT,

P£(I) Z C1,'i. ‘I’ (:21-»£(:.I: -- Ti) -I‘ C3’-£(fB —- T02 -|- C4‘-;_(..|"'L‘ — ‘F03

. P-1('i'r)
PIW)
P§'("¢)/3

with

(5)
C1,-1 =‘=
02¢
C-73,11 =

C431 =- P,{!I(Ti)/6

—

l‘

“-

fi

i

fl

fi

91%),
St:

I’-"t1'1"t-. T'.~:.+1lP-a — ATt(['Ti, To '11-1-1,Ti+1lPt)=
([11-_. 1'¢+1]9 -' 5t)/ATE '— <34,iAT-.-:-.- "

(Si + $¢+1 — 3iTi=Ti-+1l§)/(13°'i)2- I

Different piecewise cubic interpolation schemes differ in the choice of the
slopes (s,)'f. We discuss the best known choices. .

Piecewise cubic Hermite interpolation Here, one choosess, =
g’(*r,), all i, thereby making the approximation local. This means that
the ith piece P, depends only on information from, or near, the interval
['11,-_ . . 'r,_+1]. From Theorem I(14), we have, for '1', §_ m ~§_ 'r.,_,_1, that

l9(-"'-Y) — J°(f»\'1)I=\(-"'3 '* Ti)2(-"'3 "- '*'@+1)2i'*'i=‘T¢= T¢+1='Ti+1=f"»'lyi
< (13%/3)4 max 19(4) (Q1/4!.
_ 1'-i.‘E5_C£1'~:+1

hence, with \'r\ := max, Ari,

(6) H9 - fli ":<_ (1/384)\Tl4l\g(4)\l
in case g G CM) [:1 . . For equally spaced sites (Ar, -= (b —- e)/(n —— 1), all

, we get

<7) ug — fH = 0 (W4)
that is, the decay exponent for the error in piecewise cubic Hermite
interpolation is at least -4 if the function g has four continuous derivatives.



(8 Runge example continued We consider again the Runge exam-
ple II 1) We interpolateg :1: = (I-I-251172 '1 —1 1 at , = 1+ 2-1 h

= , T1, with h.

DIVDF1
DIVDF3
C(3 I)

END

CHAPTER IJ auncc EXAMPLE wrrn CUBIC HERMITE INTERPDLATIDN
INTEGER I ISTEP J N NH1
REAL ALOGER,ALGERP,C(4 20) DECAY DIVDF1 DIVDF3 DTAU ox ERRHAX c H

* PNATX STEP,TAU(20)
DATA STEP ISTEP /20 20/
c x = 1 /(1 +(5 *x)**2)
PRINT soc

soc FDRMA1(2BH N MAX ERROR DECAY EXP //)
DECAY

40 N 2,20 2
cHocsE INTERPOLATIDN POINTS TAU(1) TAU(N) EQUALLY
SPACED IN (-1 1) AND SET C(1 I) G(TAU(I)) c(2 I) =
GPRIME(TAU(I)) = -50 *TAU(I)*G(TAU(I))**2 I 1
H = 2 /FLDA1(NM1)

10 I=i N
TAU(I)
c(1 I)
c(2 I)

2 I-1 N 1
DTAU =

Runge example continued

-- 2/ (n -- 1 but this time by piecewise cubic Hermite
interpolation The two I11£;1._]OI' changes in the program are outhned

FLDAT(I—1)*H ~ 1
G(TAU(I))
-so *TAU(I)#C(1 I)u*2

CALCULATE THE COEFFICIENTS or THE PDLYNDHIAL PIECES

TAU(I+1) — TAU(I)
III--I

ESTIMATE max INTERPDLATIL ERROR on (-1
ERRHAX =
no so =2,N

= (TAU(I)-TAU(I-1))/STEP
so J=1 ISTEP
H = FLUAT(J)#DX
EVALUATE (I—1)ST CUBIC PIECE
PNATX = c(1 I-1)+Hn(C(2 I-1)+H*(C(3 I-1)+H*C(4 I-1)))
ERRMAX = AHAX1(ERRMAX ABS(G(TAU(I—1)+H)-PNATX))

ALOGER = ALDG(ERRHAX)
IF (N or 2) DECAY =

(ALDGER — ALGERP)/ALDG(FLUAT(N)/FLDAT(N—2))
ALGFRP = ALDGER
earnr 640,N,ERRMAX DECAY

etc FDRMAT(I3 E12.4 F11 2)

(C(1 1+1) - C(1 I))/DTAU
C(2 I) + C(2 I+1) " 2 #DIVDF1
(DIVDF1 - C(2 I) - DIVDF3)/DTAU

(4,1) = (DIVDF3/DTAU)/DTAU

STOP
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42 IV. Piecewise Cubic Interpolation
ii

N HAJLERRDR DECAY EXP. II I'lAX.ERROR DECAY EXP.

0.9601+00 0.00 0.9246+O0 0.00
0.7275+00 -0.40 0.5407+00 -0.77
0.4900+O0 -0.97 0.2500+00 -1.90

3 0.3239+00 -1.39 B 0.1141+00 -2.73
10 0.2236+00 -1.63 10 0.5562-01 -3.22
12 0.1656+00 -1.77 12 0.2932-01 -3.51
14 0.1244+00 "1.36 14 0.1661-O1 -3.69
16 0.9640-01 -1.91 16 0.1000—01 -3.80
13 0.7669-01 -1.94 18 0.6339—02 -3.87
20 0.6234—01 -1.97 20 0.4195-02 -3.92

OIIFIIJ
CI-‘ii-lbl\J

The resulting output is shown above, to the right. The output on the left
came from an incorrect first run, and I decided to include it here to show
the usefulness of computing decay exponents. I knew I must have made
a mistake since the output showed only O (n72) convergence in contrast
to (7). As it turned out, I had used -2 instead of -50 in the statement
labeled 10 in the program, hence had computed the slopes of g incorrectly;
see Problem 3(e). _

Piecewise cubic Bessel interpolation Here, one chooses s, as the
slope at 11;, of the polynomial p of order 3 that agrees with g at 'r,_1, T-5, 'ri_|_1.
A short calculation gives

(9) Si : A’?'rl’?'-I-1i’Trly+51%-1lTrrTr+1lg
I AT-1 + A'T1'_.|_]_ .

which shows that Bessel interpolation is also a local method. Bessel inter-
polation provides only an O (l'r|3)-approximation since s,, as given by (9),
is only an O (\'r\2)-approximation to g"('r.,) ; see Problems 3 and 4 (or try
it right now for g :== -- 'r¢_1)(- — 'r,;)(- — 'r,.|.1)).

Al(lm3'S lnt€rpOl3tl0n Akima’s interpolation was developed by Akima
[1970] in order to combat wiggles in the interpolant. It, too, is a local
method, but it is not additive, that is, the interpolant to a sum of two func-
tions is, in general, difierent from the sum of the corresponding interpolants.
Akima chooses
(10) s_ : 'wr+1l’T¢-1,’TilQ -l" we-1lTr=Tr+1lQ

w-£+1 -l""-U-I--1

with

(11) 111:‘ == ll'Ti='Y3+1l9 __l.TJ'-'11TJ'lgl'
The approximation provided by this scheme is, in general, only of or--
der O (\'rl2); see Problems 3 and 5. The subroutine IQHSCU in the IMSL
subroutine library [1977] embodies this scheme.
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Boundary conditions 43

Cubic spline interpolation I-Iere, the free slopes s2,...,s,,,_1 are
determined from the condition that f should be twice continuously dif-
ferentiable, that is, so that f has also a continuous second derivative. This
gives the conditions that, for i = 2,. . . , rt — 1,

Pi”-1('e) = P§'('Pr)
or

' 203;-1 + 6c4,r-1ATi-i = 203;
or '

+4c,’,_,A,,_,_= _ 2,,,,,A.,,,
A'rr_1 Ari

leading to the linear system

si_1-Ari + si2(A'rr_1 + Ari) + sr_|_1A'r,_1 =- _
12

( ) be I= 3(ATt[T1:-1i'i'tl9+AH-1lTtiTr+1l9)= i=2-.----=""-"'-1-

Assuming that the endslopes, s1 and sn, have been chosen somehow (see
below), we now have in (12) a tridiagonal linear system of 11-2 equations for
the n. — 2 unknowns S2, . . . , s,,.__1 which is strictly row diagonally dominant.
Hence the system has exactly one solution, and this solution can be found
without any difiiculty by Gauss elimination without pivoting (see Forsythe
35 Moler [1967]).

Boundary conditions The various choices for s1 and s-,1 about to
be discussed are useful for "piecewise cubic Bessel interpolation, Akima’s
interpolation scheme and similar schemes as well as for cubic spline
interpolation. But we discuss them only in tei ms of spline interpolation.

(i) If g’ is known at 1'1 and 'r,,._, then it is natural to choose s1 = g'('r1)
and sf, = g’ ('r,,_). The resulting spline interpolant

f=I-19 I

agrees with g at 'n;,,...,'r,,._.|_1 (with To 1: T1, ?r,,._.|_1 := 'r,,,) and has been
called the complete cubic spline interpolant of g.

(ii) If g” is known at the end points, then one can force f” =- g” at the
end points by adding the equation

231-I-32 =-"3|:T1,Tg]g—|—(AT1)g”(T1)/2

at the beginning of (12) and appending the corresponding equation

(14) s,,._...1 + 25,, = 3['r,.,__1, r,.,]g + (A'r,v,_1)g”(1',,_)/2.
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‘H
"r

xi-.

(15) FIGURE. Cubic spline interpolation to f(:r:) = cos(:r) at '5' = —
1)1r : i -—- 1,. . . ,7) and with various end conditions. Going
from top to bottom at either end, the conditions used are:
1. match second (first) derivative at left (right) end (but
don’t interpolate to second nor second-last data point);
2. periodic, complete (both indistinguishable from f); 3.
free-end or natural (note the straight ends); 4. first end
derivatives estimated by local cubic interpolation; 5. not-
a-knot.

(iii) So-called natural spline interpolation results from the free-end
conditions

(16) f”('P1)= f”('m) = 9-

In spite of its positive sounding name, natural spline interpolation has
little to recommend it from an approximation-theoretic point of view. The
arbitrary assignment (16) produces O (|'r|2)-errors near the ends (unless
also g” ('1-1) = g” (1-,.,) —--= 0) and so dramatically reduces the overall rateof
convergence of the interpolation method.

(iv) If one knows nothing about the end point derivatives, then one should
try the not-a-knot condition (from de Boor [1966]). Here, one chooses s1
and sf, so that P1 = P2 and P,.,.__2 = P,.,_.1 (that is, the first and the last
interior knots are not active). This requires that f”' be continuous across
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'1-2 and r,,.__1 and so means adding the equation

S1A'I'2 -l- $2(T3 — T1) =

(17) (Ail 'l' 3(’Ta — ’T1))A"'2l1'i= ’T2l9' "l' (*5’T1)2l’T2=’Tsl9
T3 —'T1

at the beginning of (12) and appending the corresponding equation

S1-|__..1(T.n_ ——- T,-,__2) -I- SnATn_2 =

(18) (AIIII-!'I'.---].)2[IT‘I"l.-—2'I T-r1.—-llg 'l' (2(T-:1. _ T-r'i.—2) + AII11--1)A7n—-2I7n—1iTnlg

Tn "" Tn-2

One may alternatively think of this boundary condition as requiring both
the first and the last polynomial piece to interpolate g at an additional site
that is not a break. Th-is means that we have n-— 3 polynomial pieces rather
than n - 1, with the first piece E1 agreeing with f on [1-1 .. 1-3] and such
that P1('r,) = g('r,), i -= 1,2,3, and P{('r3) = s3, and, similarly, the last
piece, P,,.__.3, making up f on [1',.,.__2 . ."r,,_] and such that P,.,_3('r.,,) = g('r,-_) for
i = it — 2, n — 1,n and P,§,__3('r,.,_2) = s,,__3. This would change the linear
system (and the notation) slightly, but the resulting function f would be
identical with the one constructed the earlier way.

Interpreted this way, we have here the first illustration of the fact that,
in piecewise polynomial interpolation, interpolation sites and breaks need
not coincide. }_

(v) A somewhat diiferent technique in the absence of derivative informa-
tion at the boundaiy consists in computing an estimate for g’, g” or even
g’” at the boundary points o. and b by computing the corresponding deriva-
tives of the cubic polynomial that matches g at the four data sites nearest
to the boundary point, and then forcing f to match that derivative value.
We leave it to the reader to work out the requisite additional equations. As
with the not-a-knot condition, the resulting approximation is O (|'r|4), (see
Swartz 3.5 Varga [1972]).

(vi) Curtis 8.: Powell (see Hayes [1970:Ch.-4]) have an interesting justifi-
cation for the end condition (f — g)('i-3/2) = (f — g)(T5/2), with 1'(2H_1)/2 :=
(Ti 'l' "I-rl+1

(vii) Note that one can freely choose to have different conditions at the
two ends of the interval. I

There follows a FORTRAN program CUBSPL for computing the cubic spline
interpolant. It allows for prescribing end slopes, end second derivatives,
or for prescribing nothing at all, in which case the not-a-knot condition
is used. In anticipation of later programs, the ith polynomial piece P; is
written here as

Pr(fB) = CI1,-;_ —i— C2‘i(I — T-,1) —l— CI3,£(fiI — T,-_)2/2 -l- C4Ii(I — 1',-,)3/6
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instead of in the earlier way given in

OOOQCJQOOOOCJOOCJOCJOOCJCIOOOGCICJO

SUBROUTINE CUBSPL ( TAU, 0, N, IBCBEG, IBCEND )
taeaoaoeeeeaoaaoaoeoueaa INPUT iitttttttttttteutnttttttttt
N - NUMBER OF DATA POINTS. AssUHEDzT0 BE .GE. 2.
(TAu(I), c(1,I). I=1,...,N) = AEscTssAE AND ORDINATES OF THEDATA POINTS. TAU IS AssUHED TO BE STRICTLY INCREASING.
Iacarc, IBCEND = BOUNDARY CONDITION INDICATORS, AND
c(2,1). c(2,N) =_BOUNDARY CONDITION INFDRNATIDN. SPECIFICALLY,

IBCBEG I O MEANS NO BOUNDARY CONDITION AT TAU(1) IS GIVEN.
IN THIS CASE, THE NOT—A—KNOT CONDITION IS USED, IJE. THE
JUHP IN THE THIRD DERIVATIVE ACROSS TAU(2) IS FORCED TO
ZERD, THUS THE FIRsT AND THE SECOND CUBIC PDLYNDHIAL PIECES
ARE HADE TO COINCIDE.)

IBCBEG - 1 HEANs THAT THE SLOPE AT TAU(1) IS HADE TO EQUAL
C(2,1), SUPPLIED BY INPUT.

IBCBEG = 2 MEANS THAT THE SECOND DERIVATIVE AT TAU(1) IS
MADE TO EQUAL c(2,1), SUPPLIED BY INPUT.

IBCEND - D, 1, DR 2 HAS ANALOGOUS MEANING CONCERNING THE
BDUNDART CONDITION AT TAU(N), HITH THE ADDITIONAL INFDR—
MATION TAKEN FROM C(2,N). '

oecotoeoaoeoooeoeoeooee OUTPUT #######*############tttttt
C(J,I), J-1,.,.,4; I=1,...,L (= N-1) = THE POLYNOHIAL COEFFICIENTS

OF THE CUBIC INTERPDLATING SPLINE HITH INTERIDR KNOTS (DR
JOINTS) TAU(2), ..., TAU(N-1).1PRECISELY, IN THE INTERVAL
(TAU(I) .. TAU(I+1)), THE SPLINE F Is GIVEN BY

F(1) - C(1.I)+H*(C(2.I)+H*(C(3.I)+H*C(4,I)/3.)/2.)
WHERE H - A - TAU(I). THE FUNCTION PRDGRAH *PPVALU+ HAY BE
USED TO EVALUATE F DR ITS DERIVATIVES FRDH TAU,C, L = N—i,
AND K""4 .. ‘ t

INTEGER IBCBEG,IBCEND,N, I,J,L,H
REAL c(4,N).TAU(N), DIVDFi,DIVDFa,DTAU,c

Coootoe A TRIDIAGONAL LINEAR SYSTEM FDR THE UNHNDHN SLOPES S(I) or
c F AT TAU(I), I=i,...,N, IS GENERATED AND THEN soLVED BY GAUSS ELIM-
c INATION, HITH s(I) ENDING UP IN c(2,I), ALL I.
c C(3,.) AND C(4,.) ARE USED INITIALLY FOR TEMPORARY STORAGE.

L'=N"'1 I
COHPUTE FIRST DIFFERENCES OF TAU SEQUENCE AND STORE IN C(3i.). ALSO,
COHPUTE FIRST DIUIDED DIFFERENCE OF DATA AND STORE IN C(4,.).

Do 1O H-2,N _
c(3.H) = TAU(N) — TAU(H—1)
C(4,N) (C(1 H) — C(1 M—1))/C(3 N)10 I= I I I

CONSTRUCT FIRST EQUATION FROM THE BOUNDARY CONDITION, OF THE FORM
C =

11
C

C .

12

C

C(4.1)*s(1) + C(3.1)*s(2) c(2.1)
IF (IBCBEG—1) 11,15,15
IF (N .GT. 2) GO TO 12
NO CONDITION AT LEFT END AND N = 2.
C(4,1) I 1.
c(3,1) - 1.
C(2,1) - 2.*C(4,2) GO TO 25
NOT-A—KNOT CONDITION AT LEFT END AND N .GT. 2.
C(4,1) I C(3,3)
c(3.i) - c(a,2) + c(a,a)
C(2.1) —((C(3.2)+2-*C(3,1))*C(4.2)*C(3,3)+¢(3.2)**2*c(4.3))/c(3.1)GO TO is
SLOPE PRESCRIBED AT LEFT END.

15 C(4,1) I 1.
C(3,1) - D. GO T0 is

If
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c I SECOND DERIVATIVE PRESCRIBED AT LEFT END.
16 C(4,1) = 2.

c(a,1) = 1.
I c(2,i) = 3.-c(4,2) — C(3.2)/2.*C(2,1)
is IF(N .EQ. 2) GD TO 25

C LF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESP. EQUATIONS AND CAR-
c RY DUT THE FDHHARD PASS OF GAUSS ELIHINATIDN, AFTER WHICH THE H—TH
c EDUATIDN READS C(4,M)*S(M) + c(3,N)*s(H+1) = C(2,H).

19 DO 2D H=2,L
G = —C(3,M+1)/C(4.N—1)
c(2,H) = G#C(2,M—1) + 3.*(C(3,H)*C(4,H+1)+C(3,N+1)*C(4,H))

2D c(4.M) = G*C(3.H—1) + 2.*(C(3,N) + c(S,N+1))
CONSTRUCT LAST EDUATIDN FRDN THE SEcDND EDUNDARY CONDITION, OF THE FDRH
c (-G*C(4,N—1))*S(N—1) + C(4,N)*S(N) = C(2,N)

IF SLDPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TD BACK-
SUBSTITUTION, SINCE C ARRAY HAPPENS TO BE SET UP JUST RIGHT FDR IT
AT THIS POINT.
IF (IEcEHD—1) 21,30,24

21 IF (N .ED. 3 .AND. IBcEEG .ED. O) GD TD 22
c NDT—A-KNDT AND N .GE. 3, AND EITHER N.GT.3 OR ALSD NOT—A—KNOT AT
c I LEFT END POINT.

- G = c(3.N—1) + C(3.N)
c(2,N) = ((C(3,N)+2.*G)*C(4.N)*C(3,N~1)

A A + c<a,N)**2*(c<1,N-1)—c<i.N—2))/c<a.N-1))/G
G = —G/C(4,N—1)
C(4,N) = C(3,N—1)

GOO

GD TO 29 '
c EITHER (N=3 AND NOT-A—KNOT ALSD AT LEFT) DR (N=2 AND NOT NDT-A-
c KNOT AT LEFT END POINT).

22 c(2,N) = 2.*C(4,N)
y C(4,N) = 1. GD TD 2a

c SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPDINT.
24 c(2,N) = 3.*C(4,N) + C(3,N)/2.*C(2.N)

I C(4,N) = 2. GD TO 2a
25 IF <IDcEND—i) 26,30,24
2e IF (IBCBEG .GT. O) I GD TO 22

c NDT—A—KNDT AT RIGHT ENDPDINT AND AT LEFT ENDPOINT AND N =.2.
c(2.N) = C(4.N) -

A GD TO so
2a G = -1./c<4,N-1)

CDNPLETE FDRHARD PASS OF GAUSS ELININATIDN.
29 C(4,N) = GAc(s,N-1) + C(4,N)

c(2,N) = (G¥C(2.N-1) + C(2.N))/c(4.N)
CARRY OUT BACK SUESTITUTIDN

so J = L
40 c(2,J) = (C(2.J) — c(S.J)*C(2.J+i))/c(4.J) I

. J = J - 1
IF (J .GT. D) GD TD 40

Canaan: GENERATE CUBIC COEFFICIENTS IN EACH INTERVAL, I.E., THE DERIV.S
c AT ITS LEFT ENDPOINT, FRDH VALUE AND SLOPE AT ITS ENDPOINTS.

DD 5O I=2,N
DTAU = C(3,I)
DIVDFI = (C(1,I) — c(1,I—1))/DTAU
DIVDFE = c(2,I—1) + c(2,I) — 2.*DIVDF1
C(3,I—1) = 2.#(DIVDF1 - c(2,I-1) - DIVDFS)/DTAU

5O C(4.I—1) = (DIVDFS/DTAU)*<s./DTAU)RETURN
END
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Problems

1. Another popular piecewise cubic Iinterpolation scheme is based on
choosing S, so that the tangent to f at T, has equal angle with the se-
cant at T,_1,'r, and the secant at T,,'r,+1. Work out the formula for s, in
terms of ['r,_1,'r,]g and [T,,T,+1]g. .

2. (The cubic Hermite basis) Prove that an arbitrary cubic polynomial
p can be written uniquely as

2(2) = P(0)<P1($) + P(h)<P2($) + F’(0)<Fa(1=) + P’(h)<Fi(I)
for given h =75 O, with-

<F’1(11?) == 1'l'?J2(2'9"3)= 9-°2($) ?= ‘P1(h"'$)=1—‘P1($)= _: x/h
<F3(-I) == I(1—:u)2. <P-i(I) == -<F’3(h"$)i III .

Hence, _

P($) = 2(0) + (PU1) — P(0))a2(3 -— 22) + (P’(0)(1 — 11) — F’(h)a)=1=(1 — 2)-

3. (Error in piecewise cubic interpolation)
(a) Use Problem 2 to Show that the error in a piecewise cubic interpolant
f to g can be written

H=9—f=Q—fH+E.

with fH the piecewise cubic Hermite interpolant and

'Tr+i-I-1? 93—'TIi ($"-Tr)('1"r+i -'11‘-F),
E(ZE) It (fi"('T'.£) -— @‘II(’T'-,'__|_1) AT-

T, 5' :1: _§ 'r,+1.

Note that e"(T_,) = g"('r,) — s_.,-, all 3'. 2
(b) Conclude from (a) and from (6) above that, for a sufficiently smooth
91 ll9—'fIll 3 ll9-fHll +lTl1'11@-X1 l@I('Ti)l/4= 01' 1

ug - fll = <2 (Fr) + mg»: l@I('Tr)lO (IT!)-
(c) Prove that, in general, piecewise cubic Bessel interpolation (with
prescribed endslopes) is (9
(d) Prove that Akima’s interpolation scheme (for example, with prescribed
endslopes) is O .
(e) In the incorrect first run of the program for the Runge example (8)
with piecewise cubic Hermite interpolation, we have max, |e' (1-,)| m 3.25
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regardless of T, hence (b) would allow only the conclusion that =
O (|T|), yet the numbers showed = (9 Explain! (Hint: Show by
additional printout that, for the range of Ti. considered, the maximum error
occurs in the middle interval that is centered around zero, then Show that
|]E]| = (9 (Ih2) on that interval [—h/2 .. h/2], because of the Systematic
nature of the error in the slopes).

4. Adapt the experimental program in Example (8) to ca.rry out piecewise
cubic Bessel interpolation (with prescribed endslopes). Then verify that
the error in Bessel interpolation is in general no better than O (|T|3) by
interpolating g(:r:) = :1;-3 on [0 .. 1] on a mesh T that is uniform except for
one site, say the first interior site, that is twice as far from its left neighbor
than from its right. _

5. Adapt the experimental program in Example (8) to carry out Akima’s
interpolation (with s1 = ]’T'[3,’T1]g = g"(T1) and s,, = [T,,,T,,+1]g = g"(T,,_)).
Then verify that Akima’s scheme is, in general, no better than O (ITI2) by
applying it to g(:i:) = 2:2 on [O . . 1] for a uniform T.

Also, appreciate the effect of a nonuniform T by interpolating g(T) = £132
on ]O. . 1] on a mesh derived from aI, uniform one by moving every other site
halfway toward its neighbor on the right. Look at the error!

6. A common approach to cubicispline interpolation expresses the cubic
piece P, in terms of its values at 'T',;I and ‘T’-,-;_|_1 and its second derivative, m,
and m,+1 at T, and 'T,;_|_1, respectively. The free parameters m1,. . . , m,, are
then determined so that P§'__'1(T,) = P.,-_’(T,), i = 2,. . . , T1 — 1.
(a) Derive the formula corresponding to (4) and (5) for this approach.
(b) Determine the linear system for the m,’s. (Remark: I have given prefer-
ence to the approach in the text because it relates cubic spline interpolation
explicitly to a host of other piecewise cubic interpolation schemes.)

7. (Convergence of complete cubic spline interpolation)
(a) Use the techniques of Chapter III to show that the solution (s,);"1 of
(12) for given S1, 3,, satisfies

maxlsrl S I11='1X{l$1l= "PS1 lbrl/("fi1+1- 'T-=I—1)=l$r=l}-1 1--'.._1.<11.

(b) Conclude that the complete cubic spline interpolant satisfies

ll (I-i9)Ill S 3-75 U1_};1f§nllTr=T¢+1l9l-

(Hint: show that (lI4Q)'II('T,_|_1/2) = -%[T,, T,_|_1]g—-— (s,+s,_|_1)/4, with T,;_|_1/2 :=
(T, + T-,_|_1)/2. Then use the fact that, for p E 1I<3, max{ |p(:r:)| : a 3 :1: 5
b} § (5/4)max{ |p(o)], |p(£l-'-‘II1)],|p(b)| }; see Problem II.4).
(c) Deduce from (b) and from Problem III.2 that

Ila’ - (I49)’|| 5 4-75 dist (93 $3).
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with $3 I= E C(1) [T1 . . Tn] I fl],-i___1-‘+11 E I1.-Q3, " ' case has a bounded
(d) Deduce from (c) that ]]g-I4g]] Q (19/8)]T]]]g ]], in g
first derivative.

8. Derive (17) from (2), (3), and P{”(Tg) == P§”(Tg), then derive (18) from
(17) by an appropriate change of variables.

9. Here is the cumulative distribution N = N(age), i.e., as a function of
' ' ' ' ' t valsage, of Bulgarian women giving birth, tabulated in five-year in er

age 15 20 25 80 85 40 45 50 _
N 0 7,442 25,703 41,088 47,535 49,758 50,209 50,268

Fit these data with. a cubic spline, using CUBSPL and the end conditions' ' h h' to ram
f"(15) = f'(50) = 0. Then draw f’ on _]15. .50], and also draw t e is g
or piecewise constant function that, on ]_T, . .’T',;_|_1], has the value (N('T',_|_1) -
N(T,))/5, with T, := 10 + 5i, i = 1, . . I. , 8. Compare with Figure VIII(2).

This example is taken from L. I. Boneva, D. C. Kendall & I. Stefanov
[1971]' I .
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V

Best Approximation Properties of
Complete Cubic Spline Interpolation
and Its Error

We show that the complete cubic spline interpolant f =' I4g to g, con-
structed in the preceding chapter, minimizes _fIIII(1I'£)]2dzr over all twice
differentiable functions f that agree with g at TU, . . . ,T,,+1. This is the
property that gave rise to the name “spline”. We also show that the error
H9—hmUS@UflH-

Consider again the data sites '

a=T@=T1<---<T,,=T,,+1=b.

In the preceding chapter, we constructed for the given g its complete cubic
spline interpolant I4g for those data sites. To recall, I4g agrees with g at
(T,)E‘+1 (in particular, (I4g)" = g’ at ‘T1 and T,, since ‘T9 = ‘T1 and T,,+1- = T,,),
and is a cubic spline on [rt . . b] with interior knots T2, . . . , T,,_1, that is
a twice continuously differentiable, piecewise cubic function on [D . . b] with
breaks ‘T2, . . . , ‘T’,-,__1. We denote the class or linear space of all cubic splines
on ]a. . . b] with interior knots at T2, . . . , T,-,_1 by

I ‘ $4.

We derive the various best approximation properties of the complete
cubic spline interpolant from the following simple lemma which relates the
interpolant to least-squares approximation to its second derivative from $3,
the linear space of continuous broken lines on ]a. .b] with breaks T2, . . . , T,.,_.1
as introduced in Chapter III.

(1) Lemma. If g is twice differentiable, then the second derivative of the
interpolation error e := g -— I4g is orthogonal to $2, that is,

5
(2) /I e”(:i:)<,o(:r:) d:r: = 0 for all rp E $2.

I PROOF. The customary proof of this lemma uses nothing more than
integration by parts and can therefore be supplied directly by the reader.

51
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t I II_I_I__—I>IIII
(3) FIGURE. The function f (:r:) = (:1: -— t)+

In anticipation of material in subsequent chapters, I prefer to prove the
lemma via the integral representation for the second divided difference, as
follows.

From Taylor’s expansion with integral remainder, we have _

h(:i:) ‘= h(a) + (:1: — a)h"(a) + /IIII (:1: — t)h”(t) dt

for any twice difierentiable function h. Since the second divided difference
of any straight line is zero, we obtain

I

<4) Il’Tt-1,’?"r,’Tt+1]h' = A-,_,.»»~.=.»i-5.11 / (A - t)h”(r)d1f,
‘where the divided difference on theright is taken of the function of :1: defined
by the integral. Note that the independent variable :1: appears in two places
there. In order to simplify things and take the divided difference inside of
the integral, we introduce the truncated function

(:1: —— t)+ := max{O,:r: —— t},

depicted in Figure With this function, we can write
:1: b

j (:1: — t)h”(t) dt = j (:1: — t)+h”(t) dt, for a _<_i :1: § b,

and so may rewrite (4) as
5 5 __

['I-»;‘_._.]_, ’T,j,7',j_|_1]h -'= _/I ]T,;._]_, T5, 7'-,;+1](f.II -" fI)_|_hIIII(t) Zf

where H, is the piecewise linear “hat” function III(16); that is,

I:-r£(t) 1: .2l’T-i-1-.-‘T-r.,'T~i+1](113 T ?5)+

2 (P3 T T‘I—l.)/AII'III‘I—l.$ Ti-1 <13 S To
- = ('T,;_|_1 —- 1'2)/A’T'{, ‘T’, _‘§ ll ‘C ‘T-5+1,

I‘+ 1 " 1 O, otherwise,

.41
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is twice a second divided difference of (:1: -—-t)+ for each fixed t as a function
of zt.

Now, since the interpolation error e = 9 — I49 vanishes at all the 1-.;’s, its
second divided differences at these sites are therefore also zero, that 1s,

b A

0"-: ['7'-;;_1,’T'4;,’T'-_g_|_1:l€ Ff Hi(t)6:!(t) Cit, = 1,...,1’1-.
Cl-

This shows e” to be orthogonal to each of the n functions I:I1, . . . , Ill“, and,
since these span $2, the lemma follows. El

(5) Theorem. (Pythagoras) For every twice continuously differentiable
function 9 on [a . . b],

b b

<6) f [g"<w>1”¢1== f [(I49)”(=v)]2d1=+J/b[(g—I4g)”(:1=)l2d1=~
PROOF. We have

s ~ b _
f [g”(¢)l2<1¢=/ [(I49)”(*)+@”(¢)l2d*

H ab b b= f [<I.1.g>'*<¢>12d¢+2/ <I4g>"<t>@’*<¢>d¢+ f [@"<¢>1='*d1r_
But f:(I49)”(t)e”(t) dt = O by Lemma (1), since (I49)” E $2. El

(7) Corollary. Among all functions f with two continuous derivatives
that agree with the function 9 at the sites rb,...,r,,+1, the particulart
function I49 uniquely minimizes fa [f”(t)]2 dt.

PROOF. For any such function f , we must have I4f = I49, therefore,
from Theorem (5),

. b b b

/ [r**<t>12d¢= f [<I4g>”<¢>12d¢+ / u*'<t>—<I4g>"<t>12dt
U U L1 4»

Z fbl(I49)”(l5)l2d'5=

and the inequality becomes equality if and only if f” = (I49)”, which
because of the interpolation conditions, is equivalent to f = I49. U
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T1113 iS the smoothest interpolation property of cubic spline inter-l 1 the strain
polation. The function f = I49 minimizes (approximately 011 y.)

energy “ [f”(¢)]2L [1 + (r~'(t>>215/2
over all function curves passing through the given data. In this sense I4 93

th osition of a flexible thin beam or draftrnan s splineapproximates e p _
forced through the given data. This is the reason behind Schoenberg’s [1946]' ‘H

choice of the words ‘?spline” curve and “splme function.

(9) Corollary. The second derivative of the complete cubic spline inter-
polant to the function 9 is the least-squares approximation from the space
$2 of broken lines to the second derivative of 9, that is,

U49)” == L2(9”)-

PROOF. Let s E $2, a.nd take h(:r:) := f:(:t -— t)4.s(t) dt. Then h” == s,
and h E $4, consequently I4h = h and so (I4h)” = la.” = s and h — I4h = 0.
Therefore, substitution of 9 —- h for gilin Theorem (5) g1ves

b b tr

f [9”(==)—s(==)12 d1== f [<<Ilg>"—s>e~>12d@:+f Kg-Ilg>”<a=>12d:=
2 /blg*'r(9-F) -' (I49)”($)l2 C11’

with equality if and only if (I49)” = s. Hence L_-;(9”) -—-= I49”.
An alternative proof is based directly on Lemma (1). We know by thatTl-

lemma that there are coefficients (a4)? so that (I49)” = E1 ax,-H5; and
f:(9” —— za4Hj)H4 = O for i = 1,...,n (with Hj given by lIl(6)). But
these last orthogonality conditions can also be written

}:(]H4Hj)aj =‘/‘Iii.-,_=_g”, ‘Ii.-=l,...,TL,

:i=1 e"
which, on comparing with III(10), we recognize as the normal equations
for the determination of the least-squares approximation L29” =- Z3, 0:, H_.,
t0 Q” fI‘0H1 $2. _

El

The corollary comprises the best approximation property of com-
plete cubic spline interp
Theorem lll(12) that

\\(I4Q)"\\ S 3\\Q”\\
and that, for a function 9 with four continuous derivatives,

\\@"\\ = ug" — <I4g>"\\ ;<. 4 die <9". $2) :.<. Q-\T\2 \\g'1*> \\»

olation. As a bonus, we obtain at once from

i-r-rru--|—u
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From this, we obtain a bound on the maximum interpolation error ||e|| as
fOllOWS. PT-3g I g ‘T-5+1, t-l1E-‘I1

6(5) = ell?) + (I1? -' 7-i)lTi:7'i+1l€ ‘l’ (1'17-- ’Ti)($ — ’1"i+1)l'*"i~..'»"t+1=-iiile
= 0 + 0 + (I — 'e)(=r —- 1"-¢+1)e”(C.~=)/2

for some Q,-,_.. in (T4 . . 'r44.1). Therefore, we then have

|@<1=>| 5 (AT./2>2 £11;;45+,1@'*(c>|/2.
Thus \|e|| §_ %|'r|2||€”ll .‘§ %|'r|24 dist (9”,$g), which proves

(10) Corollary. For a twice continuously differentiable function 9,

1 2 - nr(11) ug - an 5 ~.; |»»~| ds (9 .$-.-.>.
Therefore, from equation III(2),

1<12) s llg-r.g|| s R-|T|"'*||g<“>||
in case 9 has four continuous derivatives.

Actually, as proved by Hall [1968],

51 - < _ 4 (4)< 3) ug 1.911 _ ,8,+r| ug u.
and the constant (5/384) is best possible, as proved by Hall & Meyer [1976]
(see Problem 2(c) and Problem Vl.5(c)).

Finally, for completeness, we recall from Problem lV.7 that

19 _
(14) . ||9 — I-=19|| 5 "ér |'Tl d1$t(9'=$s)

in case 9 is differentiable. I 4
Cubic spline interpolation also provides acceptable approximations to

derivatives and is therefore a popular means for numerical difiemntiatioa.
We saw ‘already that

1(15) ng” — <I.g>"|| s 4 d1st(g”.$2> s 5 |T|"||g“”||-
Actually, Hall & Meyer [1976] proved that I

rr or 3 2 (4)
(16) "9 —(I-<19) ll S §l'*"| |l9 ||-
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Also, from Problem lV.7 and Problem lIl.2,

<17) Hg’ — <I.a>'|\ s § d1st<g’.$3>
while, from Problem 2,

<18) ' m;»<\g’<»~>- <I4g>*<e>1 s -,5,-11-|"':|g<4>l\
and, by Problem 5, for a uniform 1', even

<19) m§w<l9'(e) - (I-¢.I=Q)’(T-ill s §,-,~\»r|**|\g<="*>1\.
that is, one order higher. Somewhat more effort shows that

1

(20) ll?’ — (I-49)ill 5 52 lTl3ll9(4) ll

d th t this estimate is best possible (see Problem V1.5); see Hall 8-:an a
Meyer [1976]. Finally, the quality of approximation to the third derivative. h y
may depend on the spacmg of 'r. Hall 8:: Meyer [1976] show t at

1
(21) H96) - (I49)(3)ll 5 §(M1' + 1/MT)lTl|l9(4)ll=

with the global mesh ratio MT given by

(22) MT := __1min Ari.1.- ,...,fl.—1

Problems

1. Derive (14) from Problem IV.7(d). (Hint: in Problem IV.7(d), substi-
tute 9 — h for 9, with h(:1:) := s(t) dt and s E $3 arbitrary, then minimize
over s.)

2. (Proof of (13)) Let ei := e"(¢4)._, all i, with e := 9 — I49, and assume
that 9 has four continuous derivatives.
(a) Prove that (ei) satisfies the equation

64e§___1 + 2e’; + (1 — 54)e§_,_1 = L34

With 5-; I.=-“- QKT-5/(‘T-1+1 -- ‘T-,;__1).,

L-L == la.(-Aa-1)3g<4>(c:> + (1 - 6-£)(At)3g“’ (<;;‘")1/24..
and g;',g;‘" e [1-.,_1 ..-r4+1], 1 = 2,...,n - 1. (Hint: By IV(12), ri4e‘§__1 +
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2812 + (1 — 51)@E+1 = 5i9’('e-1)+ 29’('e) + (1 — 5-i.)9'('e+1)— 3(5i['e-1W-:19 +
(1 -- 54) [r.; , 'ri+1]9), all i. Now .verify,(for example, by Taylor expansion or by
Problem 3), and then use, the fact that, for a sufficiently smooth function
F.

(1.) 2F’(O) + F’(h) -- 3[0, h]F = - g F”(0) + (ha/24)F(“)(§)

for some Q between O and h... (This fixes a flaw in the argument for (13)
given in Hall [1968].))
(b) Use the considerations of Problem lV.7(a) to conclude from (a) that
m-as lezl s lrI3l|g“"|I/24-
(c) Prove (13) from (b) using Problem lV.3(b).

3. Derive the identity (e) in Problem 2(a) above in the following way:
Integrate the identity F"(:x:) = F"(0) +F”(O):r+ [0, O, h]F’-:.r2+[0,*O, h, :r:]F’-
$2 (:1: — h) (obtained from Theorem l(14)) from 0 to h, then use the mean
value theorem for integrals and the fact that [0,0, h,:r:]F" = i(F’)’”(§)/3!
for some Q between O and h (if :1: is in that interval).

4. Identify the linear system lll(11) or Ill(15) with the linear system
derived in Problem lV.6(b).

5. Carry the expansion (=1=) in Problem 2(a) one step further, that is,
prove that '

3 - 42F’(0) + F’(h) - 3[0., h]F = - 5 F”(0) + 1 F<4>(0} + 5- F<5>(g)
_ 2 24 60

for some Q between O and h. Then use this expansion to show that, for a
uniform 1", even maxi |e§] 5 |*r|4||9(5)||/60. In words, complete cubic spline
interpolation at uniformly spaced data sites gives O (n"4) approximation
even to the slopes at the data sites.

6. Letn:=(i—-1)/(n—l),i==l,...,n.
(a) Show that the function e(:1:) := (:1: — r4)2(:t — r.,=,_,_1)2, 1'4 jg :1: 5 'r,;+1,
t=1,...,n- 1, is ofthe form :r4—f(:r) for some f6 $4. _
(b) Conclude that e is the error in the complete cubic spline interpolant
to $4. Then conclude that the overall error in f’ as an approximation of 9’
(with 9($) = 9:4 in this example) is no better than O (n‘3) even though
max, |e£| = O (n"4).

A function of the form 11:4 ——-f for some f E $4'is called a monospline
of degree 4. .

7. Let I29 be the broken line interpolant to 9, at the sites a = T1 < - - - <
T,-,_ = b, as introduced in lIl(8). Prove that, for every piecewise continuously
differentiable function 9,

b b bf [g'a>12d¢= f [<sg>'<1->12d=r+ f [<g-r-.-.g>*<=1=>12d=1=-
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I = " , 'th L least-squares approximation. frOII1ConclFdFJ:hat (I22) $ }L1£9gl1W;ieceV;iSe constant functions on [a .. b]
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VI

Parabolic Spline Interpolation

In this chapter, we discuss briefly interpolation by parabolic splines in or-
der to make the point that, in piecewise polynomial interpolation, it might
be advantageous at times to interpolate at sites other than the breaks.
In the process, we comeupon the exponential decay of certain influence
functions, and expand on this in the problems.

We begin again with given data 9('r1), . . . , 9(r,-,) at data sites a = T1 <
- -- < r-,4 = b. Suppose first that we proceed exactly as in the construction
of a piecewise cubic interpolant in Chapter IV. We‘ choose the interpolant
f to 9 to consist of parabolic pieces,

f(:r) = P4(:r:) on 1'4 5' a: §_ 'r4+1 for some P4 € 11.43, i -= 1,. .. ,n. — 1.

Then

(1) - Pi(Ti) = Q(Ti)=- P1:('Fi.+1) : 9('Ti+1),

which leaves one degree of freedom for each piece still to be determined.
We take this degree of freedom in the form

(2) Pi(’F¢+1/2) = 'vt+1-.- with Tt+1/2 3: (Ti +'Ti+1)/2:

and now look for ways of choosing these numbers '02, . . . , 1144. We could de-
termine these additional parameters from some local considerations. For
instance, we could choose 1.14.4.1 == 9(r4+1/2) if the latter numbers are avail-
able, thus interpolating 9 at the sites 'r4+1/2, i = 2,. . .,n, as well. The
reader is familiar with the resulting interpolation scheme in a somewhat
disguised form: If we integrate the resulting piecewise parabolic interpolant
f for 9, we obtain a general form of Si1npson"s rule for ff 9(a) daz.

Another idea is to determine '04, i = 2,. .. ,n, so as to make the inter-
polating function f a parabolic spline, that is, so as to make the function
f continuously differentiable. In order to derive the resulting linear system

59
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for the numbers v4, we write P4 in Newton form

Pt(I17) = P-£('7'1:)+(fl3 — Tt)l’7't~.-. 'Ti+1/2lP.r

+ (I1? - 'Tr)(I1? "r ‘T-1+1/2)['Ta ’Ti+1/2, 'T1'.+1l-Pi

= Pi('T=-1)+ (11? " Tilsir + (91 - 'Ti)($ "' t-.+1/§)(s;.-"+1 "' 5i'l/A71

with the abbreviations ‘

SI 1 = lTi1'Tt+1/2lPi = ('Ui+1 *- 9('l'i)l/(A'-"i/2):
*'3;+1 i: l'7'i+1/2="'i+1lPi = (9('-"i+1) " 'Ui+1)/(A'*"i/2)-

Then

Pi("'i) = Si + (‘Ti + "'i+1/2)($-1-|-1 " Si‘)/A73 = (35: “‘ 5+1)/2=
Pi-1('Ti) = $1.1 + (‘Ti v ‘R-1 + Ti r" ‘T1-1/2)(~‘-‘F; " $El_1)//5"?--1

= (35; "' Si:-1)/2

The continuity of the first derivative of f is therefore ensured if for i =
2, . . . , n — 1,

"'--a."i3"-"iI-iLiw-—-1-u—u-rmI-I-

1 I

Pl_1('Ti) = P{('a)
or

(35; _ 5i‘-1)/2 = (3-iii _ 3;+1)/2-

A reordering of the terms produces the linear system

4'04;/AT-t—1 -l- 4'0-4+1/A.T4 _

(3) = (3Q('?'i) + 9('Fi—1)l//51%-1 + (39('?'i) + 9('?'i+1))/15%»
i=2,...,'n—l,

of 11-2 equations in the n— 1 unknowns '02, . . . ,'v,4. If we now determine one
of the unknowns, for example, 112, explicitly by some additional condition,
then the system (3) is uniquely solvable for 113,. . . ,*v,-4. We abbreviate the
right side of the ith equation of (3) to b4, and then obtain simply _

’U-5+1 1-"' '- (AT4'_/A’T'4;_]_)'U4'_,, Z2, .. . . ,'l't —

In order to understand the one remaining degree of freedom better, con-
sider twointerpolating parabolic splines f and f determined by (3) from the
same data, but with different choices for the parameter '02; Their difference

d=r—f
is then a parabolic spline on [a . . b] that vanishes at its breaks '1-2, . . . , r4,__1
and vanishes also at a and at b. Further, from (4),

d(Ti+1/2) = “(AW/ATi-1)d(Ti—1/2) = (-li-1(A'*'i/A'-"1)d('T3/2)-

.,m? 

-—-—u—m.-—-um—-m-rm-——-1-$_-.-1-

i—'L-m.—--———--—--1--—-—m———m-—-u-n——-—|--—-m-r

mu--——m-m
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Therefore, for uniformly spaced data, that is, for 1-4 = a + - 1)h, all i,
with h := (b — a)/(n -1), we have I

.'i

(5) f($)—J€(11‘=)=lJ'("’s/2)xJ?(Ts/2)l(—)£'1P(($—'»'"i)/71) 011 ‘Ti 5- IF 5 Ti+1

with
p(:1:) := 4:1':(1 — :13).

This shows that the choice of '02 affects the resulting interpolant f more
or less equally in the entire interval and should therefore probably not be
based on some local datum such as the ___value of 9 at some additional site.
This behavior of the difference f(a:) —- f(:r) due to different choices of the
one remaining degree of freedom also reflects the fact that the linear system
(3) fails to be strictly diagonally dominant regardless of how we pick the
required additional condition. -i .

We do not encounter such difficulties if we construct the interpolant
instead in the form

f(:.1:) = H(a:) o11 £4 § .1: § §4+1, for some P4 E 114-3, i = 1, . . . ,n,

with the breaks £1, . . . ,§,.,_|_1 chosen so that

51 Sf1='»"1<§2 <'="s<§s<'Ts<'-'<'F-a-1 <§-a<'?"a=b$§-a+1-

For instance, we might (as first proposed, in the case of uniformly spaced
data sites, by Subbotin [1967]) choose the breaks midway between the data
sites, -

- £4: =1?-1/2 :('Ti +11-1)/2. i=2,---4"-
The interpolation conditions impose just one condition on each polynomial
piece,

'Pl3(T'-'1) =g(T'i)1 1-1"'1n'

We are therefore free to choose two additional parameters per polynomial
piece. We choose the conditions

(7) Pt(§i) = vi: H(§i+1)= 'vi+1i 5-='—' 1-1 - - - 4"-1

which then pins down each piece and makes the resulting f continuous,
regardless of how these additional parameters, '01, . . . , 'v-44.4.1, are chosen. Of
course, we do assume now that E1 < a and b < 5444.1.

If we choose the parameters '01, . . . , 11444.1 by interpolation, that is, v4 =
9(§4), all i, then we are back to the scheme connected with Simpsonis
rule mentioned earlier. Instead, we chose '02, . . . ,'v4,_ to make f again a
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parabolic spline, that is, so as to make f’ continuous. We derive the requi.site
equations for the 'u4’s as follows. Write P4 in Newton form,

Pi($) = + (:3 _' €i)l€i1TilPi + (3: _ — T1‘-)l£i17-‘ii S-i-+1lPi'

From the data (6) and (7), we get the divided diiference table for P4, ‘

§i '01: ‘
82“

Ti 9('T¢) _ ($i+1 '" Sir)/Afii
Si+1

5+1 '11-1+1
with the abbreviations

5-I == l€a'T-ilpi = (9('1'-.1)-" W)/(Tl -" fill,
$111 *=' lTi=€i+1lPi = ('*»'i+1 — 9('Ti))/(§i+1 -" Ti),

in terms of which

(8) Pi(5i-7) - + o - ass‘ + (I - as - t>o:.. —- 5:‘)/as
= C1,-i + (11? - §i)C2,t + (11? — §t)2<-13,1

where

(9) 01,-i = vi: 62,1: = 5-ii -I-(£1: — 7-'£)c3,'I'-I f-13,1: = (5-.-;_+1 _ Si‘)/55+
.

From (8) and (9), we obtain "

P-i(§i) = Si + (Q — '1'-:)(5f+1 "' Si)/A51

and _

Pi-1(§-i) = Si--1 + (5% "' 5-i--1 + 5-=1 4 Ti——-'1)(5l_ *“ sir-1)/A£i—1
= 5? + (511 -" Ti-1)($-I " $i-1)/A§i-'-1-

The continuity of f’ is therefore ensured if, for i =-= 2, . . . , n,

Pi(§i) = Pi-1(€i)

or

5'-ii + (£11 -' 7'i)(3-l'—+1 _ 5-ii-)/Aft = -l" (‘Si * Ti—1)(3-I _ Si-1)/Agi-1

or, after collecting terms, A

5i"-‘Ti-1 i—’Ti-1 .. §i—1'-=1 + §i—’Ti _ ___O6—iE'I"Si"'(1 + "Ki-';'.Tl .+(1 * sol -*
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After appropriate reordering of terms, this gives the linear system<10)
1 1 1 1

(01?-1- Z-g:1")'v-.:-1 + + I31-1-1-<11 + E;')’1Ji + (.31 — 'Af5";)'v‘f+1

=(CIi-1 + .31-1)9(Ti-1) + (fit + !3i)Q('»"i)-.- i= 21---1'-*1,

where we have used the abbreviations

OH i= 1/(‘T1 — Q)» .6-£ I= 1/(5-.=.+1 -"' Ti)-

Note that (10) isstrictly column diagonally dominant, hence safely solvable
for TU2, . . . , on by Gauss elimination without pivoting once we prescribe the
two free parameters, '01 and v,,+1.

In order to demonstrate the promised contrast to the earlier scheme of
parabolic spline interpolation at breaks, we now consider the effect of a
particular choice for '01 and 'v,.,+1 on the interpolant from (10).. For this, we
choose the data sites again equally spaced, and choose the breaks midway
between the data sites,

. . 3 . .'r,;=a+(z—1)h., §,=o+(z—-§)h, all 2, w1thh:= (b—a)/(11-1).

One verifies directly that, on [cc . . b], the function d1, given by

(11) d1(:1:) = p((:1: -—- §,)/h)//\i"‘1 on (E, § :1: 5 §,+1, all i,

with A the absolutely larger solution of A2 + 6/\ + 1 = O, that is, A :=
-3 - \/§ = -5.828427 - - and .

1 p(:r) := 2(/\ + 1):r2 — (3,\ + 1):1': + ,\, _

is a parabolic spline with breaks £2, . . . ,§,, that vanishes at all the data
sites 1'1, . . .,'1-,-, and has value 1 at £1. Also, d1 decays exponentially as :1:
increases, by a factor of almost 1 /6 per interval (5, .. EH1). The function
d,,_+1, obtained by reflecting d1 across the midpoint (a + b) /2, that is,

dn-F1 == P((€-1+1 — $)/h)//\“+1_i 011 £1 S I 5 €¢+1-.~ all i,

is then also a parabolic spline with breaks §2,...,£-H, and vanishes at
1-1,...,'r,,_, but has the value 1 at §,,_+1 and decays exponentially as :1:
decreases away from b.

If now f and )3 are two interpolating parabolic splines obtained from (10)
from the same data but with possibly different choices for '01 and 'u,,+1 , then
their difierence is necessarily of the form

- f_f=ad1+,6dn+1
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with o: and ,8 satisfying

-:»d1(a) + .@d..+1(a> = 5111 := r(a)—f(a). f
<1d1(§a+1) "1" J3da+1(§a+1) = 5'va+1 I: f(E-n+1) _ .lF(£n+1)-

Since d1(§1) = d-n.+1(§a+1) = 1, and d-n.+1(§1) = d1(§-n+1) = 1//Vi, We
conclude that o: m 6'01 and ,8 m 5'0,-,.|.1. This shows that the choice of '01 and
v,.,+1 only affects the interpolant f “near” a and b, respectively. It therefore
makes sense to derive these parameters from local considerations.

Typically, one might choose 111 as the value of g at £1. This one might
do even in the limiting case when £1 approaches a == 1'1, in which case
one ends up interpolating to g in value and slope at a = 1-1. In fact, every
one of the ways of choosing the additional boundary conditions in cubic
spline interpolation discussed in Chapter IV is, with appropriate changes,
applicable here, too.

Problems

1. Parabolic spline interpolation at midpoints, that is, at sites halfway
between breaks, was introduced and thoroughly studied by Marsden [1974]
from which all but (d) below are taken. However, for uniformly spaced data,
the idea and the analysis go back at least to Subbotin [1967].

Let 1-, = (5; + 5+1)/2, <21 = 1,...,n, with £1 < < E,-,__'H arbitrary,
and denote the resulting parabolic spline interpolant (with v1 = g(§1},
'Un.+1 : g(€n+1))t0 g by I39-
(a) Verify that (10) simplifies to

51111-1 + 3% + (1 — 51:)'U11+1 = 4(5-i9('T:'.-1) -1' (1 — 5i)Q('*"i))1
51; i=' Ar:-5/(€,g+]_ —"£»i._]_), ?:=2,...,TL—'

(b) Use the diagonal dominance of the linearsystem in (a) to conclude that
maxi ivil 5 21113951 l9("'£)| (With To = E1» '*"n+1 = §a+1)-
(c) Conclude that even ||I3g|| 5 (Hint: With_-f := I39, show that, for
§¢ £5-17§£i+1-.~ I

(A€i)2f($) = 2(I - 'F—i)('*»'¢($ — 5+1) + '¢»'i+1(I_- 50) +9('Ti)4($ — €i)(§i+1 '" 11?)

(recall the Lagrange forml), then infer, using (b), that

|J°(1"*~Y)|‘£(1'11f~Xl'va'|)2\-'1-‘F - ‘Til/Afii + l9('Fi)|4l$ "" €i|l€@+1 — I-'1'=i/(A€~s)2 3 2\|9||-)

(d) Deduce from (c) and from V(21) that

1 s (3)llg — Iayll S gl-‘El “Q ||-

—|.|—in—u—\_-—;—u—-I—-_
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2. (a) Give a sequence 1" for which there does-not exist E so that 1'; =
(Ei +§£+1)/2, all i. What does that imply about the scheme in Problem 1?
(b) Simplify (10) for the case when 5,4,1 = 'r,+1/2 := (T, + 'r,;.|.1)/2, i =
1,. . .,TL '-1,VJ'1th £1 I ‘T1, é-“+1 = Tn, ELIICI fl’ = Q1 3.-ll ‘T1 ELHC1 Tn.

Call the resulting interpolant fgg.
(c) Prove that ||g —— 1139]] § const]'r|||g’ I], and determine an appropriate
const. (Hint: V»/ith f = fgg, establish the tridiagonal linear system for the
quantities si := f’(§,), i = 1,. . . , rt, then proceed as in Problem IV.7.)

3. (Euler splines) The parabolic spline (5) is an example of a (scaled
and shifted) Euler spline (see, for example, Schoenberg [1973:Lecture

.'|,
f r 1 I

(a) The Euler polynomials E0, E1 , E2, . . ., are characterized by the fact that
E0(:r) = 1 and, for n > 0, EL, = E,.,_1 and <p(E,.,) := (E-n(1)+E,_,_(O))/2 = O.
Thus, if E,,__1 is already known, then E,-,_ can be generated as En = E —
<,t=(E), with E(:t) ;= fa“ E.,_1(t) dt. Verify that

E1(:1:) == :1: — 1/2, E2(:'t:) = 2:2/2 -— :1?/2, E3(:z:) = $3/6 —:r:2/4 + 1/24,

and construct E4. .
(b) Let Ea, be the extension of E,,_ on [0 . . 1] to all of IR via the functional
equation E,,_(a: -I- 1) =_--E..,(:1:), that is,

E.<:=> == (—)l=1E.-.<$ - Ls).
Prove that E,-,._ has n — 1 continuous derivatives.
A Er, is a close cousin of Scho_enberg’s Euler spline £,.,. Precisely, 8,, =
ET,/E,,(O) for odd n, and 5',-,_ = E,_,_(- — for even n.
(c) Verify (by induction on n) that E,,(:r:) vanishes at -%- if n is odd and at
0 if n is even (and positive) and nowhere else in [0 . . 1). Conclude that En
is strictly monotone between its extreme values that occur at the integers
if n is odd and at the half integers if n is even. In particular,

IE I _ lEn(O)l-.~ Tl-Odd; -
I "IT |E,-,(-é-)], neven.

4. The parabolic spline (11) is an example of ai (scaled and shifted)
exponential Euler spline (see, gfor example, Schoenberg [1973:Lecture

Let A 75 1 be a number, real or complex. The /X-Euler polynomials
E3‘, Ei‘, EQ, . . . are characterized by the fact that E3‘ (:r:) = 1, and for n > O,
(E,,i‘,)" = Ef__1 and <p;,(E,-,_) := - )\E;.",(O))/(1 — A) = 0. Thus, for
,\ = -1, we get again the Euler polynomials of Problem 3.

Let Abe the extension of Ei‘, on [O ... 1] to all of IR by the functional
equation E,§,(:1: + 1) = )\E.f.‘,(:1:), that is,

13-“.(f*1) == /\mE§.($ - 1111)-
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(a) Prove that has n - 1 continuous derivatives. A
(b) Construct E3 in general, then determine A so that = 0 and
compare the resulting exponential Eulerspline with the function d1 in
(11).
(c) Construct also Eg‘ in general, then determine A so that EQ (O) = O. There
should be two solutions, A1 and A2, with A2 < -1 < A1 and A1 = 1/Ag.

5. (V(13) and V(21) are sharp). Consider complete cubic spline interpo-
lation at the sites T-5 = t, 1: = 1, . . . , n (with T9 = 1, 11.1, = n). Let do 1.-= E5,“
(with A1 as determined in Problem 4(c)) and set d,.,_+1(:r) := —-do ('n.+ 1 — zr).
(a) .Verify that da, d,,,+1 e $4 and that 113(1) = _d:;',_+,(h) at 0, dg(n) =
r1;+1(1) = dB(1)A'i""'1. Conclude that, with E.-.1 the Euler spline of Problem
3, the system

ad; + ,@d:,+1 = Ea at 1 and n.

has exactly one solution and that, for large n,

A <—>"-ls = Q s E:,.<1>/da<1>-
(b) Conclude that I.,(E.,) = ado + otz.,__,_,. __
(c) Let n = 21-. Verify that, on [r . . r + 1], and for g = E4,

9-I49=E4+O()‘i)1

while ||s.||/||sg?>|| = 5/2.84 aha ||s1||/||s¢,|| = 1/24. Infer (by letting a -a
oo) that the constants in A/(13) and A/(21) are best possible.

6. Wflte the complete cubic spline interpolant in Lagrange form,

rt ;]

I49 = 9’("'1)C0 + Z 9(T1'-lci + 9'(Tn-)0-n+1=
‘i=1

with C; the cubic spline that vanishes at 'r_,; for all j at i and has the value
1 at 'r-1, i = 1,. . . , n and C0, C’,-1+1 analogously defined.
(a) Construct C1 (for example, by CUBSPL) for a uniform 1' and verify
numerically that

C;($) % —

with h := |1‘] and C the cubic spline with breaks at the integers and of the
form

(.1‘IEg1($), 1 < :13; -
C(1?-7):: crE§‘(:r) + (1 —- :r)3, O § :1: £ 1;

C'(—:r:), - r < O.

Here, 0: := 3/ (EQ‘)!(0), and E2“ is the exponential Euler spline determined
in Problem 4. In particular, verify that the function C is a cubic spline,
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that is, a piecewise cubic function with two continuous derivatives.
(b) Conclude that a satisfactory approximation to the cubic spline
interpolant L1g at a uniform T can be obtained by the local scheme

(fificg) (r) :..-= E g('r,)C(£7+'§), for Tj _-_'§ x g T,=+1,
J‘-'F<'iSJ‘+"‘

(see Buneman [1973]). Specifically, show that r é 4- gives about 1%
accuracy.

7. Develop such a local scheme for parabolic spline interpolation of
Problem 1. ‘
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VII  

A Representation for Piecewise
Polynomial Functions;
PPVALU , INTERV

Experience has shown that piecewise polynomial functions of order
higher than four supply at times much more efficient approximations than
do piecewise parabolic or piecewise cubic functions, especially when the
breaks are chosen properly. For this reason, we discuss in this chapter
ways to represent piecewise polynomial functions of arbitrary order in a
computer. ,

We begin with a formal definition.

Piecewise polynomial functions Let E := (§,;)l,+1 be a strictly in-
creasing sequence of points, and let k be a positive integer. If P1, . . . ,P1
is any sequence of l polynomials, each of order k (that is, of degree < 1:),
then we define the corresponding piecewise polynomial or pp function
f of order ll: by the prescription

(1) f(:::) := P1(1:) if<f,:,<rr<¢f1+1; i=1,...l.

The points £1 are called the breaks (or, breakpoints) of f. Whenever
convenient, we think of such a function f as defined on the whole real line
IR. by extension of the first and the,_last piece, that is, -

P1 :1: < €1'2 1 := 1 _ - 1

( ) {F10-17): 1f€l+1§$-

With this, fl and <f1+1 are, strictly speaking, not breaks, and the pp function
f could be defined without any reference to them. We retain these two
points nevertheless as part of the specification of a pp function since they
specify the interval on which such a pp function is originally defined, and
which we will refer to as the basic interval for that pp function. Also, we

Huse the point §1 in the “ppform to be described below.
It should be noted that (2) amounts to extrapolation. Therefore, away

from the original interval [£1 ..<f;+1], f , as extended by (2), may reflect

69
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\-
\
S‘ P1 ' 1'" 1'

- l PI
£1 52 £3 e 5: §z+1

l |'*'lP2 P4

(3) FIGURE. A pp function of some order, with l = 7.

the original intent of its construction as badly as would the product of any
other extrapolationtechnique. To reiterate, we use (2) for convenience and
not because of any inherent quality or truth.

At the (interior) breaks £2, . . . ,§1, the function f is as yet undefined.
In a sense, the pp function f has two values at such a site, namely the
value f) = P,;_1(§1) it gets from the left piece and the value ffif) =

it gets from the righ.t piece. For definiteness and in order to obtain
a (single-valued) function, the programs below arbitrarily choose to make
f continuous from the right, that is,

(4) f(g..) ;= j(g;t), fort: 2,...,z.
We will continue nevertheless to think of the pp function f as having two
values at each break. Of course, this becomes a. moot point in case the
function f is continuous. But, unless f consists of just one polynomial,
some derivative of f is discontinuous and is a pp function so that this point
has to be discussed and settled in any case.

It follows that two pp functions agree iii’ they consist of the same
polynomial pieces, broken at the same sites. Of course, if one is made
right-continuous and the other left-continuous, then they may not agree at
the breaks, but we will nevertheless think of them as being the same pp
function.

We denote the collection of all such pp functions of order lt with break
sequence £ = (§1)f]+1 by

H<1,,£.

It is clear that l'l.<;,,,5 is a linear space. Its dimension is kl since each of its
elements consists of l polynomial pieces and each polynomial piece has k
freely choosable polynomial coefficients (see Problem 4). Abstractly, II._,_-11,5
is the direct sum of l copies of Il<1,.

As already implied by an earlier remark, we consider the jth derivative

A D5,_.f

a

‘I

,9.
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of the pp function f to be the pp function of order k -- 3' with the same
break sequence and put together from the jth derivatives of the polynomial
pieces that make up f. This definition avoids a lot of fancy mathematical
footwork when it comes to a discussion of the derivatives of a pp function at
a break. In return, the definition has to be treated with care in the context
of the fundamental theorem of calculus.

(5) Proposition. The pp function f satisfies

_f(:.r:) — f(a) =f dt for all :1‘:
H

if and only if f is a continuous function. .

The first derivative Df of a piecewise constant function f, for example,
is identically zero by our definition, therefore equal to the usual derivative
of the function f if and only if f is actually a constant function.

A pp function can be represented in a computer in a variety of-ways. If
such a function f and some of its derivatives are to be evaluated at many
sites (for graphing purposes, say), then the following representation seems
most convenient and efficient:

(6) Definition. The ppform for f G 1'1.-4;,-,4; consists of
(i) the integers it and Z, giving order and number ofits pieces, respectively;
(ii) the strictly increasing sequence £1,551, . . . , 51.1.1 of its breaks; and
(iii) the matrix C = (Cj.,1):,?=1 ; i=1 of its right derivatives at the breaks, that

is, the numbers

c,.==oH;(g;t), j=1,...,l::; Q-;=1,...,z.
I

1- ' I

In_ terms of these numbers, the value of the jth derivative D9 f of f at a
site :1: is found (in PPVALU) as

ftii Qi m.+1,i($ '- £i)m—j/(Tn —(7) ' Di f($) =

where (with the earlier conventions) i is the integer such that

either: i=1 and :1‘: < E9
(8) or :1-<i<land§,1§.fc<§-_.;+1

or :'i==l and§1§:.c.

To be sure, the ppform in the SPLINE TOOLBOX (de Boor [199O]2) stores
differently normalized coefficients and stores them differently, in part
because, as mentioned at the beginning of Chapter I, l'~i.ATLAB stores poly-
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nomial coefficients in order from highest to lowest. Explicitly, if c is the
coefficient array in the ppform of some pp function f of order lc generated
in the SPLINE‘. TOOLBOX (de Boor ]l.990]g) and with break sequence E, then

k
flit) = Z °(i=J')(1‘-‘F -* ftlkfija. 501' 51 S 1* < €t+1-

i=1

The following MATLAB statement would convert such an array c into the
corresponding array C needed in this book’s ppform:

C = (c(:,k:—1:1).’).arepmat(cumprod([1 1:k—1]).’,1,l);

The subroutine PPVALU It follows that a FORTRAN program for the
evaluation of a pp function requires as input the integers lc and l, some
one-dimensional array BREAK containing § and some two-dimensional array
CDEF containing the matrix C. Here is such a function subprogram, for the
evaluation of a pp function or its derivatives according to

REAL FUNCTION PPVALU (BREAK, cuss, L, K, x, JDERIV ) '
CALLS INTERV
CALCULATES vatus AT x or JDERIV—TH DERIVATIVE or PP FCT FROM PP—REPR
C
Canasta I H P U T eases:
C BREAK COEF L, K.....FORHS THE PP—REPRESENTATIOH OF THE FUNCTION F'10 BEIEVALUATED. SPECIFICALLY, res J—TH DERIVATIVE or F IS

crvss BY
(D**J)F(K) - CDEF(J+1,I) + H*(CUEF(J+2,I) + H*( ... (CUEF(K—1,I) ++ H*CUEF(K,I)/(K-3-1))/(K—J—2) ... )/2)/1

Oflflfitzfififizfiflfiflflfifififlflfififlfl

WITH H - x - BREAK(I). AND
I = HAX( 1 , nax( J , BREAK(J) .LE. x . 1 .LE. J .LE. L ) ). 1

X.....THE POINT AT WHICH TO EVALUATE.
JDERIV.....INTEGER GIVING THE ORDER OF THE DERIVATIVE TO BE EVALUAT-

ED. A S S U H E D TO BE ZERO OR POSITIVE.

' eases U U T P U T senate _
PPVALU.....THE VALUE OF THE (JDERIV)-TH DERIVATIVE OF F AT X.

' seen: M E T H U D assess
THE INTERVAL INDEX I , APPROPRIATE FOR I , IS FOUND THROUGH A

CALL TO IHTERV . THE FORMULA ABOVE FOR THE JDERIV—TH DERIVATIVE
OF F IS THEN EVALUATED (BY NESTED HULTIPLICATION).

INTEGER JDERIV,K,L, I,M,NDUHHY
REAL BREAK(L+1),COEF(K,L),X, FHHJDR,H
PPVALU = O.
FHHJDR = K - JDERIV

C DERIVATIVES OF ORDER K OR HIGHER ARE IDEHTICALLY ZERO. .
IF (FMMJDR .LE. 0.) co T0 as 1

c
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C FIND INDEX I OF LARGEST BREAKPUINT TU THE LEFT OF I .
CALL INTEHV ( BREAK, L+1, X, I, NDUHHY )

C
c EVALUATE JDERIv-TH DERIVATIFE OF I—TH PULYHUHIAL PIECE AT X .

H = x — BREAK(I)
H==K _

9 PPUALU = (PPVALU/FMMJDR)*H + CUEF(H,I) -
H=M-1
FHMJDR = FMMJDR - 1.
IF (FMHJDR .GT. 0.) GU TU 9

es RETURN
END

The choice of the derivatives Cfi = D7"1f) rather than the usual
polynomial coeflicients cs,-1 := Dj“1f({-3')/(j — 1)! in the ppform allows
for a uniform treatment of the function f and all its derivatives during
evaluation. If one is merely interested in values of f, then it would be more
efficient to have-available the polynomial coefficients cji since this would
avoid the formation of, and division by, the numbers 1, . . . ,1: — 1 when
evaluating the function f at a site (thus cutting the work in two). On the
other hand, evaluation of the jth derivative for j > O would become much
trickier since

5M1‘ {'21D-'*"f(1:) = .m+11,;(:1: — {fi)'"""3'm!/(m — j)!, for 5,; 51 :1": < §H.1.

One would compute the value of f from the coeflicients CSMALL( j , I) = c3-J
simply by

DD 8 M=K,1,—1
8 PPVALU = PPVALU#H + CSMALL(M,I)

and the value of the first clerivativeT‘Df of f by

no 9 M=K—1,1,—1 “
9 PPVALU = PPVALU*H + FLDAT(M)*CSMALL(M+1,I)

i I

II

and these would be special cases. Fitir the general case of computing
DJDER“f(X) for JDERIV > 1, the 10-loop in PPVALU would have to be
changed to something like the following: '

DD 10 M=K,JDERIV+1,—1
PPVALU = (PPVALU/FMMJD)#FLUAT(M)#H + CSMALL(M,I)

10 FMMJD = FMMJD — 1.
DU 11 M=2,JDERIV

11 PPVALU = PPVALU#FLDAT(M)
PPVALU uses a subroutine INTERV, given below, to place the argument X

within the break sequence. Some people have objected to the use of IN‘I‘E‘.RV
in PPVALU, contending that the added efliciency achieved is not worth being

1



74 VII. A Representation for PP Functions

saddled with a routine as complex as INTERV appears to be. A possible
alternative would be to carry out bisection (or, binary search) directly in
PPVALU. One could even bring in one of the features of INTERV, namely
retain the interval index I fiom one call to the next and first test whether
I < L and BR.EAK(I) '5 X < BR.EAK(I + going into the binary search only
if this test fails. I have nevertheless kepti‘.-jINTERV since the problem it solves
comes up repeatedly later on and since I cannot see how its complexity
could be of any concern to the user,- as long as it is effieient.

It may happen, though, that the interval index I appropriate for a given
I is obvious from the context, in which cii-Ase I would make use of the routine
PVALUE, discussed in Problem 1, instead.

The subroutine INTERV Here is airoutine for determining the interval
index I for X with respect to the break sequence <f.

SUBRDUTIHE.INTERV ( KT, LIT, X, LEFT, MFLAG )
CUHPUTES LEFT - MAx( 1 = xT(I) .LT. xT<LxT) .AND. xT(I) .LE. x ) .
C .
C###### I H P U T ##1##:
C XT.....A REAL SEQUENCE, UF LENGTH LXT , ASSUMED TU BE NUNDECREASING

LXT.....HUHBER DF TERMS IN THE SEQUENCE KT .
..THE POINT WHOSE LOCATION WITH RESPECT TU THE SEQUENCE KT I5

TD BE DETERMINED.

OOOOOGOODOGOOGOLEOOOOOOOOGOOOOOOOOCIOO

l4r4h1H--

5H

P*C}QJ*

##1##: D U T P U T ###*##
MFLAG.....BUTH IHTEGERS, HHUSE VALUE IS

— IF X .LT. XT(1)
IF XT(I) .LE. X .LT. XT(I+1)
IF KT(I) .LT. X .EQ. IT(I+1) .EQ. XT(LIT}
IF KT(I) .LT. XT(I+1) .EQ. XT(LXT) .LT. X

IN PARTICULAR, MFLAG = 0 Is THE ’USUAL' cAsE. MFLAG .NE. 0
INDICATES THAT X LIES OUTSIDE THE CLOSED IRTERFAL
xT(1) .LE. T .LE. xT(LxT) . THE ASYHHETRIC TREATMENT GF THE
INTERVALS IS DUE Tc THE DECISION TD MAKE ALL PP FUNCTIONS CONT-
IHUDUS FROM THE RIGHT, BUT, BY RETURNING MFLAG = 0 EVEN IF
1 - xT(LxT), THERE Is THE OPTION 0F RAvIRG THE COMPUTED PP FUNCTION
GURTIRUUUG FROM THE LEFT AT xT(LxT) .

##### H E T H U D ######
THE PHUGRAH IS DESIGNED TU BE EFFICIENT IN THE COMMON SITUATION THAT
IT Is CALLED REPEATEDLY, RITE x TARER FROM AN INCREASING UR nEcREA-
SING SEQUENCE. THIS HILL HAPPEN, E.Gi, HHEN A PP FUNCTION Is TU BE
GRAPHED. THE FIRET GUESS FGR |LEFT' Es THEREFORE TAKEN T0 BE THE vAL-
UE RETURNED AT THE PRETIGUE GALL AND STORED IN THE L 0 c A L vARIA-
BLE ILU . A FIRET CHECK ASCERTAINS TRAT ILG .LT. LXT (THIS IS HEC-
EssART SINCE THE PRESENT GALL HAY HAVE NOTHING T0 no UITR THE PREvI-
DUS CALL). THEN, IF xT(ILc) .LE. x .LT. xT(ILn+1>. RE SET LEFT =
ILU AND ARE nous AFTER JUST THREE COMPARISONS.DTHERHISE, HE REPEATEDLY DOUBLE THE DIFFERENCE ISTEP = IHI - TLG
URILE ALsU RGFIRG ILU AND IHI IN THE DIRECTION GF x , UNTILxT(IL0) .LE. x .LT. xT(TRI) .
AFTER HRIGH UE USE BISECTIDH TD GET IN ADDITION ILU+1 = IHI .
LEFT - ILD Is THEN RETURNED. ' ’
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31
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45

C
C
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C

53

Cast:
90

- 100

110

111

The problem of locating a site within an increasing sequence of sites
is solved quite differently in the SPLINE‘. TOOLBOX (de Boor [1990]g), in

INTEGER LEFT,LXT,MFLAG, IHI,ILO,ISTEP,HIDDLE
REAL K.IT
DATA ILO
sAvE ILO
IHI = ILG
IF (IHI .

IF (X
IF (Lx
ILn =
IHI =

IF (X .GE
IF (X .GE

ISTEP = 1
IHI =
ILO =
IF (IL
IF (X
ISTEP

ILO = 1
IF (X .LT

ISTEP = 1
ILO =
IHI =

The subroutine INTERV

(LIT)11/
+ 1

LT. LAT)
.GE. xT(LxT))
T .LE. 1)
LXT — 1
LXT
. xT(IRI))
. xT(ILU))
sass NON I .LT. XT(ILO)

ILO
IHI - ISTEP
O .LE. 1)
.GE. xT(ILU))
= ISTEP*2

. XT(1))

**** NOW X .GE. KTCIHI)

IHI
ILO + ISTEP

IF (IHI .GE. LXT)
IF (X
ISTEP

IF (X .GE
IHI = LIT

**** NOW XT(ILO) .LE. X .LT.
MIDDLE =

.LT. xT(IHI)) .
= ISTEP*2
. xT(LxT))

(ILO + IHI)/2
IF (MIDDLE .EQ. ILO)"
NOTE. IT IS ASSUMED THAT MIDDLE =
IF (X .LT

ILO =

IHI =

. xT(MIDDLE))
MIDDLE
MIDDLE

SET OUTPUT AND RETURN.
1HFLAG = —

LEFT = 1

HFLAG = 0
LEFT = IL

MFLAG = 1
IF (X .EQ

O

. IT(LIT)) MFLAG = 0
LEFT = LIT
IF (LEFT

LEFT =
IF (IT

END

.EQ. 1)
LEFT — 1

(LEFT) .LT. xT(LxT))

GO TO 20
GO TO 11O
GO TO 90

GO TO 40
GO TO 100

DECREASE ILO TO CAPTURE X

GO TO 35
GO TO 50

GO TO 31

GO TO 90
GO TO 50

INCREASE IHI TO CAPTURE X

GO TO 45
GO TO 50

GD TO 41
GO TD 110

xT(IHI) RARRUU THE INTERVAL
GO TO IOO
ILO IN CASE IHI ILO+1
GO TU 53
GU TO so
GO TO 50

RETURN

RETURN

RETURN

RETURN
GO TO 111
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part because there one wants to talce advantage of the fact that MATLAB
provides vector arithmetic, hence encourages the ‘simultaneous’ evaluation
of a function at all the sites in a given sequence (or matrix). This therefore
requires the determination of the correct-index sequence I for given site
sequence X with respect to the brealc sequence XI. This is accomplished (in
sorted) by computing first

[ignored,index] = sort([XI(1:L) X1);

which supplies, in ignored, the entries of the concatenated sequence
s :=(XI(1:L),X) in nondecreasing order. More importantly, it supplies, in
index, the information of how to reorder the sequence s to obtain that
nondecreasing sequence ignored. Precisely, ignored = s(inde1-T}. For ex-
ample, if XI (1 :L) = (1,2,3) while X = (O,1,2,3,4), then the above command
produces

index = 4 1 5_ 2 6 3 7 8

Since XI(1:L) comes first in 3, we know that, in the sequence index, the
numbers 1, . . . ,L refer to entries of XI, while the numbers greater than L
refer to entries of X. Hence, the MATLAB command j=:E ind(index>L) returns
the positions in the sorted sequence of the entries from X. So, assuming X
itself to be ordered, the only reason why X(i) would not occur in position 1
in the sorted sequence is because there are entries from XI to the left of it. In
fact, the difference, j (i)-i, of the position of 11(1) in the sorted sequence
and i, equals the number of entries from XI to the left of it. Therefore,
XI (j (i)—-i) is the breakpoint closest to X(i) from the left, hence j(1)—i
is the index we are looking for.

In our example, the corresponding calculation

I = find(index>L) ‘ (1:1ength(X));

gives I = 0 1 2 3 3, which is exactly the sequence we want for this
example, — except for that initial 0 which tel-ls us that there are O entries
of XI(1:L) to the left of 11(1), that is, X(1) < XI(1).. For such 1(1), we
want to use the first break interval, and we can achieve that using the max
function to ensure that we get at least the value 1. Altogether, this gives
the simple command sequence

[ignored,index] = sort([XI(1:L) X1);
I = max(find(index>L) — (1:1ength(X)) , 1 );

which, for our example, produces the desired I = 1 1 2 3 3.



Problems 77

Préblenis

1. Write an abbreviated version

FUNCTION PVALUE( XLEFT, CUEF, K, X, JDERIV )

of PPVALU that returns the JDERIV-th derivative at X of the function f given
by

f(:r) := COEF(m)(:z: — XLEFT)m"1/(m — 1)! .
m=1

I-Iow would you use it in place of PPVALU to evaluate a pp function at some
1:, given the ppform for f in BREAK, CDEF, L, K, in case you know already
the interval index I appropriate for rs‘?

2. Consider the problem of making pp functions continuous from the left.
Possible solutions:

(i) Write a subprogram

SUBROUTINE INTRVL ( KT, LXT, K, LEFT, MFLAG )

that returns LEFT = n1in{LXT,min{j : 1 5 j 5 LXT,X $ l(T(j) } }, and use
it in PPVALU in place of INTERV.

(ii) Continue to use INTERV in PPVALU, but decrease I by one in case
X == BREAK(I) and I § 2. E-

Both and (ii) require, in effect, a modified version of PPVALU that we
will call, for later reference,

FUNCTION PPVLLC ( BREAK, COEF, L, K, X, JDERIv )
.1-

I

(iii) Give up on PPVALU, and PPVLLC altogether, but evaluate f by two
subroutine calls:

cALL IOFX ( BREAK, L, X, I, MFLAG )
FX = PvALUE (BREAK(1), COEF(1,I), K, X, JDERIV )

with PVALUE as constructed in Problem 1, and IOFX equal to INTERV or
INTRVL depending on what is wanted. '

Discuss the relative advantages and disadvantages of these approaches
and propose, perhaps, alternatives of your own, given that a pp function
is to be considered, in the some program, at times left-continuous and at
times right-continuous.

3. Write a .

FUNCTION PCVALU -I BREAK, COEF, L, K, X )

that would use Problem I.7 to evaluate a pp function from its piecewise
Chebyshev fo-r"m., contained in BREA-it, COEF, L, K. (This corresponds to the
ppform for f except that now COEF(-,I) contains the Chebyshev coeffi-
cients for the I-th polynomial piece.) I-Iow would you construct the more
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routine that would also return the value of some derivative ifgeneral
desired?

4. Prove that, with E1 < - - - < EH1, 1'I.,¢i,,,-5 is a linear space of dimension

n := kl.

This is not really a problem for anyone familiar with basic linear algebra.
The proof requires the following (standard) steps:

V ify that TI 1,5 is a linear space (You may take as given thatf(3) BI 4: , .

the -collection IRE of all real-valued functions on IR is a linear space i' ' ' ' ' that is,
vector addition and scalar multiplication are defined point-wise,
(f+Q)(f-'3) 1= f(:i:)+g(:r:), (o:f)(:r:) := c.r(f(:.i:)), all :2: £1. IR, all functions _f,g,
all or E IR. Then it is only necessary to show that II.,-;;,,_.5 is a subspace of
IRE, that is, l'I.,,¢;,,_.5 is nonempty and is closed under addition and scalar
multiplication: f, g E l_I<;,i,,5, or GIR implies f + g, ozf E l_I.,-_;,,_.5.)
(b) Verify that dim l'I<;;.,,5 _§ n = kl. (This requires you to show that l_I<;,,5
is generated by n (or fewer) functions, that is, you must exhibit functions

(,0 all in l'I.,,-;;,,_-5, with the property that every f in II_.;i,,_-5 can be(P1 ii ' 1 - 1 fl-1
written as a linear combination of them, that is, f = E, aigo,-, for some
suitable coeficients (o:,;).) Note: it is possible to combine (a) and (b) by
showing that l'I.,._¢;,,5 consists of exactly all possible linear combinations of
certain n functions.

(0) Verify that dim1'I<;,_5 2-_ n. (This requires you to exhibit a func-
tion sequence Q01, . . . ,<p,, that is linearly independent, that is, for which
Z cap, = O is possible only if oi; = - - - == c.i:,,_ = O. Such linear independence
is invariably shown by exhibiting a corresponding sequence A1,, . . , Jk,-,_ of
linear functionals for which the matrix (}t_.;<,o,- : 11, j = 1,. . . ,n) is obviously
invertible that is, is triangular with nonzero diagonal terms. For the pase at' ' ‘ . 7‘ +

hand, you might consider the linear functionals A given by A] .= f (If,
The bonus of all this work is a basis for the space, that is, a sequence

cpl, . . . ,<,oi,; that is both generating‘ and linearly independent.

5. Prove Proposition *



VIII  

The Spaces II<;,,,5,,, and the
Truncated Power Basis

The typical computational problem involving pp functions can be stated
as follows: We are given som.e information about a certain function g and
are required to construct a particular function f in l'I<i,,5 that satisfies the
same conditions g is known to satisfy (see Chapter XIII— XVII for exam—-
ples). In addition, the function f is to have a certain number of continuous
derivatives. Formalization of these latter, homogeneous conditions leads to
the subspaces 1'I<_;,_-,5,,,.. of II,-_';,__-5, and computational efficiency demands the
construction of a convenient basis for these subspaces.

In this chapter, we introduce the somewhat popular truncated power
basis for the space 1'I<;,,5,,, and point out its failings.

We begin with an example. A

(1) Example: The smoothing of a histogram by parabolic splines

(2) FIGURE. Parabolic “area matching” spline approximation to a
histogram.

Some people object to histograms or bar graphs and would draw a smooth

79
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curve through them as a more satisfying representation of the underlying
distribution g whose sampling produces the histogram. One can argue the

oint whether anything (other than msthetic satisfaction) is gained by theP
procedure. But, suppose we are given such a histogram and wish to smooth
it. This means that we are given sites

A 'r1<T2<---<T,,,,+1 A
and (usually nonnegative) numbers hl, h2,...,i1.,-,_, with h, the height over
the open interval ('i',;. .’I',;_|_1), all 21. The usual interpretation of these numbers
is that MAT, is (approximately) equal to the integral of the underlying
distribution g over the interval [T, . . 'r,_,.1] (recall that AT, := 'i',_|_1 -— 1",). It
therefore makes sense to demand of our smooth version f that it satisfy
the “interpolation” conditions

T-i+'1
f f(ar:)dG::=h,AT,, ’l=I.,...,Tt. y

We choose the function f to be a parabolic spline, that is, a continuous pp
function of order 3 .with a continuous first derivative,

f G I._I<3,£ Fl C(1),

and choose the break sequence E to coincide with the sequence 7'. If the
underlying distribution g is smooth and vanishes outside the interval [T1 . .
1',-,_|.1], then we would have g(-i)(T1) = g(J)('i',.,+1) = O for j = O, 1,... to.the
extent of the smoothness of the distribution g. So we impose the additional
interpolation conditions

.f(T1):.f(Tn+1)=0- _

This gives altogether n + 2 interpolation conditions and 2(n — 1) ho-
mogeneous conditions, for a total of 3n conditions on the 3n polynomial

C 3 1" 'n the form for the function f (recall that C,-, :=coefficients ( 5,),-=1; ,=1 1 pp
D9"1f The resulting linear system has the following appearance.
<3) : 0
C11 interpolation at -r1

a 2

C11 + C21 9% + C31 —-,1 = hiarea matching on [T1 .. . 1'3
2 .

C11 + C215-Ti + C31 9-$1 — C712 = Ucontinuity of f across 1-Q

C21 + C311-5T1 —- C22 _= Ucontinuity of Df across 1-Q
'2

C712 + C22 9231 + C32 fig-3' = ii-2
area matching on [T2 . . 1'3

2

C'12+C22-4312 +C'32£;-.3-----= U _
continuity of _f across 1'3

C22 + C32-QT: - = U
l continuity of Df across 1'3

--ti ---Etc_ '

El
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Almost block diagonal linear systems 81

Schematically, this linear system has the following almost block diagonal
form (all nonzero matrix entries are indicated by a ><):

-._._,<_,
iX.XX

_____;<_

X X X

XX X

XXX

XXXX

XX X

XXX

XXXX

XX X

The package SOLVEBLOK given in the Appendix is designed to solve such
systems efficiently, by Gauss elimination with partial pivoting. Incidentally,
the factorization methods of Carasso 3.: Laurent [1969] and Munteanu Sc
Schumaker [1973] for such systems also use Gauss elimination with par-
tial pivoting, but in so cleverly disguised a form that probably even their
originators didn’t notice this. ‘

There is really no objection to determining the solution of such problems
by solving liiiear systems such as (3), except for the fact that such systems
contain many homogeneous equations. For instance, is two-thirds ho-
mogeneous. This means that two-thirds of the equations that make up
(3) could be solved once and for all, leaving a much smaller system (one-
third the size of to be solved for any particular g. One accomplishes
this reduction by constructing a linearly independent function sequence
(,01,(,0g, . . ., with as many entries as there are interpolation conditions, and
each satisfying all the homogeneous conditions. Our function f is then
found iii the form ,

Z “TWA
Ii

with the coefficients (oi,-) determined from the information about g. In
effect, the homogeneous conditions tell us that f is to belong to some
subspace of 1'I<;,_¢ (namely the subspace of all functions in 1'I.,,;;,__-5 satisfying
these homogeneous conditions), andfthe above construction amounts to
finding some basis for that subspace.

We identify the subspaces of interest first, and then give a basis for each
of them.
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The space lT<1,,5, ,, The typical homogeneous conditions require that
the pp function f E I[._<i,,¢ be constructed to have a. certain number of -
continuous derivatives. We write these conditions in the form

(4) jump¢,_Dj-1f=O for j=1,...,i/, and 'i=2,...,l,

for some vector 11 := (i/.,)g of nonnegativeiintegers. Here, ix, counts the
number of continuity conditions required at §,. In particular, 1/, = O means
that we impose no continuity condition whatever at 5,. Further, we are
using here the abbreviation (or linear functional)

(5) iumpaf == f(01+) — f(e_)
which is read “the: jump of the functioili f at, or across, the site o-".

As the conditions (4) are linear and homogeneous, the subset of all f E
II.,;;,,¢ satisfying (4) for a given vector :1 is a linear subspace of l'I<;,,E. The
reader should verify this fact if it seems unfamiliar. We denote this subspace
by I A

H<k!£Iy '

In this notation, the set of parabolic splines needed in the smoothing of a
histogram earlier becomes the set II._.;3,£_,, with 1/ = 2 := (2,. . . ,2).

We now have a convenient notation for the set of all pp functions satis-
fying certain common homogeneous conditions. But, if we are to make use
of this space II.,,¢;,,5,,, in computations, we need a bests for it, that is, we
need a sequence (pl, (pg, . . ., of functions, all in l'I<;,,_.5,,, and such that every
element f of l'I_,;;,,5,,, can be written in one and only one way as a linear
combination

2 Ob‘ ‘Pi
_ :i

of the sequence (pl, (pg, . . ‘

The truncated power basis for lI<;,_,,§ and lI_,_;k,,€,,, Recall from
V(3) the definition

(G: — t)+ := ma.x{:Ir -— t, O},

in terms of which we define the truncated power function

(:.i:)T,_ := (:.r:+)", 7' = O, 1, 2, . . ..

The function _f(:1":) := (:1: -— §)'j',_ is a piecewise polynomial, of order r + 1
with just one (active) break, at 5, and is continuous at § in case r > 0, while,
for r = 0, it has a jump across 5, of siz,e 1. Since D(- — .§)"f,_ = r(- — §)"f,_‘"1,
we see that — has 1' — 1 continiious derivatives, with a jump in the
rth derivative across §, of size rl.

1 i

I
"'4
J‘

q



The truncated power basis for I'I.,;;,_£ and I'.[_,_;,,,,5,,, S3

T .

U1

--m{----A-I-.__|._..---.|-m;_...__.._|_...._.m:_ U"Y"|-I EFF‘)- —-+-e lPi"‘|-

" -—-—-—--R :1:
1

In-_ I

(6) FIGURE. The functions 6(:I: — §)g'_, 6(:i.: — §)},_, 3(:i: —. §)f,_, (:1: —
Note the increasing smoothness across :1: == §, as evidenced
by the fact that each is the derivative of its neighbor to
the right.

What about (:r)P,_'? Since do = 1 for any nonzero a, we have (3)9, = 1 for
r > 0, but for :1: 5 0 we would need to know the value of O0, something
undefined. That being so, we are free to define it, as follows:

0°==0. A

Thus, (:r)'§,i'_ = O for :1‘: < O.
With this, (1: — §)'[',_ is a pp function of :1: even for r == 0 and, as a pp

function, is determined by its polynomial pieces and break(s). In particular,
it has, in general, two values at its sole break. If it is evaluated in PPVALU,
then (0)9, = (0+)9,_ = 1, while PPVLLC would give (0)1 = (0-)9, = 0.

Now define the linear functionals }\,, and corresponding functions (p,,~ by

_ ._ Dj"(€ ). i=1;
Piaf '_ {jui'iip,5_,lDjf, 'i= 2, . . . ,Z;

(7) . (fl-"—§ilj/3'1, i=<Po'($) -= {(3, _ 503',/jg, =5: l\'Jl—'* 'li."'I-u-|

for j = O, . . . , lo -1. It is clear that each function (p,_, is in l'I,_.;;,_5. Also, from
what has been said already,

(8) A ___66 _{1, ift='rai'1dj=s,
lilo” H if is T O otherwise

This shows that the double sequence ((p,,-) is linearly independent. Since
((p,_,) consists of kl functions and II<i,,5 has dimension kl, as proved in
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II 4 conclude that ((p-,) is a basis for II.<,,,_.5. This meansProblem V . , we _ ,
that every f G II.<;,,_-5 has a unique representation of the form

and that, by (7) and (8), this repr

' f = Z:(>v:'f)<Po
iii

esentation can be written quite explicitly

I

(9) re) - Z r<i><a>(@: - or/ii + Z §j(iump,.D~'*r>(I - £,)"l./J'!- E
j<k i=2j<k

of the various derivatives of the func-Now note that the jumps
' l' 'tl as coefficients in thef across the various breaks appear exp zcz ytion

representation for f. This makes the enforcement of the constraints

="-1 -0 forj=1,...,i/, and £-=2,...,l
10) jumP€iD f '-

' t attention to those functions f of the form (9)very easy: We simply restric _' h d uble sequence
for which these coefficients are zero. This means that t e o
or set)

(Fiji .7 "' 1.1"‘ __
'--ix-F ,1:-1 and t==2,...,l _

h et If ‘== O In other words, everyis a basis for II.<;,,_-;,,,.. Here, we ave s » 1 . .I I I h f

function f in II.,-;;,,'¢,,, can be written in exactly one way in t e orm
'4

|

EM; ,M-QI = t_;.=<Pi_-,i-
m m
m m

t l ce the basis ((p,,) seems tailormade for our problems involv-At firs g an , - _
h s But in comparing the representationing pp functions of some smoot nes . ,' 'nd:' h th form VII(6) two complaints come to mi(9) wit e pp ,

l ' involve considerably more than just it(i) The value of f at a site r can
f the coefficients if Z is “large”. lo

" 'f § , ome of the basis functions (p,,- become near y(ii) For very nonum orm s ll charges in the coef-
l' l de endent on the others. This means that sma .. . t.inear y p
ficients might produce much smaller or much larger changes in the func ion
represented. This possible bad clondttton (see pp. 12ff) of the truncated

' ' ' b dl conditioned linear systems (analogouspower basis will also result in a y' ' h s ect to the truncatedto the system (3)) for the coeflicients of f wit re p
power basis.

I

mmrm

mm-

m——-1.1.-——-mm

mu-Ln;-1

_i-|.¢—_‘_,

m——-.
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Example: The truncated power basis can be bad _ 85

2.4 "

1.3 '= - - -

02 52 <54 I . ‘fr 510.
1.1 3.1 IT: 6.1 9.1 ‘

(12) FIGURE. A broken line that causes difficulties for the truncated
' power basis.

(13) Example; The truncated power basis can be bad Construct
the function f as a broken line, that is, f G I.-.I<2,€ |"lC(°), such that f(<f,) =
1.3, all t, except that f(<f5) == 2.4 and f(<f,,) -= .2. We choose the breaks
(£1)? as indicated in Figure (12). “We have f G lT_,_.;2,,;,,, with :1 = (1, . . . , 1).
Therefore _ I

' re) = A + so - £1) + Zoo - on
2

‘I

and 0-: = 1.3, ,8 = _f"(§1)= O, and 0:, = O except that

(or.,, . . . , o:7) = (1.1/A54, -2.2/h — 1.1/A54, 1.1/Age + 2.2/h, -1.1/A55).

As h := A55 becomes small, we get (:1:-—§5).,. ~ (:1: --§,,)_,_, and, correspond-
ingly, ——cc5 ~ O65 >> 1. This leads to loss of significance in the evaluation of
the function f. If, for example, ‘we choose 55 = 4.5 and £6 = 4.8, so that
h = .3, and we use two significant decimal digit arithmetic (with rounding,
a tie going to the__neai'est even number), then we obtain

o: =1.3, )6 = O, 0:4 = .79, o:5 = -8.1, C156 = 8.2, CB7 = —.85,

while all other or,’s are zero. If we then evaluate f at :1": = 9.5, we get the
value 2.1 instead of the correct 1.3. . El

For this example, the remedy is obvious: Use the hat functions III(6),
given by the rule

"T ‘ft-1/Afr-1-.~ 51-1 < fl? S Er,
+1 '-' 11'?)/Afr, ifs S 93 <1 §i+1i

otherwise.9*@"i3."‘
H,(:r) =

I-Iere, we use some 50- 5 £1 and som.e £12 2-_ £11. Now

_f(r) = 1.3H1(:i:) + - ~ - + 1.3H4(:I:) + 2.4H5(:i':) + .2H5(:.r:) + 1.3H7(:T:) + - - -
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and, again with 2 decimal digit arithmetic, we find

f(9.s) = 1.3(.4/.9) + 1.3(.s/.9) = 1.3 -‘.44 + 1.33~ .56 -= .57 + .73 = 1.3 .
I .

1

In fact, one could even let h = A55 apgroach 0 and still have the function
f well represented by the basis functions (H,).

In the general case, both objections to the truncated power basis men-
tioned earlier can be overcome (at least for moderate lo) by a generalization
of the “hat” functions, the so called B-splines. These are obtained by
forming analytically certain linear combinations of the truncated power
functions to obtain anew basis for II<_i,,g,,,. whose elements each vanish
outside a “small” interval, as described in the next chapter.

Problems

1. Show that II<_3,.,-fiC'(1) = {DF 1 F e II.,_.,_,nC(2l }, and that I'l.,;.,___.,-O
Cm = $4 (of p. 51, with (T,)? repla([:,bd by (T,-,)?+1). Conclude that the
approximation f to the distribution giin Example (1) can be constructed
as the derivative f = DF of F € $4 for which F(r,) =- E,-,_.,,h_,AT_,-,
‘l = 1,...,n -l-_1 (in particular, F(Tl).,_= 0) and F’(rl) = F"(:r,,.,_l) = 0.
Hence identify Figure (2) with the resiilts of Problem IV.9.

2. Prove that II.,;_,,_£,,,. is a linear subspace of l'I<,,,,£ (see Problem VII.4).

3. Prove: Ifcpl, . . . , (p,, is linearly independent and A := (a,,-) is an m ><
n matrix whose in rows form a linearly independent sequence, then the
sequence tbl, . . . , 1,b,,,, with 1,b, := Z a,_,(p_,, all t, is also linearly independent.

4. (a) Use Problem IV.2 to construct a basis (<pj” for II.,;4,£,g, with
2 := (2,... ,2), in such a way that the coordinates for f € II..,__~.l,,.;,3 with
respect to this basis are .l”(£-1)‘: f(£2)? .lfl(£3)i ' - -i .f(£l+1)i .lH(£l-l-1)):
(b) Express the homogeneous conditions - "

jump,5,D2f=0, t=2,...,l,
,| |

in terms o_f the coordinates for f with respect to the basis (cplf) found in
(a). Where have you seen these equations before?
(c) Construct fl, fl as linear combinations of , . . .,(p,ff) both with
continuous second derivatives and so that (fl, fl) is linearly independent.
Can you choose fl, fg-to be nonnegative on [fl . . £3]?
(d) Use (c) to get a basis for II.,;4,,5_3 ( you might need Problem 3 to show
that you have gotten a basis for II._¢_4,£,3). What is the relationship of II.,;.l,,5,3
to $4 on p. 51?

..
I

1 |.
HI!’

. $-
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IX

The Representation of PP Functions
by B-Splines

In this chapter, we define kth order B-splines as appropriately scaled kth
divided differences of the truncated power function and prove that every
space II..,;,,,,5,,, has a basis consisting of such basis splines or B-splines.
This gives rise to the B-form for a pp function.

I-Iere is the definition of a B-spline as originally given by Curry &
Schoenberg [1947] (though with a different normalization).

(1) Definition. Let t := (t_.,-) be a nondecreasing sequence (which may be
finite, infinite or biinfinite). The jth (normalized) B-spline of order k
for the knot sequence t is denoted by B,,,,,, and is defined by the rule

I Bj,,l;,1;(II'I) Z:--"' (t_»,i.|.,l,; -' tj)[li_-I‘, . . . ,t3'.|.],;l(' -—- I)::_-1, 3-ll I E

Note that, by I(J.3),

(3) B.r.I-=.=*-=(='-Y) :_lt.f+11"‘1tj+kl('“ =1-'=)l_1 '" l'5.-r= - "Itj+k"1l(' *- Ill”!-
The “placeholder” notation is used to indicate that the kth divided dif-

ference of the function (t — £1'I)§__1 of the two variables t and :1: is to be taken
by fixing :1: and considering (t —:i:)l_[__1 as a function of t alone. The resulting
number depends, of course, on the particular value of :1: we choose, that is,
the resulting number varies as we vary :i:, and so we obtain eventually the
function B_,,,,_, of 11:.

We will usually write _ -

B5; OI‘ Bjk = BL}; lI1SlI-E1!-3-Cl. Of B3',],,l;

as long as the I: and the t can be inferred from the context.
In this chapter and in the next two, we will record various properties of

the B-spline, in hopes of making it thereby as familiar and real an object
for the reader as, say, the sine function.

All these properties could (see, e.g., the first edition of this book) be
derived directly from the above definition with the aid of the various di-

87



88 IX. The Representation of PP Functions by B-Splines _

vided difference properties recorded in Chapter I. However, it turns out
(see de Boor & I-Iicillig [1987] and de Boor [1993]) to be just as efficient
(and less hard on readers not familiar with divided differences) to establish
just one property, namely the B-spline recurrence relation, and then derive

in else from this without recourse to divided differences It is eveneveryth' g .
possible (see (41)) to derive the equality (2) from the recurrence relation,
thus making it possible to start B-spline theory with the recurrence rela-
tions, though this may leave open the question of how one would come up
with the recurrence relation in the first place. -

The Curry-Schoenberg definition was based on the observation that, at
least for t, <1 - - - <2 t_,+,,, the function defined in (2) is obviously pp of order
it and, in any case, has small support in the sense that

(4) B_,,,,,,(:i:) = 0 for :1: d [t_., . . t_,-+,,].

For, if :1: ¢ [tj . . t_.,+,,], then g := — :i:)§_"1 is a polynomial of order it on
[t,- . . t,.,.,,] and therefore, by I(v), we have [t,., . . . ,t,.,.,,]g = 0. Further, the
Curry-Schoenberg B-spline

k
Mjiklt ::  IBu?-‘kitf:i+k -' tr

is differently normalized. It arises naturally when one applies the divided
difference to both sides of the Taylor identity ,

f = 2:D"f(<1) (- — -or/ri + /it - sift‘ Dir as/A!
1"-rik ‘

to obtain (under the assumption that t_,, . . . , t,-.,.;, G [a . . bl)

(6) [t_,, . . . , t,-+,,]_f = /IR M,-,;,,,D“f/lcl,

showing that M_,,,,,, is the Peano kernel for the divided difference. In
particular, with _f(:i:) = 0:”,

_ I Mj,k,g = 1.
IR

The notation N_,,,,,,, for B,_,,,, is quite common, in distinction to Mj,-,,,,.
The B,-l, are so normalized that '

(8) 23,, = 1 on [tj-,_,_, ..t;,_,],
J T‘

that is, on (t,-.,.,,._l .. t,+l), hence also in the (one-sided) limit at the
endpoints of this interval; see (36). '
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Two special knot sequences For two frequently used knot sequences,
the various details to follow simplify significantly.

One is the uniform knot sequence, t = Z = . . , —1,0, 1, 2, . . The
corresponding B-splines are called cardinal. For a given k, these cardinal
B-splines are integer translates of each other since (see Problem 2) -

A:

<9) B - .,a(=1=> = Z(--)“"" (A - A - nirl/(A — 1)!-.J.
'r'=O

thus greatly simplifying their study.
The other is the knot sequence

IB := (...,0,0,0,1,1,1,...)
which has just the two knots, O and 1, but both with infinite multiplicity.
For this knot sequence, there are just It nontrivial B-splines of order k,
namely the restriction to [O . . 1] of the polynomials

k — 1 - _
b.S'-nit--1(I) ::( )$k—1—J(1_I)3I .7 =01"'ik_'1i

familiar from the Bernstein polynomial (see, e.g., Rivlin [1969:p. 12])
k--1 i

(19) f( 'E'i"'i' )3’.-r.i-=—1
_;i=O

of order It for the function f. The sequence (b_,,,,_l : j = 0, . . . ,1: -— 1) is
a basis for H<,l,;, giving rise to the Bernstein-Bézier form, or BBform,
much used in CAGD. _

It is very-instructive to specialize the various discussions to follow to
these particular two knot sequences. "

A recurrence relation for B-splines Directly from the definition,
B11-= (' —t:i+1)?|- - (' —*i)3-

is the characteristic function of the jth knot interval, that is,

(11) B-,(e)=[ if i—. -'* = —
. J O otherwise.

Note that, in conformity with the convention adopted in Chapter VII, these
functions are continuous from the right. Other choices could have been
made. The only constraint is that these B_.,- should form a partition of
unity, that is, ,

(12) 23,, = 1.

In particular,
125; = lZ3'.|..1 ;‘> Bjl = 0.

Starting with these first-order B-splines, one may construct higher-order
B-splines with the aid of the following

‘I
|
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(13) B-spline Property (i): Recurrence relation. For 1: '> 1,

(14) B51, = °~'jkBj,k—1 -l" (1 - ¢~'_;=+1,A=)B_r+i,i-=-1.

with
IE-' tj

(15) w_.,-,,(:i.:) := _'7:.F+»‘~j*_—-1 "' fa‘

PROOF. Apply Leibniz‘ formula for the kth divided difference of
a product to the particular product '

(A -=1-=>i" = (A -—I)(¢--=i1=)’i'2-
This gives

l*:=~--=*i+tl(- -Ill“! = j
(16) (ti - Illlrl - - - 1”j+kl(' - Ill-i-2 + 1lt.3l+11"':t1l+kl(' "" Ill-2
since [t_,](- :t') = (t_, —- it‘), [t_,,t,_,_l](- —- :11) = 1, while [t,, . . . ,t,-[(- — :i:) = O
for 1* > j + 1. Now, H

['1

t- - .
(1, -a.:)[t,=,...,t,,,,] = tik __”t_ ([t,,l,...,t_.,-all - [t_,-,...,t,,.,,_l]).

J J ' *1
I

Therefore, (16) can also be stated as
(17) _
[til---=*i+tl(--Ilffl =

”_t-"‘ - - - ‘°-2 -----W t- t- 1--of"?t ._ -- .

and this, after multiplication by (t,.,_,, — t_.,-), is (14). El

Thus, the second-order B-spline is given by .

A 1 Bra = ""':i2Bj1 + (1 r" °-".1-l-1.2)BJ'+1.1 =
hence consists, in general, of two nontrivial linear pieces which join contin-
uously to form a piecewise linear function that vanishes outside the interval
[t, . . t,_,.l). For this reason, B,-2 is also called a linear B-spline. If, however,
for example t_, = t,.|_l, then B52 consists of only one nontrivial linear piece,
has a jump at t,-, but is still continuous at t,_,_l.

The third-order B-spline is given by

B:i3 = °~’.i3Bi2 + (1 '- %=+1.3)B.i+1.2
(13) = °'-".i3°~".:'2B:i1 + (°"'.:‘3(1 "' ¢~‘i+1.2) + (1 - °"'J'+1.3)°~".:'+1.2)Bs‘+1.1

+ (1 '"" °"';i+1.3)(1 '— ¢~‘.i+2.2)B.i+2.1=
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hence, in general, consists of three (nontrivial) parabolic pieces that join
to form a C(1) function that vanishes outside [tj . . ts-+2).

After ls: — 1 applications of the recurrence, we‘ obtain 135;, In the form

j+k—1

(19). B,-.1. = Z b...B.1,
'r'=3'

with each of the k b,-,1, a polynomial of order ls (as the sum of products of
k — 1 linear polynomials; in fact, each b,.;,, in (19) is of degree k — 1). This
establishes most of the following:

In

(20) B-spline Property (ii): Support and positivity. The B-spline
B_,-‘M, is pp of order k with breaks t_,-, . . . , t,+;,,, hence made up of at most k
nontrivial polynomial pieces, vanishes outside _the interval [tj ..t,.~.|.;,,), and
is positive on the interior of that interval, that is,

Bj,kIt(I) > O, (I5; < II-' < Iij+k

while

= t_:_;+k T-——‘,"> B31; =

PROOF. Only (21) still needs proof. Certainly Bil is positive on (tj ..
t_,+1). Assuming (21) to hold for k < 1", the positivity of both w_,,. and
(1 — uJ_,-4.11,.) on (t_,- . . t_,;_|_,.) implies with (14) that (21) also holds for it = 1".

[:1

The B-spline B5.-‘gt depends only on the k + 1 knots tj.-, . . . , t_,+;,. For this
reason, the alternative notation

~ xx Bjikit =Z B('|t3', . . . , 1I_1'+,I¢)

is also quite common. _
The actual smoothness of B,-;,, depends on the multiplicity with which

the break Er appears in the knot sequence (ta-, . . . ,t_,-.|.;,); see (49).

(24) Example: A sequence of parabolic B-splines Figure (25)
shows the five parabolic B-splines for the knot sequence (O, 1, 1, 3, 4, 6, 6, 6).
Property (ii) is clearly indicated. Also (8) is illustrated at a few sites, where
function values are given numerically. Note that, in conformity with (8),
Z? B,-(at) = 1 only on [tk ..t,,_|.1] = [1 ..6]. In particular, on [0 .. 1), the
sum is not equal to 1.
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B1‘

L

La.
B3

Z, 3

4.11 ___ 1*

B5

h A
‘I .

(25) FIGURE. The parabolic B-splines for the knot sequence (t1, . . . , t5+3)
= (0, 1, 1, 3, 4, 6, 6, 6). Note the connection between knot

1 multiplicity and smoothness.

Each B_,- is piecewise parabolic, and the breaks are clearly visible as places
of discontinuity in the B-spline or one of its derivatives. Only one of the B-
splines appears to be discontinuous, namely B5, with a jump discontinuity
at 6, corresponding to the fact that the number 6 appears three times in the
knot sequence t_,-, . . . ,t_.,-_,.;,, involved in the definition of B5. Only three B-
splines appear 130 have a discontinuous first derivative, namely B1 and B2, at
1, corresponding to the fact that the number 1 appears tfwice 1n the sequence
t_,-, . . . , t_,-+1, of knots involved in the definition of Bj for j = 1, 2, and B4 at 6,
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with 6 appearing twice in the knot sequence (3, 4, 6, 6) corresponding to B4.
Note that Bi;-, appears to have a continuous first derivative at 1; its defining
knot sequence, (t3, t4, t5, ts) = (1, 3, 4, 6), contains the number 1 only once.
At all other breaks, the functions B3‘ have, at worst, a discontinuity in
the second derivative. E.g., on [1 .. 3], B3 is a parabola, concave upward,
hence has a positive (constant) second derivative there, while, on [3 . . 4],
it is concave downward, so jump3D2B3 < O. This connection between knot
multiplicity and smoothness is basic to the use of B-splines and will be
explored further below. El

1.

|.

The spline space $;,jt
(26) Definition. A spline function of order k with knot sequence
t is any linear combination of B-splines of order it for the knot sequence t.
The collection of all such functions denoted by $1“. In symbols,

$1,-at I: {XCI-|;B-gikit ICI-5 TBGZ, all
I

F

We will have little occasion in this book to consider infinite or biinfinite
knot sequences. But if t is infinite or biinfinite, then the infinite sum in this
definition is meant to be taken pointwise, that is, the value of the function
Z, o:,;B, at the site is is simply the value of the sum 2, o:,;B,-_(:1':) which
makes good sense since the latter sum has at most I: nonzero terms, by
B-spline Property (ii); see (27).

t;i+1-k tj If T5;,=+1 t,-;'+1-=

(27) FIGURE. Support of the leftmost and the rightmost B-spline of order
k that is nonzero on (tj ..t_,.-+1). '

This definition of “spline function” may leave the reader in doubt as to
what exactly spline functions “are”. The reader may further protest that
Chapters III--VI already contain definitions of such things as cubic splines
or parabolic splines and that those definitions do not jibe completely with
the above definition. This latter objection is justified. But, before discussing
it, we take up the more fundamental question of what exactly splines,
according to the Definition (26), “are”, i.e., exactly what kind of functions
make up $1“.

It is obvious from B-spline Property (ii) that

$16,‘; Q II-<I'l‘C,I;:
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but it takes some work to prove the Curry-Schoenberg Theorem (44) below,
to the effect that .

~ $k,t = II<:-=,.§,t-

for some break sequence E and some sequence 1/, with this equality only
holding on the “basic interval" associated with the knot sequence t.

“This last caveat is related to the difficulty that already occurs when we
want to make use of the following immediate consequence of the recurrence
relation (14):

(28) Z@:B§k = Z (weer 4E,,(1 — %w-=)%=—1)B.1.k—1-
.1 .1 ‘

If t has a, first knot, that is, t = (t1, tg, . . .), then the sum on the left in (28)
starts with j = 1, but the sum on the right can only start with j = 2 since
it contains the term cx_.,_1. To circumvent this difficulty we agree in this
case (and in the corresponding case when t has a last entry) to extend t to
a biinfinite knot sequence in any way whatsoever, denoting the extension
again by t. However, this increases the number of available B-splines, hence
also increases the spline space. Since we are still only interested in our
original spline space, we further agree to choose the additional B-spline
coeficients to be zero. But, to be quite certain that none of the additional
knots or B-splines matter, we restrict attention to the largest interval not
intersected by the interior of the support of any of the additional B-splines.
We call this the basic interval for $3,}, and denote it

(29) Iklt = (‘II-___ . . 13+),

with J

t ___{tj;, lft=(t1,...); t ___ {t-n__|.], 1ft:-(...,lZ-n_+k);

' '_ inf5; tj, otherwise, + "_ sup, tj, otherwise.
it -

In practice, the knot sequence. is finite, having both a first and a last
knot. In this case, one chooses I;.,,,~_ to be closed, and this is fine for the
left endpoint, since we have long agreed to make all pp functions right-
continuous. However, for this to work properly at the right endpoint, we
modify the above B-spline definition to make each B-spline left-continuous
at the right endpoint of the basic interval. (The first edition of this book
failed to do this, unfortunately.) '

The polynomials in $;,,t We now use (28) to show that $;._.,t con-
tains all polynomials of order k, and even give a formula for the B-spline
coefiicients for p G IL-;;,.
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(30) B-spline Property (iii): Marsden’s Identity. For any ‘T G IR,

<31)  1 <~ — --W‘ = Zea->Bj»@
with. J

(32) ' ¢’_iI=(T) 1: (t_i+1 '" T) ' ' ' (1a‘+k-1 — T)-
PROO-F. Consider (28) for the special sequence

'-'11.?‘ = 1.9;-'1=(’F), 4113'-
Then, for B_,,;,_1 75 0, i.e., for t_.,- < tj_|.;,_1,

water + (1 ' 1%‘-=)%=-1 = %.I-=-1(’»')(<-*-be (¢_1+r-=-1 -r T) + (1 -" 1*-’;;1=)(i;; —~ ”F))
1 ‘ = 1/»,-,,._1<»r><-- T)

since, for any f,
1»-1,-,=:~=f(1.¢*+r~=-1) + (1 - %1<)f(1;;)

is the unique straight line that agrees with f at tj and t_,+;,_1, hence must
equal f if, as is the case for us here, f is itself a straight line. Therefore,
by induction, '

Z:'¢’;'r-=('1')B_§a = (' "-" T)k'_1 23¢;-'1('l')B_;i1=

and the last sum equals 1, by (12), since '¢,b_.;1 = 1. I3
To“ be sure, from the definition (32), 1,03-1 is the product of no fac-

tors, hence equals 1 by definition, as that is the definition appropriate
in inductive arguments such as the one just given.

Since "r in (31) is arbitrary, it follows (see Problem 11) that $1,; contains
all polynomials of order k. More than that, we can easily obtain an explicit
expression in terms of the Bjk for any p E IL; ,1,-, as follows. Divide (31) by
(k — 1)!, then differentiate it 1/ — 1 times with respect to 1' to obtain

(33)§ = Z B,k, 1/>0.
.E-

Now use this identity in the Taylor formula
k _ k-11

P = pg Dk_”P('1')=

valid for any p E I'l_,-_-;.,, to conclude that

(34) P = Z /\_-,e=P Ba. P € Flea
Ii

with the linear functional )\_,;,, given by the rule
it ,__,_ _ T

<35) mi := Z 0*-"rm,
u=1 _ i

To be sure, (34) holds only on the basic interval I;,,,,»_.
The following two special cases of (34) deserve special attention.
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(36) B-spline Property (iv): (positive and local) partition of
unity. The sequence (B_ii,) provides a positive and local partition of unity,
that is, each B_ii, is positive on (t_i ..t_i+i,), is zero oii"[t_,- ..t_,-_,_i,], and

(37) Z3,-,1, = 1 on Iii.
Ii

PROOF. Only the last assertion needs proof. It follows at once from
(34) with the choice p = 1. El

By choosing p E II<g (and choosing it > 1), we obtain from (34)

(38) B-spline Property (v): Knot averages. For ls: > 1 and any E 6
I142:

E = E-€(t;k) B3-ii '
Ii

with tgfk the Greville sites:

:0: _ t' 1+"'+t'+k—1 .(39) ii, .= 8.11;.

PROOF. Indeed, since D“°'21,L'_.ii, is a linear polynomial that vanishes at
t;Tk, the assertion follows from (34). i I3

Because of the importance of these knot averages, the SPLINE TOOL-
BOX (de Boor [1990]g) contains the command aveknt (t ,k) which supplies
them. .

The pp functions in $kIt Marsden’s identity (31) even provides a
B-spline expansion for certain truncated powers, because of the following
simple observation.

Since t_,- < ti < tiiii implies D”’_1¢_ii.,(ti) = 0 for 1/ § #ti, with

#ti I: #{T I if = ti} - . '

the multiplicity of ti in the knot sequence t, the choice "r = ti in (33)
leaves as possibly nonzero terms in that sum only terms with support either
entirely to the left of ti or else entirely to the right of ti. This implies that

_ _ k—u __ i,_. _ T
' = E Bjk, 0<U§#ti, 'T=t-g.

. . _

(41) Remark Equation (40) provides all the information needed to
deduce the equation (2) which is traditionally used to define the B-spline,

L-ii-n—r——-Z-n—-ii-u—|-|-i-—-raj--mum-ii.-—.n.i.

—.-.—_.-—1;_n.L1-.1.-.-...Lg.-u31-1.11.-_—-1-r-I-ii-_.1--j-u-1-1.‘Iii—-u-1-1.1.'—i-I-  _  

1T'i'i i- 
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thus closing the loop that has led us from that definition to the recurrence
relation and thence, via l\/larsden’s identity, to (40). Indeed, by defining

_ i: (t1i+1 ')-l- i ' i (t;i+k—1 — i)-l-a .7‘:-

we are entitled to write (40) (for the “case 1/ = 1) as

(42) (. _ »,-)f;1 = Z:itj";,(»r)B,i, T e 1;,
3'

in which the summation is, once again, over all j. The function 1,05, agrees
with qbjii at (ti : t < j + k), and agrees with the zero polynomial at (ti :
i. > 5'). Since both 1,05,-ii and 0 are polynomials of_order k, it follows that

[ti,...,ti_|.i,,]1/1;}: = 0 for 3' 7511.

Therefore, applying [t,-_, . . . ,ti+i,] to both sides of (42) as functions of 1', we
find that

(ti, . . . , II-i+];i(iI7 — ')§__l = it-5, . . . ._, ti+k]'l,l/Eli, B-;'k(iI'I).

Since agrees at (ti, . . . , ti+i,) with the kth degree polynomial

__ti _ k--1
1‘ |—> -1-1-———l ¢ii,('r) = —§-—)——— Tk + lower order terms,

. 1i11+k — it ti+lF "- ii

11; follows, with (—)i°'"1(:r - .)§;-1 = (- _ Q.-=){,=,-1, that

(1i+r<.- — 17:-'I)lti1 - - - it-s+kl(' _ 9-")ii-*1 = Bo¢(5-'3)-

:1
11; follows from (40) that

(43) (- *- ii)?” € $k:,t for 1 S 1/ 3 #ii

(on Iigi), and so implies the major part of the following basic theorem.

(44) Theorem. (Curry and Schoenberg) For a given strictly increasing
sequence §' = (£i)i,+1, and a given nonnegative integer sequence 1/ = (1/._.;)§
with 1/i 5 k, all i, set

J1-..
n :=k+\ (k—-1/i) =kZ—Zi/i =dimII.,iii,,5,,,

L._..:
i=2 i i=2

and let t := (ti)’f'H“ be the nondecreasing sequence obtained from § by the
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following two requirements:
(1') for ‘E = 2,. . . ,1, the number fii occurs exactly k .—- vi times in t;

t1 $.t2 S St!-= $151 and €l+1 $.tn+1 S S tn+.lc-
Then, the sequence B1, . . . , Bi, of B-splines of order in for the knot sequence
t is a basis for 1'I<;.i,,5_,,, considered as functions on Iii = [ti ..t,.,+1]. In
symbols, then

$k,t =1'1<:-=,£,p= 011 -71-=,:-

PROOF The proof is basic Linear Algebra. Let I = [a. .b] := [ti, . .t,.,+1]
be the basic interval for $;.i___i. By its very definition, the space $ii,i is spanned
by the 1'1-sequence (Bi : j = 1, . . . ,n.), and, by (40), contains the sequence

(45) ('"-*'-'1-)'°"“,lJ~=1,---,k;('—ie)il_“=l1=1,---=#¢i.fnr¢1~1‘ii <5.. 1.
Of _|_1.1 i

1=+ Z #n,=k+*Z(2;-l.»,)=n
. G-{t-i-Cb . 1'-=2

terms which, from Chapter VIII, is known to be a basis for II.<i,,,£,,,. II

A different proof can be found in the original paper, Curry 85 Schoenberg
[1966]. Note the following remarkable consequence of this theorem: B_ii.,
has one more continuous derivative than do the two functions, B_i,ii_.1 and
B_i.|.1,i,_1, hence, the two weights, am,-i, and (1 — to,-+1,i,), in the recurrence

l 14 t be exactly right to cancel at each t, i = j j + it thereation( )mus , -, ,..., ,
jump discontinuities in a certain derivative of the two lower-order B-splines.

(46) Remark The argument from Linear Algebra used in the proof
of the Curry-Schoenberg theorem is the following: Suppose that we know
a basis, (fl, . . . , fn), for the linear subspace F and that we further know
a sequence (gi, . . . , gm) whose span, G, contains each of the fi. Then, of
course, F Q G and so ,5If

n= dimF $d.imG _-§ m.

If we now know, in addition, that n = m, then necessarily F = G. Moreover,
then necessarily dim G = n, hence the sequence (gi , . . . , gii) must be a
basis for G since it is minimally spanning. In particular, it must be linearlyI]
independent.

(47) B-spline Property (vi): Local linear independence. For any
knot sequence t, and any interval I = [a .. b] Q l;.,_i containing finitely
many of the ti, the sequence

B 1= (Bj,k,t|.l 1B_i,k,e|1 7'5 0)

is a basis for II.<i,,5_,,.| 1, with § the strictly increasing sequence containing a,
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b, as well as every ti E I, and vi := k—min(k, #{r : t,. = {fi}). In particular,
B is linearly independent. "

PROOF. If t contains any knot of multiplicity > it, reduce its multiplic-
ity to k. This will only remove B-splines that are 0, hence will not change
the sequence B. Further, omit from t any ti for which neither Bi nor Bi_ii
has support in I. This, too, will not change B. At this point, B consists of
the restriction to I of all B-splines of order ls: for the knot sequence t, with
each interior break 5,; occurring exactly it -— 1/i times in t, hence Theorem
(44) finishes the proof. U

(48) Corollary. For all p G II<;.i, Di(}\_.ii-p) = 0.

PROOF. Since the B-spline sequence (B,-ii) is linearly independent, the
coefiicients in (34) are uniquely determined. In particular, they cannot
depend on the free parameter T that appears in the Definition (35) of }\_iii.

E]

B "stands fOl' bElSiS The Curry-Schoenberg Theorem enables the
construction of a B-spline basis for any particular pp space II.<ii,,5,,,, by
providing a recipe for an appropriate knot sequence t. This choice of t
translates the desired amount of smoothness at a break (as specified by
1/) into a corresponcling_number of knots at that site, with fewer knots
corresponding to more continuity conditions, in such a way that always

(49) number of continuity conditions at {Q + number of knots at E = ls.

Thus a ls:-fold knot at a site corresponds to no continuity conditions what-
ever at that site while, on the other extreme, no knot at a site enforces k
continuity conditions there, that is, the two polynomial pieces meeting there
must agree identically (by Theorem I(14)). In addition to these — 1/i)
(interior) knots E2 §_ t;.,.|_1 5 -- - 5 t,, g £;‘i, there are it initial and k final
knots that are arbitrary except that they must not lie in the interior of the
basic interval [£1 .. £_;'i.|_1].

The theorem leaves open the choice of the first k and of the last k knots.
A convenient choice is

151="'=tk=§1= tn+1="'=1-n+k='-§l+1

which then allows one to include the choice of these knots under the same
pattern as the choice of the other knots, by using

I/1 = 0 = I/:+1- -

In a way, we impose no continuity conditions at the endpoints £1 and £_fi.|.i
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of the interval of interest. This is consistent with the fact that the B-spline
basis provides a valid representation for elements of l'l.<i.,___5,,, only on the
interval [tii . .t,,,+1], that is, it makes the basic interval for $k,i coincide with
the basic interval for l'I.<ii,,g,i,.

With this choice for the end knots, the construction of the knot sequence
t = (ti)?+k from the break sequence §' = (§i)i+1 a.nd the integer sequence
1/ = (1/i)i1+1 is carried out in the SPLINE TOOLBOX (de Boor [I9Q0]g) by
the command t = augknt (§ , 1/) ; this can be visualized as in the following
diagram.

bfflfl-kfi € 1 £2 £3 - - - £1 51+ 1
no. of continuity 1:1 = 0 1/2 1»-3 - - - vi 1.-1+1 = 0
conditions

corrmp. knot - -
multiplicity lc-—u1=lc k—:/3 lc—u3 F:--vi I:--ui+1=k_ 

$1 1l=+1 tzk-I-*2 +1 " ' ' 1n+1

resulting knots i
in - t2k—l-"2 tan-r.-2-vi in ti-1+1:

(50) FIGURE. Converting breaks and continuity conditions into
knots of appropriate multiplicity.

Theorem (44) allows us to represent (pp functions in terms of B-splines
and so gives rise to the B-form for a pp function.

(51) Definition. The B-form for f G II.,.;i,_5_,, consists of
(i) the integers k and n, giving the order of f a pp function) and the

number of linear parameters (that is, n = kl — zi 1/i = dim l'.[.,.;i,,£,,,),
. respectively;
(ii) the vector t = (ti)‘[‘+k containing the knots (possibly partially coinci-

dent and constructed from E and v as in Theorem (44)) in increasing
order; and i

(iii) the vectoro: = (o:i)"f of the coefficients of f with respect to the B-spline
Tl-basis (Bi), for II,-;ii,,;,,, on the knot sequence t. v i - -

In terms of these quantities, the value of f at a site :1": in [ti .. t,,+1] is
given by

(52) f(¢1:) = ZaiB-(e).1'-

i=1

In particular, if t_i § :1: _*§ t3-+1 for some j G {k, . . . ,n}, then

J
f(s:)= Z o:iBi(:r).

*i.='i--k+.'l

l
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This means that we have recaptrued an important feature of the ppform,
namely that the value at a site depends only on It of the coefficients.

Note that the'B-form for a pp function of order k involves at least 2k
knots (and usually more). By contrast, a spline function of order la may
have as few as It + 1 knots (but not fewer). If we construct the ppform (see
Definition VlI(6)) for a spline of order k with the n. + is knots t1,. . . , t,,,_|.ii
on the interval [a. .b] —- [ti . .t,,+ii] of interest, we may end up with as many
as n + ls — 1 polynomial pieces. If now ti <1 tg and t,.,i.i,_.1 < t,.,+ii, then,
on constructing the B-form for this pp function on [a . . b] = [ti . . tiiiii], we
obtain a spline with n+ k+ 2(k —- 1) knots. The additional knots derive from
those arbitrary additional k -— 1 knots at each end. But, if all computations
have been carried out exactly (that is, without rounding errors), then we
would find that the first k— 1 and the last k—- 1 B-spline coefficients in the B-
form obtained are zero as they must be, because of the linear independence
of the B-spline sequence (see Problem X.4).

Conversion from one form to the other Conversion from a B-form
to the ppform for _f is easily accomplished if one knows how to evaluate and
differentiate (52) stably and efliciently: the l + 1 distinct sites among the
numbers tii, . . . , t,,_,_1 are found (with l determined by such a search) and
stored in $1,. . . ,{_fi_|_1 in increasing order and, for i = 1, .. .. . ,l, the number
D-'l_1f(§,,f") is computed and stored -in Ci,-, j = 1,.. .,k. We discuss the
subroutine BSPLPP which accomplishes this conversion in the next chapter
after we have described how to evaluate B-splines stably and efficiently.

The conversion from the ppform to a B-for1n for _f is more difficult be-
cause the ppform contains no explicit information about the smoothness
of f at breaks, that is, about the (minimal) knot multiplicity necessary
to- represent f as a spline function, nor could such information be derived
reliably numerically, that is, in finite precision arithmetic, from the ppform.
But if f is, by some means, known to lie in l'l.,-;i,,,£,,, for a certain 1/, then the
appropriate knot sequence t can be constructed from § and 1/ as in The-
orem (44) and the corresponding coefficient sequence or can_be obtained
from (55) below. If f is so representable, then the sites r_,- that appear (im-
plicitly) in that formula can always be chosen to be one of the breaks £_-,'i so
that the required derivatives can be read off directly from the ppform of f.
This is exactly what is done, with some care, in the conversion command
fn2fI11(pp,’B—’) in the SPLINE TOOLBOX (de Boor [1990]2).

The formula (55) is based on the observation that (34) holds, in fact, for
every p G $1“; provided that the point r appearing in the Definition (35)
of /\_,-i, is chosen fron1 the interval .. t;+k]. Here, having, for example,
r =- t;_l' means that D"""1_f(r) = lim;,_.,@+ D"’_1_f(t_,- + h).
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(53) B-spline Property (vii): Dual functionals. (de Boor & Fix
[1973]) For any f G $i,i,

f = Exit; Bjki
ii

with
it _l,, _ _

Ajk); := E Du—l-f(,i_j)

=1 '‘I!

a.nd't;,!' 5; Ti 5 t_',i'+k, all j. Hence

)\-ik(ECIi: -"_— CI-5, all ‘Ii.
.i

It is remarkable that Ti can be chosen arbitrarily in the interval .t;+k[.
The reason behind this is Corollary (48).

PROOF. It is suficient to prove that, for any i,

(56) . )\iiiBi = 5-ii‘, all

For this, assume that Ti G [t;." ... t.,T_,_1]. Then (56) is trivially satisfied for
every

_ jG’{r—k+1,...,r}==:J.

For j G J, let pi be the polynomial of order k that agrees with Bi on
[tr e 1 ti-_|_.]_]. Then

)\u=B_-,= = /\u=Pj-

On the other hand, 5
.-I I

I

(57) Pj = E(Askpj )Ps:
sGJ

since this holds on [t,- . . t,.+1] by (34). This forces Aiiipi (= )\ii,Bi) to equal
5-ii, since the sequence (pi : s G J) is linearly independent, by (34) (since
(34) shows that the k-sequence (pi : s G J) spans the lc-dimensional space
l'I.;ii, hence must be a basis for l'I.-iii) or, more directly, by the local linear
independence (47) of the B-splines. i
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(58) Example: Conversion to B-form Find the B-form of

(59) f(I) = (Iv ~— 3)(I — 6)(11= - 9)
on [0. . 10] as a cubic spline with simple interior knots 1, 2, . . . , 9. Then t1 =

=t4 =0; t4+i=ifori== 1,...,9; and, finally, t,,,_.|_1 = =t,,_+4 = 10
with it = 4 and n = 13. In (54), we choose ri = ti+g, all j, in which case
the formula specializes to

1 F 1 If(60) CI; = f(t_i+2)'l' 3,)‘ (At;=+2—Ati+1)f (¢_i*+2)v § A1i_i+1Atj+2.f (1i;,=+2)/2-
I-

|

By way of an exercise, we find the truncated Taylor expansion for f around
0, that is the numbers Dif(0)/il, i = 1, 2, 3, 4, from its Newton form (59)
by the Nested Multiplication Algorithm I(23). Starting from the boldfaced
diagonal, this produces the next three diagonals in a divided difference
table for f as follows.

:1: f(:r) 1.d.d 2.d.d. 3.d.d
9 . .

- 1
6 - 0

0 1
9 0 -3

18 1
0 -162 -9

99 1
0 -.162 -18

" I 99
0 -162

This shows that f_(:Ir) = -162 + :r:(99 + a:(—18 + The program below
uses nested multiplication to find from this the numbers f(ti+g), f"(tii.g)
and f"'‘(ti +9) /2 and then calculates czi by (60). The program also computes
the value of f at the Greville sites '

(61) tile = (t;i+1 'l' ' ' ' '1' t.i+k—1)/(k " 1) =3 TiwE(.'l)

from (39) in order to bring out the important point that o:i ~ f(t;?,,). This
becomes even more striking when we increase the number of knots, using
the points 1/2, 1, 3/2, . . . , 9, 19/2 as interior knots; see Figure (62). We pick
up on this very important point in Chapter XI.
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CHAPTER IX. EXAMPLE COHPARING THE B—REPRESENTATION OF A CUBIC F WITH
C

IX. The Representation of PP Functions by B-Splines

ITS VALUES AT KNOT AVERAGES.
C

INTEGER I,ID,J,JJ,N,NH4
REAL BcuEF(23),D(4),D0(4),DTIP1,nTIP2,F(23),T(27),TAvs(2a),1

C

C
C

N = 13
DO 5 I=1,4

)==0T(I

THE TAYLOR COEFFICIENTS AT O FOR THE POLYNOHIAL F ARE
DATA DO /-162.,99.,-

SET UP KNOT SEQUENCE IN THE ARRAY T

5 T(N+I) = 10.
NM4 = N-4
DO 6 I=1,NH4

6 T(I+4) ' FLOAT(I)
C

DO 50 I#1,N
C USE NESTED HULTIPLICATION TO GET TAYLOR COEFFICIENTS D AT

T(I+2) FROM THOSE AT 0
20 J=1,4

C
DO

20

21
C
C

C
C

D(J) = n0(J)
no 21 J=1,3

ID = 4
DO 21 JJ=J,3

ID== 1ID-

18.,1./

D(ID) = D(ID) + D(ID+1)*T(I+2)

COHPUTE B-SPLINE COEFFICIENTS BY FORMULA (9).
DTIP1 = T(I+2) - T(I+1)
DTIP2 = T(I+3) T(I+2)
BCOEF(I) = D(1) + (D(2)*(DTIP2-DTIP1)-D(3)*DTIP1*DTIP2)/3

F AT CORRESP KNOT AVERAGEEVALUATE .
TAVE(I) = (T(I+1) + T(I+2) + T(I+3))/3.
I = TAVE(I)

50 F(I) = D0(1) + X*(D0(2) + I#(D0(3) + I*D0(4)))
C

PRINT sso, (I,TAVE(I), F(I), BCOEF(I),I=1,N)
sso FURHAT(45H I TnVE(I) F AT TAVE(I) BCOEF(I)//

(I3,F10.5,2F16.5))c

END

I

h*Hweh- (nhMe{>¢HD~4UHm4>UHOh*

STOP

TAVE(I) F AT TAVE(I) BCOEF(I)

I-* CHD¢Hfi*4UHfl#5UHOP*CHD

00000
33333
00000
00000
00000
00000
00000
00000
00000
00000
00000
66667
00000

-162.
-130.

80.
28.

10.

10.

1 .
28

00000
96297
00000
00000
00000
00000
00000
00000
00000
00000
00000
29628
00000

-162.
-129.

75.
24.

12.

12.
15.
28.

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
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(62) FIGURE. B-spline coefficients model the function they represent. A
- cubic polynomial f on [0 . . 10] and its B-spline coefficients

(cri) plotted to show that ozi ~ f(t;?k). The points marked
>< come from the uniform knot sequence 0, 1, . . . , 10, those
marked G) from the finer uniform knot sequence 0, 1 /2, . . .,
10. -

El

We now return to the objection voiced earlier that our Definition (26) of a
spline function docs not completely jibe with the definition of a cubic spline
or a parabolic spline given in Chapter III—VI. In these earlier chapters,
and in the early history of spline theory (see, for example, Schoenberg
[1946]), a spline function of order k was defined to be a pp function of
order k on some (finite or infinite) interval with ls: --2 continuous derivatives
there. In other words, “spline function” meant a pp function that was as
smooth as it could be without simply reducing to a polynomial. But it
was soon found that pp functions of less than this maximum smoothness
were also quite interesting and useful. For instance, piecewise cubic Hermite
interpolation or piecewise cubic Bessel interpolation is at times preferred to
cubic spline interpolation. Some people have called such pp functions with
less than maximum (nontrivial) smoothness deficient splines. I will not
use ‘this term here since it contains a value judgement for which I have no
justification. Rather, I call such functions splines with multiple knots since
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II
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III
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(63) FIGURE. The formation of a double knot. .

we can think of them as having been obtained from a spline with simple
knots (that is, one of the original splines) by letting some knots coalesce.

' ' ' ' ' ise linearThis is illustrated 1n Figure (63), where a discontinuous piecew
function is shown as the limit of a linear spline with simple knots as two
knots coalesce. ii _ ,I

_||I.-II1-H --.
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I

| .
l

But with this extension of the word “spline”, all pp functions becomeI

splines, and one wonders why one should bother with the term “spline”
' ' ' f the word ,at all. In order to retain some special and useful meaning or

“ li e" I have adopted the definition of spline function, g1ven earlier in5P 11 1
this chapter, as linear combination of B-splines. In this way, the notion '
f “s line" is simply a particular way of looking at pp functions. This way i9 P .

makes it particularly easy to see the nearby splines with simple knots when
looking at a particular pp function. This is so because a B-spline doesn’t

ls: 1 k ts a little bit Therefore, if one haschange much if one changes its + no . _
' ' A ' l'k it ith 'multiple knots, then 1t 1s very easy to find a B-sphne almost 1 e w _ _

simple knots: Simply replace each knot of multiplicity r > 1 by r simple I
knots nearby. _=

J‘
ll

Problems

1. Verify the numerical values given in Figure (25) by constructing the
appropriate divided difierence tables. t

P f mula (9) for the cardinal B-splir-e (I-lint’ Verify, by induc-2. (a) rove or . . .
tion on n, the formula n![O, 1, . . . , n]f = A"f(0) := Z‘_,?=0(—)"“i(°:)f(i).)0 A
(b) Use the formula in a program to graph Bi for it = 5, 10, 15, 2 . ( ny
problems?)
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3. Prove: If f is pp of order k, with
p $17 , :17 < T

' f($)={qExg, I>_T: p:qG1_-[<k-.r

and jump,-D5"f=0forj =O,...,k--1, then f=q=p.
4. Verify the assertion in Theorem (44) that dim Il<;,,€,,, = k+Z:g(k—-I/,).
5. Prove: If f E $1.-,4-, vanishes outside the interval [tr .... ts] for some
1' < s_ < r + k, then f = O. Conclude that B-splines are splines of minimal
support. (Hint: Use (53).) -
6. Consider the linear functional A, of (53) as a function of 1",, that is,
consider the function

a
Am == Zj<-)’r*"¢§:"”(T>Dv‘r<»r>~

-r=1

(a) Prove that AI-(1') does not depend on T in case f E H<;,,. (Hint: Prove
that Af E H<;,, and calculate
(b) Prove directly, that is, without recourse to Theorem (44) or (53), that
A_+~('r) does not depend on 1' in case ti < T < t,.|.;,, and f E H.<;,,_,5_,,,
assuming t is derived from {f and 1/ as in Theorem (44). (Because of (a),
this only requires showing that jump¢___,Af = O for t_,- in (ti . . t,.|_;,,).)
‘T. Verify that the spline approximation Ag := E,(A£g)Bi,;,,t is local and
satisfies Ag --= g for a.ll g E $;,,,t. P
8. (a) Verify that p;¢B,-'= 5,, for ls: = 3, t arbitrary, and

' M9 3: (—Q(t¢+1) + 4Q(t1+3/2)- Q(ti+2))/2.
with '7¢+3/2 5: (t¢+1 + t-£+2)/_2-
(b) Verify that the approximation Ag := z,(,u,g)B,,3,t satisfies ||g —Ag]| _<_
4dist (Q1 $;.,,1;). (Hint: Use the fact that the B,-, are nonnegative and form a
partition of unity, also use Problem III.2.)
(c) Prove that the -approximation scheme in (b) is local.
9. In Figure (62), half of the B-coefficients marked G) seem to lie on the
broken line defined by the B-coefficients marked ><. Prove that this is no
accident.
10. Use Problem I.8 to obtain the following truncated-power representa-
tion of the B-spline:

.i+F=
'— -—-TTI. 1'" _

BI =t-—- dt—.l'1()—-——--i——3(3) (J+*= ta); r(-r "7)+ (k:—1—m(r))

for certain weights d,.- and with m(*r) := ma:x{s : r —- s Z j,t,.-_,, = t._..},
r=j,...,j+l:.

11. Prove that, for any 1'1 < < rk, the sequence —- 1',-)""“1 : j =
1,... ,k) is a basis for H<;,.
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X 1.:

The Stable Evaluation of B-Splines
and Splines;
BSPLVB , BVALUE , BSPLPP

In this chapter, we continue our diticussion of the properties of B-splines,
albeit in terms of splines, that is, linear combinations of B-splines or the
B-spline series. We concentrate on the differentiation and integration of
splines and on their stable evaluation with the aid of the recurrence relation.
Also, once we are able to evaluate a spline and its derivatives safely, we can
convert from B-form to ppform as outlined in the preceding chapter.

Stable evaluation of B-splines The direct evaluation of the B-spline
Bi from its definition IX(2) as a divided difference has to be carried out with
caution because of the possible loss of significance during the computation
of the various difference quotients (Problem IX.2).. Also, special provisions
have to be made in the case- of repeated or multiple knots (Problem lX.1).
Such a calculation would, in fact, amount to evaluating Bi from its repre-
sentation in terms of the truncated power basis (see Problem"IX.10) and
would, therefore, be beset with precisely the difficulties that we hoped to
avoid by introducing the B-spline basis in the first place.

Fortunately, it is possible to evaluate B-splines with the aid of the recur-
rence relation IX(14)i which requires no special arrangement for multiple
knots and does not suffer (unnecessary) loss of significance (see Cox [1972]
for a rounding error analysis of the process). B-splines became a viable com-
putational tool only after the discovery (e.g., de Boor [1971], Cox [1972])
of these recurrence relations.

The subroutine BSPLVB The-recurrence relation lX(1-4) leads di-
rectly to an algorithm for the simultaneous generation of the values at :1: of
the k B-splines of order k that are possibly not zero there.

Suppose r‘., < t,+1 and I G [ti Ht,-+1]. The values of all B-splines not
automatically zero at :1: fit into a triangular array as follows (we write Bf,-
instead of BF to keep the table simple).

109
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h 0

U

Bi—k+1,k

0 B1E—k+2,I<:-1
0 B-1-t+2,r=

0 B-i—2,3 Bi--t=+3,:¢-1
B-i—1,2 - B1:-t+s.t

B111 B-i.—1,3 '
B-:2 '

9 Bis Bi-1,t-1
0 " Bi-1,1‘:

0 Bat-1
Bat

0
0

(1) FIGURE. The triangular array of B-splines of order g it that are
nonzero on [ti . . ti.|.1]. '

The boundary of O’s in this table is a reminder of the fact that all other
B-splines (of order k or less) not mentioned explicitly in the table vanish
at 21:.

It is clear that we can generate this tliiangular table column by column,
since we know the first column by IX('11), and can compute each entry
in a subsequent column by IX(14). Of course, in the computation of the
first and the last nonzero entry in a column, we use the fact that one
of their neighbors to the left is zero. Suppose we have already computed
the j numbers B-i..I_i.|.1,_i (m), . . . , Bi; (:1:) and have stored them in the vector
b := (b,.){. If the vector b’ := (bi.){+1 is to contain the j + 1 numbers
Bi__i,_-;+1(:l:), . .. . , Bi,_i+1(:l:) of the next column in that ordel, then, by IX(1-4),

b .I b
(2) bi = (<11 -' 13-i—.~;+1~—1) T 1 +(*»:+1- — I) T —"—" Pt-i+r-1 -" ti—j +r—1 ?5i+r — it-5 +1-

for r = 1,. . . ,j + 1 and with be :-= b_i.|.1,__:= O. Introduce the quantities
E.

3:1.‘-.-1k:__1.

Then we can write (2) in the form ‘T

b_ b3 b’ =5‘-'~ . '" 1 5R_-_-l- ~= *1( ) r—1,3 6:-'_,—1‘j +5581 + -r 1 7 1 1.7 + 1
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The subroutine BSPLVB 1 1 1

Notethat our assumption ti < ti_|_1 ensures that none of the denominators
in (3) vanishes; in fact, they are all at least as big as Ati. Note also that

L __ , .5,, _ a§,,_,, With

conveniently independent of j.
The computation of and (bi-) as in (3) can be arranged as follows.

2/3 bi, := O
2/4 for r= 1,....,j, do:

2/4/1 term := bi./(5;i‘+1_,_ + 5,5)
2/4;/2 bi. := bi + 5,?-term
2/4/3 b§._|_1 := 5__f‘+1_r-term

Here, it is possible to store b’ over b by using an additional word of tem-
porary storage. Starting with j = 1, in which case b has the single entry
bi = 1, repetition of the 2 /4-loop for j = 1,. . . ,1: — 1 produces eventually
in b the desired vector of it numbers Bi.Iii_i_1,ii (rs), . . . , Biii (rs), as follows.

l 1 -b1I== I

2 for j=1,...,k—-1, do:
2/1 I= II-i',+_j -‘SC

I: I "— II-i'_I|I]__J‘

(4) 2/3 saved := O
_ 2/4 forr=1,...,j,do:

2/4/1 term == bi/(5,{*+5;?+,_,)
2/4/2 bi. := saved + 5:2-term
2/4/3 saved := 5§‘_|_1__,,.-term

2/5 b_,-_|_1:= saved

This algorithm is carried out in the following subprogram BSPLVB.

SUBRDUTINE BSPLVB ( T, JHIGH, INDEX, x, LEFT, BIATX )
c FROM * A PRACTICAL euros TD SPLINES t er c. as BUUR
cntcutarss THE VALUE or ALL POSSIBLY nouzsao B—SPLINES AT x or oansa

Ofiflflflflfififififififl-Efiflfififl

ITOUT == MAX( JHICH , (J-+1):-(INDEIII-1) ) _

WITH KNOT SEQUENCE T .

noose I H P U T fours:
T.....KNCT SEQUENCE, OF LENGTH LEFT + JOUT , ASSUMED TO BE NONDE-

CREASING. A S S U M P T I O N . . . .
T(LEFT) .LT. T(LEFT + 1) .

o I v I s I o N B Y z E R 0 HILL RESULT IF T(LEFT) = T(LEFT+1)
INDEX.....INTEGERS WHICH DETERMINE THE ORDER JOUT = MAX(JHIGH,

(J+1)*(INDEI-1)) OF THE B—SPLINES WHOSE VALUES AT I ARE TO
BE RETURNED. INDEX IS USED TO AVOID RECALCULATIONS WHEN SEVE-
RAL COLUMNS OF THE TRIANGULAR ARRAY OF B-SPLINE VALUES ARE NEE-
DED (E.G., IN BSPLPP UR IN BSPLVD ). PRECISELY,

IF INDEX == 1 ,
THE CALCULATION STARTS FROM SCRATCH AND THE ENTIRE TRIANGULAR
ARRAY OF B-SPLINE VALUES OF ORDERS 1,2, . . . ,JHICH IS GENERATED
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ORDER BY ORDER , 1.E., COLUMN BY COLUM .
IF INDEX = 2 ,

ONLY THE B-SPLINE VALUES or ORDER J+1, J+2, ..., JOUT ARE GE-
NERATED, THE ASSUHPTION BEING THAT BIATX , J , DELTAL , DELTAR
ARE, on ENTRY, As THEY WERE on ETIT AT THE PREVIOUS CALL.

JHIGH, '
IN PARTICULAR, IF JHIGH = 0, THEN JOUT = 3+1, I E., JUST

THE NEXT COLUMN or B—SPLINE VALUES Is GENERATED.
W A R N I N G . . . THE RESTRICTION JOUT .LE. JMAX (= 20) IS IM-

POSED ARBITRARILY BY THE DIMENSION STATEMENT FOR DELTAL AND
DELTAR BELOW, BUT IS N O W H E R E C H E C K E D FOR .

x.....THE POINT AT WHICH THE B—SPLINES ARE TO BE EVALUATED.
LEFT.....AN INTEGER CHOSEN (USUALLY) so THAT

T(LEFT) .LE. x .LE. T(LEFT+1) .
seer: U U T P U T stereo
BIATK.....ARRAY OF LENGTH JOUT , WITH BIATX(I) CONTAINING THE VAL-

UE AT X OF THE POLYNOMIAL OF ORDER JOUT WHICH AGREES WITH
THE B—SPLINE B(LEFT—JOUT+I,JOUT,T) _ON THE INTERVAL (T(LEFT)..
T(LEFT+1)) .

onent M E T H D Q matte:
THE RECURRENCE RELATION

X — T(I) T(I+J+1) - I
B(I,J+1)(x) = -—————————-B(I,J)(x) + -------------—-B(I+1.J)(X)

T(I+J)—T(I) T(I+J+1)-T(I+1)
IS USED (REPEATEDLY) TO GENERATE THE (J+1)-vEcToR B(LErT-J,J+1)(I).
...,E(LEFT,J+1)(x) FROM THE J-vEcToR B(LErT-J+1,J)(x),...,
E(LEFT,J)(x), STORING THE NEW VALUES IN BIATK ovER THE OLD. THE
FACTS THAT

B(I,1) = 1 IF T(I) .LE. x .LT. T(I+1)
AND THAT

B(I,J)(x) = o UNLESS T(I) .LEu I .LT. T(I+J)
ARE usso. THE PARTICULAR ORGANIZATION or THE CALCULATIONS FOLLOWS AL-
GOHITHM (9) IN CHAPTER x or THE 1993 TEXT.

INTEGER INDEI,JHIGH,LEFT, I,J,JHAx,JP1
PARAMETER (JHAX = 20)
HEAL E1ATx,T,x, oELTAL(JHAx),oELTAR(JHAx),sAvEn,TERH
DIMENSION E1ATx(JouT), T(LEFT+JOUT)
DATA J/1/ ‘
sAvE J,DELTAL,DELTAR

co TO (10,20). INDEX
1o J = 1

EIATx(1) = 1.
IF (J .GE. JHIGH) so TO as

20 JP1 = J + 1
DELTAR(J) = T(LEFT+J) - I
oELTAL(J) = I - T(LEFT+1—J)
SAVED - 0. -
no 2s I-1,3 ,

TERH = BIATXII)/(nELTAR(I) + DELTAL(JP1—I))
EIATx(I) = SAVED + DELTAR(I)*TERH

26 SAVED - DELTAL(JP1—I)*TERH -
EIATx(JP1) - SAVED
J:

IF (J .LT. JHIGH) G0 T0 20
as RETURH

END

JP1 ,
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(5) Example: T0 plot B-splines We should like to encourage the
reader to look at kth order B-splines for various values of 1:: and various
choices of knots. For this reason, we supply here a sample program that
uses BSPLVB in order to plot all the B-splines of a given order for a given
knot sequence. It happens to be set up to supply the data necessary to plot
the parabolic B-splines in Figure IX(25), but is easily changed. For the
plotting of a single B-spline, we recommend the function BVALUE discussed
later in this chapter. q

I.
CHAPTER x. EXAMPLE_1. PLDTTING sous E1sFL1HEs
CALLS BSPLVB, IHTERT

INTEGER 1,J,R,LEFT,LEFTHH,HFLAG,H,HFoIHT
REAL Dx,T(1o),vALUEs(?),x,xL

c DIMENSION, oRDER AND KNOT SEQUENCE FDR SPLINE sFAcE ARE SPECIFIED...
DATA N,K /7,3/. T /s*o.,2*1.,a.,4.,a*s./

c R-sFL1HE VALUES ARE INITIALIZED TO 0., NUMBER oF EVALUATION POINTS...
DATA VALUES f7*o./, NPDINT /a1/

c sET LEFTHosT EVALUATION POINT xL , AND SPACING DT TO BE USED...
KL = T(K)
Dx = (T(N+1)~T(H))/FLoAT(HPoINT—1)

c
PRINT 600,(I,I=1,5) ‘

soo FORMAT(’1 X’,BK,5(’B’,I1,’(I)’,7X))
c

DO 10 I=1,NPOINT
x = xL + FLOAT(I—1)*DK

c LOCATE x WITH REsPEcT TO KNOT ARRAY T .
CALL 1HTERv ( T, n+1, x, LEFT, HFLAG )
LEFTMK = LEFT — K

c GET E(I,E)(x) IN vALuEs(I) , I=1,...,N . K OF THESE,
c viz. R(LEFT-x+1,H)(x), ..., R(LEFT,x)(x), ARE SUPPLIED BY
c BSPLVB . ALL oTHERs ARE KNOWN TO BE zERo A FRIGRI.

CALL EsFLvR ( T, K, 1, T, LEFT, vALuEs(LEFTH1<+1) )
c

PRINT s10, x, (vALuEs(J),J=a,?)
s10 FORHAT(F7.3,5F12.7)

C .

c zERo OUT.THE vALuEs JUST COMPUTED IN PREPARATION FoR NEXT
c EVALUATION POINT .

Do 1o J=1,H-
10 vALUEs(LEFTHx+J) = 0. _

.. STOP
END

I 1::
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(6) FIGURE. The four cubic polynomials that make up a certain cubic
B-spline.

(T) Example: To plot the polynomials that make up a B-spline
The input parameter LEFT for BSPLVB is to be chosen so that

T(LEFT) < T(LEFT + 1)
and so that

" T(LEFT) 5 x 5 l§‘{_LEFT + 1).
The first condition is absolutely necessary to avoid division by zero, but
what if the second condition is violated? A check of equation (2) assures
us, by induction on j, that the algorithm (4) generates the value at :1: of-
certain k polynomials, each of order k, regardless of any relationship that
the specific value st might have to the (fixed) index i. Since the process (4)
does give us the value at :1: of the B-splines Bi.Iii+1,ii, . . . ,Biii if we choose
ti -5 :1: _'§ ti_|.1, it foll.ows that the algorithm (4) generates, for given 51:, the
value at :1: of the it polynomials pi_.ii.|.1, . . . ,pi of order it for which

Pi.—-1‘(-T) = Bi-r,l<:(3:) for ti S :1: 5 t'i+11 T 2: 01' ' ' 1 k _

This observation allows us to compute these polynomials, and so permits
us to illustrate how a function as smooth as a cubic B-spline is put together
from polynomial pieces. The data for Figure (6) were obtained from BSPLVB
with the aid of the following program.. .
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Differentiation 1 15

CHAPTER X. EXAMPLE 2. 'PLoTTING THE PoL,S' WHICH MAKE UP A B—SPLINE
CALLS BSPLvB
c

INTEGER IA,LEFT
REAL BIATK(4).T(11)-VALUES(4),X

C KNOT SEQUENCE SET HERE....
DATA T / 4*O.,1.,3.,4.,4*6I /
DO 2O IA=1,4O

X = FLOAT(IA)/5. - 1.
DO 1O LEFT=4,7

CALL BSPLVB C T, 4, 1, K, LEFT, BIATK )

' ACCORDING TO BSPLVB LISTING, BIATK(.) NOW CONTAINS VALUE
AT X OF POLYNOMIAL WHICH AGREES ON THE INTERVAL ( T(LEFT)
..T(LEFT+1) ) WITH THE B-SPLINE B(LEFT—4 + . ,4,T) . HENCE,
BIATK(8-LEFT) NOW CONTAINS VALUE OF THAT POLYNOMIAL FOR
BCLEFT-4 +(B—LEFT) ,4,T) = B(4,4,T) - SINCE THIS B—SPLINE
HAS SUPPORT (T(4),T(B)), IT MAKES SENSE TO RUN LEFT = 4,
...,7, STORING THE RESULTING VALUES IN VALUES(1),...,
VALUES(4) FOR LATER PRINTING.

flfiflfififlfififi-Cl
1O VALUES(LEFT-3) = BIATK(3-LEFT)
2O PRINT 620, X, VALUES

620 FORMAT(F10.1,4F20.8)
STOP

END

El

DIFFEFEHIIBIIOH The fact that the first derivative D$(t — :1:)i_T__1 with
respect to :1: of the pp function g(a:) = (‘t - :c)l_‘,’_"1 is given by

D10: — iv)?‘ == -—(k — 1)(t — T)?“
may be used to conclude from IX(3) that

I-.

L

.L)B-5,1;-(I): (iii.-,;_|_1, . . . ., t.£_|_kl — it-5, . . . , II-ij+,Ii_]_D.I)I(' — $'):__1

(8) = —(l° "* 1)(l'5i+1= - - - -.- '7r+A=l "- [to - - -='5t+t-1l)(" T Y~'1)ii-_2
: (k ___ 1)( —Bt-_|-1,1:-1(-'5) + Baa-1(I) )1

t1+R — ?3£+1 t-1Z+k—1 — it

though this requires justification of the interchange Di, . — :c)f_*‘1 =
[. . .]DI(- — :r)‘if|_"1 (for example via Problem IX.10). In accordance with our
promise to develop the entire B-spline theory directly from the recurrence
relation, without recourse to divided difierences, we now prove (8) with the
aid of the dual functionals IX(5-4) and via the B-spline series.

We begin with the observation that

D$k,t = {DI I I G $t,t} = $A=-1,t-.
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as follows from the Curry-Schoenberg Theorem IX(-44). Therefore, by
IX(53), for any f G $;¢_t,

.-

J.

with

ic—1

An.-_1Df = Z(—D)’*1¢,-M('r)D"‘"‘""Df('r)/(k -— 2.1!. all .11
r=1

Compare th.is with the coefficients

k.Ajtr = 2("'-D)r—1¢jk(T)Dk—rf(T)/(k -— 1)1, a111,
-r=1

in the B-spline expansion f = Zj A3-k f Bjk for f. Since

(t§+n=-1 — ')¢§.I=-1 = ¢;i»'=
('3.-: — ')¢j.k—1 = ¢§—1.1==»

subtracting the latter from the former gives

(*§+k-1 " *J')¢5.k—1 = Ifijk - $1-1.I=-»
Therefore, 1

A- - ~_.(19) )\j'k_1D = (k_1) _
*§+k—1-*1

This proves

(11) B-spline Property (viii): Differentiation.

(12) .D(2Ck_-jB_-jig) = — 2  Bj1k_1.

J J
. .51:-1-'

This shows that the first derivative of a spline function zj czjBJ-k can
be found simply by differencing its B-spline coefficients, thereby obtaining
the B-spline coefficients of its first derivative, a spline of one order lower.

We have left the limits of summation in (12) unspecified. The precise
formulation is T

s 3+1 _ __ an

! D(Z:a_.;B3-k) = 20¢ ~ 1) -“l--9‘-1'-%Bj,,¢..1.,
(12) , ,- , -... 1 " 1.= .= 15'-pk-1

I‘?-

-T Z_
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In a way, formula (12) and subsequent formulas are written for biinfi-
nite sums. They apply to finite sums after these have been made formally
biinfinite through the adjunction of zero terms. W

On the other hand, if we are interested in the fixed interval [tr . .t_._,], then
.s—1 _

(13) Z-.:1:_,BJ-;,= 2 o:J~B_,;;¢ on [tf-..t,._,],
j j=r—k'+1

from which we have _ I,
s--1' L

__ _ 0:3--Cl.'_1
(14) ( $ Cli_jBj;¢) 2 1) Bj,k_1 OI]. [tr . . ts],

J .- 2 3' ""="1"‘-—lC-|- J-+k-.1 _ I

since B,-,;,_1 vanishes identically on [tr . .t_,,] for j ¢ [r —- k + 2 . . s — 1], that
is, we need not bring in additional coefficients as we did in (I2’).

Repeated application of (12) produces the following formula for the mth
derivative of a spline:

(15) Dm(Za_,B_.;;,) = Z@§’“+‘)B,,,._m
Li Ii

with
0:,-, for m = O;

( I T Q’ a""'1 for m > O .
(tr+1=—m "‘ tr)/(ff _ ml i

We have taken here the factor (k -—- m) as a divisor into the denominator in
order to stress the fact that we are indeed computing a difference quotient
of sorts, with the step (t,.+_;,_,.,,, — t,.)/(k -— m) an “average mesh length“.
This implies that _

(17) o¢f.m+1) = Vma,-/hm in case t is uniform, that is, At, = h, all r.

Here, Vm denotes the mth backward difference, that is, Vm := V(V"""1)
and Var := o:,.. — o:,._1. '

In general, the formula (16) may lead to division by zero. But, if indeed
t,.+;,,_m — tr = O, then B,.,;,,_m = 0 by IX(22), and, as we will follow the
useful maxim

anything times zero is zero,

it really doesn’t matter how we interpret the definition of cz£~m+1) in this
case. In computations, one simply refrains from attempting to compute
of-m-+1) in case t,._|_;,__,,,,_ -— tr = O.

The subroutine BSPLPP We are now in a position to discuss the
subroutine BSPLPP for the construction of the ppform for a pp function f
from a B-form for f.
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SUBRUUTINE BSPLPP ( T, BCOEF, N, K, SCRTCH, BREAK, COEF, L )
CALLS BSPLVB
c t
convsars THE B—REPRESENTATION T, scosry s,.x or suns SPLINE INTO ITS
c PP—REPRESENTATION BREAK, cuss, L, K .
c
Ctttifit I H P U T moose: }

T.....KNOT SEQUENCE, or LENGTH N+K
BCOEF.....B-SPLINE COEFFICIENT SEQUENCE, or LENGTH N
N.....LENGTH or BCOEF AND DIMENSION or SPLINE SPACE SPLINE(K,T)
K.....ORDER or THE SPLINE .

ID(if!CflfifiifliflfifififlflfifiCigflfi(§f)iHD€UC)CHD(3C)CHD

r-1: Ew -:=

I5-IUIZ
Ehe

Z52ClG1 t 1|

THE RESTRICTION K .LE. KHAN (= 20) IS IHPO-
THE ARBITRARY DIMENSION STATEMENT FOR BIATX BELOW, BUT

H E R E C H E C K E D FOR.

toot: H D R K A R E A ##1##:
SCRTCH . . . . ..OF SIZE (K,K) , NEEDED TO CONTAIN BCOEFFS OF A PIECE OF

THE SPLINE AND ITS K-1 DERIVATIVES

mote: U U T P'U T moses:
BREAK.....BREAKPOINT SEQUENCE, OF LENGTH L+1, CONTAINS (IN INCREAS-

ING ORDER) THE DISTINCT POINTS IN THE SEQUENCE T(K),...,T(N+1)
COEF.....ARRAY OF SIZE (K,L), HITH COEF(I,J) = (I—1)ST DERIVATIVE OF

SPLINE AT BREAK(J) FROM THE RIGHT
.NUHBER OF POLYNOMIAL PIECES HHICH MAKE UP THE SPLINE IN THE IN-
TERVAL (T(K). T(N+1))

room: H E T H D D ooomot
FOR EACH BREAKPOINT INTERVAL, THE K RELEVANT B—COEFFS OF THE

SPLINE ARE FOUND AND THEN DIFFERENCED REPEATEDLY TO GET THE B—COEFFS
OF ALL THE DERIVATIVES OF THE SPLINE ON THAT INTERVAL. THE SPLINE AND
ITS FIRST K-1 DERIVATIVES ARE THEN EVALUATED AT THE LEFT END POINT
OF THAT INTERVAL, USING BSPLVB REPEATEDLY TO OBTAIN THE VALUES OF
ALL B-SPLINES OF THE APPROPRIATE ORDER AT THAT POINT. .

INTEGER K,L,N, I,J,JP1,KHAX,KHJ,LEFT,LSOFAR
PARAMETER (KHAN = 20)
REAL BCOEF(N).BREAK,COEF,T, SCRICH(K.K)

* ,BIATK(KMAK),DIFF,FACTOR,SUH
DIMENSION BREAK(L+1).COEF(K,L),T(N+K)
LSOFAR - 0
BREAK(1) - r(K)
no so LEFT=K,N

c ' FIND THE NEXT NONTRIVIAL KNOT INTERVAL.
IF (T(LEFT+1) .EQ. T(LEFT)) ‘so TO so
LSOFAR I LSOFAR + 1
BREAK(LSOFAR+1) - T(LEFT+1) El V
IF (K .GT. 1) too TO 9
COEF(1,LSOFAR) - sc0EF(LEFT) so TO 50

c srons THE K B-SPLINE COEFF.S RELEVANT TO cunnsur KNOT INTERVAL
c IN SCRTOH(.,1) .

9 no 10 I=1,K
10 SCRTCH(I,1) = BCOEF(LEFT-K+I)

IUCNQIU
CURRENT KNOT INTERVAL FOR‘THE J-TH DERIVATIVE BY DIFFERENCING
THOSE FOR THE (J-1)ST DERIVATIVE, AND STORE IN SCRTCH(.,J+1) .

Ta-'

A

FOR J=1,...,K-1, COHPUTE THE- K-J B-SPLINE COEFF.S RELEVANT TO
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oo 20 JP1=2,K
J = JP1 - 1
KHJ = K - J
oo 2o I=1,KHJ

DIFF - T(LEFT+I) — T(LEFT+I — KHJ)
IF (DIFF .GT. o.) soRTcH(I,JP1) =

1- (SCRTCI-I(I+1,J)—SCRTCH(I,J))/DIFF
2o CONTINUE

Ofifififlflfififififlflflfifififififl

FOR J = 0, ..., K-1, FIND THE VALUES AT T(LEFT) or THE J+1
E-sPLINEs or ORDER 1+1 HHOSE SUPPORT CONTAINS THE CURRENT
KNOT INTERVAL FROM THOSE or oRoER J (IN EIATI ). THEN cons-
INE HITH THE B-SPLINE COEFF.S (IN SCRTCH(.,K—J) ) FOUND EARLIER

~ To COMPUTE THE (K-J—1)ST DERIVATIVE AT T(LEFT) or THE GIVEN
SPLINE. -

NOTE. IF THE REPEATED CALLS TO BSPLVB ARE THOUGHT TO GENE-
RATE TOO MUCH OVERHEAD, THEN REPLACE THE FIRST CALL BY

I EIATx(1) = 1.
‘AND THE SUBSEOUENT CALL BY THE STATEMENT

J = JP1 - 1
FOLLOWED BY A DIRECT COPY or THE LINEs

DELTAR(J) -= T(LEFT+J) - X
EIATI(J+1) = SAVED

FROM BSPLVB . DELTAL(RRAx) AND oELTAR(ENAx) vouto HAVE TO
APPEAR IN A DIMENSION STATEMENT, or COURSE.
CALL BSPLVB ( T, 1, 1, T(LEFT), LEFT, EIATI )
COEF(K,LSOFAR) = SCRTCH(1,K)
no so JP1=2,K

CALL BSPLVB ( T, JP1, 2, T(LEFT), LEFT, BIATX )
KMJ = K+1 - JP1
sun = o.
no 2s I=1,JP1

2s SUM = BIATX(I)*SCRTCH(I,KMJ) + sun
so" OOEF(KMJ,LSOFAR) = SUM
5o CONTINUE

L = LSOFAR
IF (K .EQ. 1) _ RETURN
FAcToR = 1.
oo so I=2,K

FAcToR = FACTOR*FLOAT(K+1—I)
= no so J=1,LSOFAR

6o"~ coEF(I,J)_= COEF(I,J)*FACTOR
“ RETURN

END .

As already mentioned in Chapter IX, we must find the L + 1 distinct
points £1 < - -- '1'. EL_|.1 among the numbers '1‘(K), ..., T(N+1), store them
(in increasing order) in BREAK(1), . . ., BREAK(L+1) and then compute, for
i= 1,...,L and for j = 1,...,K, the number D-""“1f(§;") and store it in
COEF (j,i). .

Suppose §, = T(LEFT) < T(LEFT—|— 1) for some i '_§ L. Then §,_|_1 =
T(LEFT + 1), and

k

.f=2Q'5LEFT—-l::+rBLEFT-—lc+r,k 011 lg?---§;|.1l1
T"=1

with agreement ‘at’ 5:" and (that is, of the one-sided limits) justified
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since, on (5, .. EH4), both sides are just polynomials. Therefore, by (15),

k

Djf = X CBLBE-‘ii"_Ili-l-k+rBLEFT“k+TJ=*j on ' ' €-i.—+1l
r=j+1

for j = 0,... , ls: —- 1, with oi-fl as given by (16). If we put the k: —j numbers
a£“:.;r1lk+r into the (j + 1)st column of the two-dimensional array A as
follows,

A(r,j+1)<-¢v§_;‘,i‘.,?l,,+,+,, 'iI"=1,...,k—j,
then (16) translates into

(18) A(r, 1) +— CILEF-1-_i,+,-, r = 1, . . . , k

and

A(T+1Ij)_A(TIj) E
7- ' 4__ .._ ' 

(19) M ’3+1) U” J)T(LEFT+r)—T(LEFI'+r—k+j)’
r=1,...,k:—j; j=1,...,lt—-1.

Once these coefficients are computed, we then find

i=-J‘
D='r<e*> = ZA(r=5 + 1),-1». .

1'=1

with b,. := BLE1="['-k+;i+r,k—j(€:_)-T T = 1,. . ., ls —- j, obtained from the sub-
. i i -I 1 I §-£1routine BSPLVB mentioned earher by a CALL BSPLVB ( T, k — 3

LEFT, b ). A final change of variables, in which k_ —- 3' — 1 is substituted
for j, then leads to the DO 30 loop.

(20) Example: Computing a B-spline once again This time, we
use the subprogram just discussed to recompute the cubic B-spline whose
polynomial pieces we obtained in Example (7) with the aid of BSPLVB.

After we obtain the ppform for the spline

7

I 3: Z 5-i.4B~i4 = B44
-i=1

k t 1icet=(0000123466,6,6‘*viaBSPLPP,wewiththe no seque : ,,,,_, , , , , ,
evaluate the B-spline f on a fine mesh with the aid of PPVALU (and INTERV)
introduced in Chapter VII.



The subroutine BVALUE 121

CHAPTER X. EXAMPLE 3. CONSTRUCTION AND EVALUATION OF THE PP—REPRESENTAT~
C . ION OF A B-SPLINE. -
CALLS BSPLPP(BSPLVB),PPVALU(INTERV)
C

INTEGER IA,L
REAL EcoEP(?J,EREAK(5),coEP(4,4),scRTcN(4,4),T(1i),VALUE,x

c SET KNGT SEQUENCE T AND B—COEFFS FOR E(4,4,T) .
DATA T / 4*o.,1.,s.,4.,4*a. /,|ECOEF / s*o.,1.,a*o. /

c CONSTRUCT PP-REPRESENTATION ....
CALL BSPLPP ( T, BCOEF, 7, 4, SCRTCH, BREAK, COEF, L )

CIOCDCI

As A CHECK, EVALUATE B(4,4,T) FROM ITS PP—REPR. ON A FINE MESH.
THE VALUES SHOULD AGREE NITH (sons oF) THOSE GENERATED IN

EXAMPLE 2 .
no 2o IA=1,4o

K = FLoAT(IA)/5. - 1.
VALUE = PPVALU ( BREAK, COEF, L, 4, K, o )

2o PRINT 620, K, VALUE
620 FoRNAT(F1o.1,F20.s)

sToP
END

E]

The SUbl"OUl'.lI'|E.' BVALUE The construction used in BSPLPP can be
exploited in a slightly more general setup to provide the value of the first
so many derivatives of a spline from its B-form. This is done, for example,
in the subprogram BSPLEV of de Boor [1971] and de Boor [1977]1, but we do
not consider it liere. Instead, we now discuss the subprogram BVALUE which
is analogous to PPVALU in that it pr,ovides the value of the jth derivative
of a spline at some site, but from its B-form rather than its ppform.

‘REAL FUNCTION BVALUE ( T. BCOEF, N, K, I, JDERIV )
CALLS INTERV
C
CALCULATES VALUE AT A OF JDERIV—TH DERIVATIVE OF SPLINE FROM B-REPR.
C THE SPLINE IS TAKEN TO BE CONTINUOUS FROM THE RIGHT, EXCEPT AT THE
C RIGHTHOST KNOT, WHERE IT IS TAKEN TO BE CONTINUOUS FROM THE LEFT.C .

Cassatt I N P U T orsoss -
C T, BCOEF, N, K . . . . ..FORHS THE B—REERESENTATION OF THE SPLINE F TO

BE EVALUATED. SPECIFICALLY,
T.....KNOT SEQUENCE, OF LENGTH N+K, ASSUHED NONDECREASING.
BCOEF.....B—COEFFICIENT SEQUENCE, OF LENGTH N .
N.....LENGTH OF BCOEF AND DIMENSION OF SPLINE(K,T),

A S S U M E D POSITIVE .
K.....ORDER OF THE SPLINE .

CiflfDCPfiC}fl%D€}O€1

H A R N I N G . . . THE RESTRICTION K .LE. KMAX (-20) IS IHPOSED
ARBITRARILY BY THE DIMENSION STATEMENT FOR AJ, DL, DR BELOW,
BUT IS N O N H E R E C H E C K E D FOR.

A
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x.....THE POINT AT HHICH TU EVALUATE .
JDERIV.....INTEGER GIVING THE ORDER or THE DERIVATIVE TO BE EVALUATED

A s s U H E D TO BE zanu on POSITIVE.
##### U U T P U T ###### T
BVALUE.....THE VALUE OF THE (JDERIV)-TH DERIVATIVE OF F AT I .

##### H E T H D D ######
THE NONTRIVIAL KHOT INTERVAL [T(I)..T(I+1)) CONTAINING x IS LO-

CATED HITH THE AID OF INTERV . THE K B—COEFFS OF F RELEVANT FOR
THIS INTERVAL ARE THEN OBTAINED FROM BCOEF (OR TAKEN TO BE ZERO IF
NOT EIPLICITLY AVAILABLE) AND ARE THEN DIFFERENCED JDERIV TIMES TO
OBTAIN THE B-COEFFS OF (D**JDERIV)F RELEVANT FOR THAT INTERVAL.
PRECISELY, HITH J I JDERIV, NE HAVE FROM I.(15—16) OF THE TEXT THAT

(D**J)F I SUN ( BCOEF(.,J)*B(.,K—J.T) )é BCOEF(.), , J .EQ. 0

BCOEF(.,J)

"--.“--."'--.

iI51
COEF(.,J-1) " BCOEF(.—1,J—1)

(T(.+K-J) — T(.))/(K-J)
, J . GT

‘ -I

THEN, HE USE REPEATEDLY THE FACT THAT

H ggfi ( A(.)*B(.,H,T)(X) ) - SUM ( A(.,X)*B(..M—1.T)(X) )I .
(x - T(_))#A(.) + (T(.+H—1) — X)*A(.—1)

A(.,X) - ------------------------------------~——
(I — T(.)) + (T(.+M—1) — X)

TO URITE (D**J)F(X) EVENTUALLY AS A LINEAR COMBINATION OF B~SPLINES
OF ORDER 1 , AND THE COEFFICIENT FOR B(I,1,T)(K) MUST THEN BE THE
DESIRED NUMBER (D**J)F(X). (SEE I.(25—29) OF TEXT).

INTEGER JDERIV,K,N, I,ILO,IMK,J,JC,JCMIN,JCHAX,JJ,KMAX,KMJ,KH1
, * ,HFLAG,NHI,JDRNP1

PARAMETER (KHAX = 20)
REAL BCOEF(N),T(N+K),X, AJ(KHA1),DL(KMAK),DR(KMAK),FKMJ
BVALUE I O.
IF (JDERIV .GE. K) GO TO 99

#** FIND I S.T. 1 .LE. I .LT. N+K AND T(I) .LT. T(I+1) AND
T(I) .LE. X .LT. T(I+1) . IF NO SUCH I CAN BE FOUND, X LIES
OUTSIDE THE SUPPORT OF THE SPLINE F , HENCE BVALUE = O.

. (THE ASYHHETRY IN THIS CHOICE OF ‘I MAKES F RIGHTCONTINUOUS, EXCEPT
AT T(N+K) WHERE IT IS LEFTCONTINUOUS.) '

CALL INTERV ( T, N+K, X, I, HFLAG )
IF (HFLAG .NE. O) GO TO 99

### IF K ' 1 (AND JDERIV = O), BVALUE I BCOEF(I).
KH1 I K - 1
IF (KH1 .GT. O) _ GO TO 1
BVALUE I BCOEF(I) GO TO 99

¢¢¢ swunz THE K B—SPLINE coarrxcxanrs RELEVANT FOR THE KNOT INTERVAL
(T(I)..T(I+1)) IN AJ(1),...,AJ(K) AND conpurs DL(J) = x - T(I+1—J),DR(J) - T(I+J) - x, J-1,...,K-1 . set ANY OF THE AJ not OBTAINABLE
FROM INPUT TO zzao. saw ANY T.S not OBTAINABLE EQUAL TO T(I) on,
T0 T(N+K) APPROPRIATELY.
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JCHIN = 1
INK = I - K
IF (INK .GE. 0) co TO e
JCMIN = 1 - IHK
no 5 J=1,I

DL(J) = X - T(I+1—J)
no 6 J=I,KH1

AJ(K—J) = 0.
DL(J) = DL(I) co TO 10

no 9 J=1,KM1
DL(J) = x - T(I+1—J)

JCHAK = K
NMI = N - I _
IF (NHI .GE. 0) cc TO is
JCHAK = K + NHI
no 15 J=1,JCHAK

DR(J) = T(I+J) - x
DO 16 J=JcMAx,KM1

AJ(J+1) = O.
DR(J) = DR(JCNAX) cu TO 20

no 19 J=i,Kui
DR(J) = T(I+J) " X

no 21 JC=JCMIN,JCHAX
AJ(JC) = BCOEF(IMK + JG)

### DIFFERENCE THE COEFFICIENTS JDERIV TIMES
IF (JDERIV .EQ. O) GO TO 30
DO 23 J=1,JDERIV

KMJ = K-J
FKMJ = FLOAT(KMJ)
ILO = KMJ
DO 23 JJ=1,KMJ

AJ(JJ) = ((AJ(JJ+1) — AJ(JJ))/(DL(ILO) + DR(JJ)))*FKMJ
23 ILO = ILO -~1.

### COHPUTE VALUE AT I IN (T(I),T(I+1)) OF JDERIV-TH DERIVATIVE
GIVEN ITS RELEVANT B-SPLINE COEFFS IN AJ(1) AJ(K-JDERIV)
IF (JDERIV .EQ. KM1) GO TO 39
JDRVP1 = JDERIV + 1
DO 33 J=JDRVP1,KH1

KHJ = K-J ‘~
ILO = KHJ ~
DO 33 JJ=1,KHJ

AJ(JJ) = (AJ(JJ+1)*DL(ILO) + AJ(JJ)*DR(JJ))/(DL(ILO)+DR(JJ))
ILO = ILO — 1

BVALUE = AJ(1) "
RETURN

END

The calculation is based on the formula (15) for the derivatives of a spline
and on the recurrence relation IX(1-4).

W1iP'I

We locate i so that ti 5 X < t._;_|_1 and then compute the K-JDERIV
relevant B-spline coefiicients for the JDEHIV-th derivative of f according to
(18 and (19). This means that we initialize

E5?!‘-

21) A('r, 1) -¢- BCOEF('£ — K + 1"), =
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and then compute

_ _A +1,' —A ,' 1,...,K ;(22) A(_m+1),_(K_3) (‘PL J) (';2)’ J
5,,_J-+,_, + 6,. 3 = 1,. . .,JnE1=.iv.

Here, we have used the abbreviations

5;’ :=X-—-T(£+1—s), 5? :=T(i+s)—X, s= 1,...,K— 1

introduced earlier in the discussion of BSPLVB.
Now we know that, with m := JDERIV, :1: := X, and k := K,

k-m.

:= E A(7‘, ‘In + 1)Bi_(k_m)+r'k_m($).
-r=1 _

We could therefore finish the calculations with an appeal to the subprogram
BSPLVB for the values of the requisite B-splines. It is more efficient, though,
to make use of the first algorithm in de Boor [1972], of which the derivation
of IX(19) is a particular example and which is as follows. t

Consider first the case m = JDEHIV = 0, that is, we want to evaluate the
spline f itself. From the recurrence relation IX(14), we obtain that

_f(:i:) = E a,.B,~;.,(:t') .
1"‘

rt‘ -- t t J:
= Z CY-r -;———-—r—-— Br,k—1($') + Z 01'-r —-—rik———— Br+1,k—1(517)-

1, r+k—1 — tr 1,, tr+k - T51-+1 ~

Now change the dummy variable of the summation in the second sum from
r to 1' — 1 and recombine the two sums to get that

re) = Z -:»£-%>B,~_,-re)
with

(24) aLg]($) r: (IF — ?51~)@1~ + (¢1~+i=-1 Ilfir-i _
t-r+k—1 _ tr

If we repeat this process again and again, then we obtain the fact that

(25) f(x) = 2cr,l:.l+ 1](iII):B,-1,1,-;_j (rs), j = O, . . . , 1:: — 1
- r

with _

(rs — t,.)al£ll (rt) + (t,~_|_;,..__.,= - I)CliEl1(iIF) . -_
[j+1] ——-—-——-—"-"—'""—-"""_""'"_= 9 > °= P(26) 0:1,. (I) I= I.',~_|_;,_.3' - II,»

CBT1 j=--O.
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This means that we have rewritten the spline f of order k as a linear
combination of B-splines of order k — j , but with coefficients which are not
constant anymore but are polynomials of order j + 1 in the independent
variable rs.

Now take j = k: — 1 in (25) and take ti 5 :1‘: < t,_|_1. Then

1! IB’-*"i(“’) = B"1($) = io, Z 75
Therefore _

_f(fL') = I-OI‘ Iii § I < t£_|_]_.

This makes it possible to evaluate our spline f at the site zr in [ti .. t,_|.1)
by constructing successively the entries in the following table.

Ore-I-=+1 =1 ¢1rlll;,+1(='~'1)

aiIi]k+2($)

0‘-'1--k+2 =: Ck»i_il._i,I;..|_2(:-I’-)

¢~£’lh..3(=-:> £13" <31)
lklf )oz, _:r

@£*“"<:-~>
Oi£_]_ =2 a,l1_}1(:.~:) l

@E?’<:-~>
ct, =: c1:,£1](:r)

(27) FIGURE. Table of polynomials ai?-I of order j, constructible column
by column by (26) and producing eventually the polyno-
mial elk] of order k that agrees with the spline ES o:_,B,;,
on the open interval (‘ti . . t,-__|_1).

The leftmost column consists of the B-spline coefficients for f pertinent to
the interval [ti . . t,+1]. Every entry in a subsequent column is obtainable,
according to (26), as a convex combination of its two neighbors to the left
if, as we assume," t, 3 :1: 3 t,_|_1.

Suppose we put the k—-j+1 numbers ci:R]_k+j, . . . ,al:"] into the jth column
of the two-dimensional array A,

A(r,j)<-—-aE_]_k+J._1+r, *r=1,...,k—j+1.

Then (26) can be written I

A('r 9' + 1) {... ---_i--_---_--_i_6"%“-""+“'*‘"A(T+ 1"]-) + 5fA(T’j)
H (28) 51%-j+1—r + 61? ’ '

*r=1,...,k—j; j=1,...,k—1,
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where we, once again, use the abbreviations

6.,TI=Z.II--ti+]__..,-, 6§Z=I}-;+.,--—-1'6, T=‘-1,...,i€—1.

We have shown that, if we initialize '
.

"' |

A(rI +_ ai—k+T1:|- T -:' 11' ' - i (C

and then compute the remaining entries in the triangular array A according
to (28), then

Au. is = re) = Z -:~=.B..<w>
for t,-, 5 a: <1 t,-,.|.1. Consequently, if we compute the k — in numbers
A(r,m+ 1), 1' = 1, . . . , k -—m., by (22), and then compute, according to (28),

A 6*'~_.- _ A +1,‘ +6RA ,'
A(T1j+1)m 

(29) 6k—j+1—r {T 61' 1*
r=I,..._,k-—j; j='m+1,...,k--1,

then I

A(1, it) = D"“f(:i:) 1 for ti, 3 :1: < t,.|.1.

The subprogram BVALUE employs the two steps (22) and (29). The first
part of the program takes care of the possibility that there might not be I:
B-spline coeficients for the interval [t,-_, .t,+1]. This happens when 1 5 1. < k
and/or n < '21 ;<_ n + it. In this case, we could suitably restrict the indices
appearing in (22) and (29). But, since this case is likely to be exceptional,
it seems inefficient to burden the calculations (22) and (29) in this way
with additional index calculations. Rather, we simply choose the “missing”
coeficients to be zero and then choose the correspondingly missing knots
(whose choice is then entirely immaterial except for the necessity of avoiding
division by zero) to equal the first or the last given knot as the case may 1'
be.

One would expect to use BVALUE if a spline is to be evaluated no more
than about two or three times ‘per polynomial piece (see problem X.3).
Otherwise, it would be more eficient to convert first to ppform via BSLPP
and then use PPVALU for the evaluation. _

(30) Example: Computing a B-spline one more time We compute
once more the values of the B-spline of order 4 with knots (0., 1, 3, 4, 6) on
a fine mesh. but use BVALUE this time. Note that, in contrast to Examples
(7) and ('20), we do not need to invent (explicitly) additional knots.

I

l

I-I.

1-._—-in-QIl|-..,,_--_,|_,,

ll’
'|

I
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CHAPTER I. EXAMPLE 4. CGNSTRUCTION OF A B-SPLINE VIA BVALUE
CALLS BVALUE(INTERV)

rurscsn IA
REAL BCDEF(1).T(5),VALUE,X

c ssr KNOT ssqusucs r AND s-cusrrs FOR B(1,4,r)
DATA r / o.,1.,a.,4.,s. / , scosr / 1. /

c svntunrs s£1,4,r) on A FINE MESH. on (0,6), THE vntuss SHOULD
c corucros vrrn rnoss osrnrusn IN EXAMPLE a .-

oo 20.IA=1,40
x = FLOAT(IA)#.2 — 1.
vntus = BVALUE ( T, scosr, 1, 4, x, 0 )

20 PRINT 620, x, VALUE
620 FORMAT(F10.1,F20.B) STOP

' END
.5

Integration We know from formula (12) for the derivative of a spline
that u

y D(El3iBi,!=+1) = $k Bik-

This implies that E, o:,=_B,;, is the first derivative of the spline E, ,6’,;B¢,;,.|.1
provided k(,6,-_ -- ,6’,_1)/(t,-,+;, --_t,=_) = 1.22,, all ii, or

(31) fit = .51--1 + Q5£(t-£+k - ti)/N. all ‘5-

This allows us to prescribe one B-spline coefficient in the anti-derivative
for a spline arbitrarily, and all other coefficients are then determined by
(31). In formulae, the most general anti-derivative for the spline E, a,B,=,;,
IS given by 2,5 ,6-,;B__-5,;;+1 With

-- H -t---1? it, '>';

_ 2:1‘,-|-1 — I’ < 7'01

and c and in arbitrary.
Here, we have again taken the tack that even if our spline E, aiB,;, has

only finitely many knots, we nevertheless treat it as a spline with infinitely
many knots by adjoining suitable zero terms. This is quite necessary be-
cause a spline with finitely many knots usually has no anti-derivative with
finitely many knots. Indeed, for a specific spline f = o:,B,;,, we manage
to construct an antiderivative E, ,6’,B,1,,+1 with ,6’, -I O for all ii < 1 by
choosing c = 0, '50 = 1 in (32). But then

‘rt

B,-—-=2r:i:_.;(t_,_|_,|,—t_.,-)/k for *i=n,'n.+1,..
i=4
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It follows that the spline r:.r,B,;, is the derivative of a spline with finitely
many knots if and only if C25: (ti.-+1, —— tj) = O.

Of course, these infinitely many coefiicients need not worry us if we are
only interested in the integral over an interval containing a finite number
of knots. We find that .

we f Z-sBv.<y>dy= (Z11?-c.=('?j+r-=—*§)/l=)B¢.:-=+1(fl-'=)
t1 1; 1 J I

H 3

ein HMH

HI.

m ni
m Iii

on t1 5 as 3 ts.

Problems

1. Partial B-form. It is easy to pick out of the B-form for a spline f in
T , BCOEF, N , K a partial representation. I y
(a) Verify that the input list T(I—K+1) , BCOEF(I—K+1) , K, K (for BSPLPP)
d8SCI'llI)8S thfi B—IOI'II1 IOI fl(T(I)__-I-(1.11)).

b What art of T BCOEF N K would give the B-form for f |(-I-(D -,-(3))?( ) P . . . ..
(c) Vlfhat if I < Kin (a) or (b)? Could an appropriate representation usable
in BVALUE still be picked out‘?

2. Use BSPLPP to calculate the value and first it - 1 derivatives of a spline
at just one knot'T (i). (Don’t cause any more computations than absolutely
necessary).

3. Give an operation count (floating-point operations) as a function of it
for the evaluation of a spline of order k at-one site

' (a) by BVALUE;
(b) by PPVALU.
(c) Give such a count as a function of k and Z for the cost of converting
from B-form to ppform by BSPLPP. .
(d) For how many interpolation sites (per interval) is it cheaper to convert
and use PPVALU than to use BVALUE‘? .

4. Take a spline in B-form (for example, _a B-spline), convert to _ppfo_r_m_
by BSPLPP, then use IX(53) and Theorem IX(44) to construct a B-form for
the resulting pp function and compare with the B-form you started with.

5. Use Leibniz’ formula I(iv) to establish a recurrence relation that relates
the jth derivative of a B-spline to that of_two B-splines of one order less.

6. Change BVALUE into a routine BVALLC that treats splines as left-
continuous functions (cf. Problem VII.2). _
7. Prove: If z occurs exactly m times in the sequence t,.|.1, . . . ,t,_|_,|,_1,
and 1* :== ls: —- 1 —~ m, then

— ti . ti - .
—"i"'—'—Jl-1I11l7>.1DTBt..I=-i + -—*-"i*';f—JumPzDTBt+i,k-1 = 0-ii+e-1 — it ' tt+.I= —- ti+1
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8. (a) Prove that f := cr,B,‘;,,, is the first derivative of a spline (with
finite support) if and only if c.r,(t,+,:, — t,) = O.
(b) Prove that f is also a second derivative of a spline (with finite support)

li 1-1. 11.--I
if and only if in addition -(t,_|_,, — t-) Z: (t -+1, 1 — tj) = O.1 3 -

i=1 ;,i=1
(c) If you have the courage, state and prove the r conditions on (o:,) nec-
essary and sufficient for f to be the rth derivative of a spline of finite
support. -

P

9. Use (15) and (16) to show that, for f = 2,1-:.i:,B._,J,,1, with t,._,|,+1 =
--_.:tT<tT+1i...:tT+S1 ‘

('Dj.f)(t-1") :  A'jar—k+11 for j = O1---13-

This shows that the choice t1 = =11 ti, = a, and t,.,+1 = = t,,.H, = b,
of the end knots as proposed in Chapter IX makes the imposition of end
conditions on f and its derivatives particularly easy.

10. Develop an alternate routine BSPLPP that I11B.l-{BS no use of BSPLVB
but rather uses algorithm (25) — (26) to derive the local polynomial co-
efiicients of the polynomial piece of f = E, CI-11B-£I,l; on [tm ... t,,,_+1] from
cx,,,_;,_|_1,...,a,,,. (Hint: Express each of the polynomials a-if] in local
polynomial form.) - _

I-low could this idea be used to derive a routine that evaluates simulta-
neousiy f and its first s derivatives at some site z in [tm .. t,,,_+1]‘? (I-Iint:

[I-=1; ... "“ (11-1) 1-. _ -em .16) — E f (Z)($ — Z) /(- — 1)!-)
i=1 _
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XI

The B-Spline Series, Control Points,
and Knot Insertion

In Example IX(58), we made the point that B-spline coefficients model
the function they represent. In the present chapter, we document this asser-
tion in more detail by continuing the list of properties of B-splines begun in
Chapter IX, paying special attention to the control points of a spline and
introducing knot insertion as a remarkably efiicient tool for establishing
the shape-preserving properties of a spline fit and the total positivity of the
B-spline collocation matrix that underlies them.

Throughout this chapter, let t := (t£)"f+k with ti < t,;+,:,, all i, and
t1 = - -- = ti, = 0., t._,.,+1 = - -- = t,.,.|.;,, = b so that, in particular

[G..b]=[ik..t-n+1] -

is the basic interval; also, let Bi == Baht, i = 1, . . . ,n, and let $ = $,:.,,1;.

Bounding spline values in terms of "nearby" coefficients Recall
from B-spline Property IX(iv) (see IX(36)) that the B-spline sequence (Bi)?
provides a “local” and nonnegative partition of unity on [a . . b]. This gives
the following property (to add to the list begun in Chapter IX):

(1) B-spline Property (ix): Convex hull. For t,-, <1 :1: '< t¢+1, the
value of the spline function f := E3, ojBj at the site as is e strictly convex
combination of the lc numbers cxi_,_1_;,,, . . . , osi.

II1(l€B(l, if ti 3 CB ‘_~_'-1 $54.1, thfifl = it O:3;B_1'(€.I7), while all Bj(fl3)

are nonnegative and sum“ to 1.

(2) Corollary. Ift-5 5 :1: 5 t,+1 and f = 23- C€_-jBJ'_._, then

(3) min{ oq__|_1_;,, . . . , Cr-,1} $ § n1a.x{o:,;+1_;=,.'. . , 0:-5

In words, the values of the spline f = 2 C-l!_-jB_-j on the interval [ti . . t£.|.1]
are bounded, above and below, by the k B-spline coeflicients “nearby” (see

' 131
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Problem 1). On the other hand, any B-spline coeflicient is closely related
to the values of f “nearby”, as the following property shows. We use the
abbreviation

llfllr == SHPlf(=1=)|-
:'cEI

(4) B-spline Property (x): Good condition. (Bi)? is a relatively well
conditioned basis for $ in the sense that there exists a positive constant
Di,,,i_,i,, which depends only on I: and not on the particular knot sequence t,
so that for all i,

(5) [ail 5 D“'“'“'[l Ea-lBj[[[1‘-i+1--1‘-i+I=-1]‘
Ii

Smallest possible values for Di,,,,,_,-i, are
k - - 4 5 6

_Di,m .5680-~ 12.0886-~ 22.7869-~
Based on numerical calculations, it is conjectured that, in general, I

Dii ix, ~ 2“—3/2.

I--I-bd O-703 U1

PROOF SKETCH. Choose 1-i in the dual functional formula IX(54), i

‘Q
Mi .-----.

.3--~.PS“
Aikf 3: Du-1f(1_i)1 .

for the ith B-spline coefficient oi of f G $ii,i to lie in a largest knot interval
[ti . .t,.-+1] in [ti+1 . .ti.|.i,__1]. Then |(—D)“"”1,bii,(ri)| 5 const|At.,-|""'1 (since
D“-“1,bii,(1-i) is a certain sum of products of 1/ —--1 factors of the form ti — ri ~.
with s G + 1,. . . ,i + k — 1}), while, by Markov’s Inequality (see Rivlin
[1969]), for Ti in any knot interval [ti . . t,_+1] in [ti .. ti_|_ii], y

ID”_‘f('"=:)| S wflstllfll[i....i.+,]/|Ati|”"1-,
both inequalities for certain t- and i-independent constants. This shows
that |o:i| § const||f|[[i,___i___,,] § const[|_f [i,_,,__i,_+,,_,] for a certain constant
independent of i and t. El

The existence of such a constant Diim, goes back to de Boor [1968], but
the proof there is unnecessarily involved. A different proof (along the line
of the above proof sketch) can be found in de Boor [l.Q76[g. The specific
numerical values for Di, iii, given above are computed with the aid of de Boor
[199O]1. The best bound so far is obtained in Scherer 8: Shadrin [1999]:

.D,|i,,;_,i;._. _§ li32kH1.

Let f := 23, o:jB,.-. Since B-splines sum up to one, (5) implies that
[oi — c[ 5 Di,,_,,,._-;,[\f -- c\[[i_,+,__i,_,,,_,] for any particular constant c. For the
particular constant c := (M + m) /2 with g := { f (11) 1 ti+1 5 1: 5
ti+i,._1 }, we get [if — c[[[i,+,__i_,+,,_,] = (M — m)/2. This give the following
converse to Corollary (2).
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(6) Corollary. Let f = '23- c¢,iB_,- and f([ti_|_1..ti_,_i,,_1]) = [m . .M].-Then

_[fii— [£Dk,m .

Finally, the assertion that (Bi) is a relatively well conditioned basis for
$ is properly expressed by the following corollary which combines (5) and
(3). y

(3) C°I‘°11flI‘Y- DI§,i.s|lfll| 5 ll 2@§Bj|l 5 llflll I= maxi lesi-
' The point to note here once again is that Dii,,,_,,-i, does not depend on t.

Control points and control polygon The close relationship between
the value of a spline and the “nearby” B-spline coeflicients has led to the
definition and use of “control point”. This term had its origin in Computer-
Aided Geometric Design, where spline curves rather than spline functions
are used. Here, a spline curve is, by definition, a vector-valued spline,
that is, a spline with values in the plane or in 3-space. Correspondingly, its
B-spline coefficients are then points in the plane or in 3-space, and their
sequence is called the control point sequence of that spline curve.

Now, the graph of a spline function (or, scalar-valued spline) f G $ defines
a curve, namely the planar curve

w '—* (1=,f(=v))i
and this is actually a spline curve, that is, a spline with 'uecto'r-valued
coefficients, since, by B-spline Property IX(v),

:1: = Z:t;-‘i, B5.-(as), :1: G [o..b],
5"

where (see IX(39))

It +-.-+t- k___ _ism: i,113_

For this reason, one calls

(9) (P,==(:;i,e,)eIR? :j=1,...,n)
the control point sequence of the spline function E5, CIjB_-j G $;i_i.
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"~. I

‘  /1 ,,_|¢|II-

(10) FIGURE. A control polygon exaggerates the corresponding spline.. . . . d
Any crossing of the spline by some straight l1ne 1s brackete
by crossings of the control polygon by that straight line.

Finally, the control polygon

(11) Cratf
of a spline f G $ is the broken line with the spline’s control point sequence

rtex se uence The control polygon 1s an exaggerated version or cari-as ve q .
cature of the spline itself, hence makes it easy to locate certain important

' ' ' ' 'ne'see efeatures (zeros, reglons of convex1ty/concavity, etc) or the spl1 , , .g.,
Figure (10). _

The close connection between a spline and its control polygon is also
evidenced by the following proposition.

(12) Proposition. If the spline f G $ is continuously differentiab

<13) lei — r<r;o\ s ‘3°T15tkllil2llD2fll[ti+1--ti+s_-1l-
Pnoor. We know from (5) that

lajll : 5 'Dk_P°llfll[_tj+1--tj+k—1l'

Further, recall from the knot-averages B-spline property (see IX(38)) that
Ms? = Pills): an P E HQ-

le, then

Choosing, in particular,
P1= flfisl + (- - t}r)Df(t}i).

that is, the linear Taylor polynomial for f at tgfk, we get

l-115 -' flfirll =-' lA;i-lrlf —- Pll 3 Cfinstllf '- Pllliiii-¢i+l._1]
(14) 1 2 25 const '§(t_i+i'-1-1 T tj+l) -fllil-_-;+1-.t_-,=+|i-ll’
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(15) Corollary. For any continuously differentiable f G $,

l|f—Cs.if|| 5 ¢0I1S1=lt|”llD”f|l-

PROOF. Let t;,?,, 5 as 5 t;-‘_,_,,,, and let p be the linear polynomial that
agrees with f at t;T,. and t;5_,_1,,,. Then

1 ‘ll

y lf($) — P($)l S g (ti+1.rs —" '3;;rsl2llD2fll[t;,..r;:+,_,,]=-

while _

lP($)_—Cls,"1:f(9-ill 5 ma-X{|f(i§r-¢o')l= lf(¢§+1,s—%"+1)|} S °°I1St|l=l”||D2f||,

by the Proposition. I]

The proposition and its corollary are nicely illustrated in Figure IX(62).
Now, directly from the Curry-Schoenberg theorem IX(44),fithe spline

space‘ $ = $ii,i is a subspace of $,,-E for any knot sequence t that is a
refinement of the knot sequence t. In symbols: '

||I""'-n

(16) _ ‘ll C ‘l5 ==’;- $ —— $;i,1; C ilikl-2*.

This means that we can rewrite any f G $Aas a spline with a refined knot
sequence t and, by choosing the meshsize |t| small enough, be certain that
the control polygon C7,, -E-f is close to the spline itself. This has immediate
appeal when generating a computer graph of a spline since most graphing
programs only plot broken lines anyway. Have a look at Figure (17) which
shows the spline from Figure (10) along with its control polygons obtained
by repeated midpoint refinement in which the next knot sequence is
obtained by inserting into the current knot sequence all its knot interval
midpoints.

Of course, this requires a way, preferably fast, for constructing the B-
form of f G $ as an element of $,,I-Q from its B-form based on t. One such
way is provided by knot insertion, to which we turn next.

IF"!-

Kn0t insertion Any refinement t of the knot sequence t can be reached
by adding or inserting knots one at a time, as first proposed by Wolfgang
Boehm [1980]. We derive his algorithm with the aid of the dual functional
formula IX(54), much as we derived the differentiation formula X(12), by
comparing coefficients. There being nothing to calculate for the case I: =
1, we avoid certain mostly notational complications by assuming k: > 1
throughout this discussion.
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fl,-""‘

(17) FIGURE. After three midpoint refinements, the control polygon of
this spline is graphically indistinguishable from the spline.

Assume that Ii is obtained from t by the insertion of one additional term,
:1: Say, with '

. -E-_ _ ti, for ti <1 11:;
_ J ti_.1, £01" tj_1 > 17.

Then (see Problem 11), for any j,

(13) E-is = (1 - ¢7it($))t_i-1,s + 511-=(=1=)*§r,

with '

O, for :1: 5 ti;
h $._ t.

(19) wii, :9: |--> o.:ii,(m) = ——-ii-—, for ti <1 x <1 ti+i,_1;
'3;-‘+1:-1 _t§

1, for ti-_|_i,_1 5 :1:

the broken line that agrees with wii, (see IX(15)) on the interval (ti. .ti+i,:_1)
and is constant outside it; for ti = ti+i,_1, i't’s just .ti)_,_. I

We know from the dual functional formula IX(54) that the jth B-spline
coefficient for f G $ as an element of $5,-5- can be computed as I

<20) is = »\,-_,.,;;;f = i D“"f('o)
i
—Q |-

with ___ A A -
"Pit == ('5;-‘+1 — -) - ' ' ('5;.=+t-1 *- ')= 3-113}

while its jth B-spline coeflicient as an element of $ is

F“ -F . .
aj = Aj1k,t.f 1: 2 DH—1f(Tj)_

—
iQ.‘ 1-1

Now note that ihiii appears linearly in (20), hence all we need to do in order
to relate Gi to the oi’s is to express, if possible, 1,l2i-ii as a weighted sum of
the 1,biii"'s, substitute the resulting expression into (20) and multiply out to
obtain Eli as the corresponding weighted sum of the ozi’s.
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For this, note that

,,';'_k : "/1;-,'.I== if t_-j-1-it--1 § 93;
J 7lbj—1,i:1 J: S .

Hence, correspondingly, 5i = ozi or = cei_1, respectively, for these cases.
There is therefore some thought needed only for the case ti < 9: < ti+i,_1.
In this case, we look at the particular weighted sum

w1‘kJ—1.k + wflkik = (*5i+1 — ') ' ' ' (t_'i+l=—~—‘2 " ‘)(w1(t3i -' ') + w2(t;r+k—1 " ‘ll-
-|I'-"||-

This agrees with il-ii, exactly when ,,

(‘w1('5i*')+ wz (*i+k-1 "" ‘ll =(="1'-')=
that is, when

wi = 1 — mi-i,(:.r) and wg = u:ii,,($).
:"""nBy using wii, instead of wiii, we obtain the formula

(21) X, 1: >r,,,,_i = (1 _ o,-,,(s))i,_,,,, + o,-,,(.i.—)>.,,,, 3.11 3',
that covers all cases. This proves the following.

(22) B-spline Piloperty (xi): Knot insertion. (VV. Boehm [1980]) If
the knot sequence t is obtained from the knot sequence t by the insertion of
just one term, :1: say, then, for any f,,G $, E3. aiBi_i,,i := f =: 2,, §iBj,,,,-;-
with I

Si = — Qi:,l;(CB))CJ5_i'_]_ + aJ”i'k(SC)C1!i',

The calculation (23) has the following pretty graphical interpretation
(and is usually so described'in CAGD); see Figure (26).

-|. A

(24) Corollary. If the knot sequence t is obtained from the knot sequence
t by the insertion of just one term, then, for any f G $, the vertices Pi =

Eii) of Ck-if lie on Ci,,if, that is, '

crii-r<?;-u.) = cu.ir<'a.). an j-
In other words, the refined control polygon can be constructed as the broken
line interpolant at the sites (ti?) to the original control polygon.

PROOF. By IX(-'38), the particular spline p : zr i—r- at on [a . . tr] has the
numbers t;?,, as its B-spline coeflicients, hence (22) implies that

oo e = <1 - a=i<i=>>e-1+ a-i<i)e. all
(with P, = (i;:,o,-), all j). |:\
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ii-1 113 li+2
s--l-—-e

P-_.. J 1 ii

ti+1 '
Pi CB

33.
iii

o

Fl

t,--2 -. [
“ ti+3

(26) FIGURE. Insertion of the point :1: = 2 into the knot sequence
(0,0,0,0,1,3,5,5,5, 5) with it = 4 produces the heavily
drawn control polygon from that of Figure (10).

W. Boehm [1980] already points out that, for ti < :1: < ti.|.ii_.1 and
with j = r, the calculation (23) is exactly the one for a.i.2]:r:) in X(24),
the first step in the evaluation of f G $ at the site 2:. More than that,
when (22) is used to insert :r it —— 1 times, then the calculations carried out
are exactly those of the first algoritlim in de Boor [1972] a11d described
in Chapter X. This conforms with the fact that, with ii the knot sequence
obtained from t by inserting :1: exactly as many times as are needed to have
ti < ti+1 = 11? 5 t:i+l=—1 < ti+ki i,

Bi I=-"' Bjikzh

Iii‘

is the only B-spline of order It for the knot sequence t that is not zero at
st hence must equal 1 there, and therefore we must have Ei = for the
corresponding B-spline coefiicient for f G $,,-,-2-.

\/3fi3tlOI'l diminution It is customary to denote the number of sign
'" b S"o: To be iecise S"or is the largestchanges in a sequence or == (oi), y . p" ,

integer r with the property that for some 1 5 ji <1 < j,..i-1 5 rt,
o:i,o:i,+, < 0 for i = 1,...,r.

-in-3-—-Z-$-
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(27) 1Lemma. (Lane EL Riesenfeld [1983]) If Er is the B-spline coefficient
sequence obtained from the coefficient sequence or for f G $ by the insertion
of (zero or more) knots into t, then -

S"'E'i 5 S_o:.

PROOF. It is suficient to prove this for the special case of insertion
of just one knot. In that case, though, it is an immediate consequence of
Corollary (24). E]

One denotes similarly, for a function f, the number of its sign changes by
S“ f and defines it, as the supremum over all numbers S'(_f(r1), . . . , f(r,-)) ‘
with .r arbitrary and ri < - - - < r,. arbitrary in the domain of f.

(28) Corollary. (Schoenberg [1967]) The number of sign changes in the
spline function 2:3. o:iBi is not bigger than the number of sign changes in
its B-spline coeficient sequence or = (oi), that is,

l S_(ZCIi:Bi') 5 S—C.I.

i

PROOF. Set f := EaiBi. Insert into t each of the entries of a given
sequence r = (r1-< - -- < 1-,.) enough times to have each appear in the
resulting refined knot sequencet exactly k—1 times. Then (_f(r1), . . . , f(r,-))
is a subsequence of the resulting B-spline coeflicient sequence E: for f, hence,
by the Lemma,

' S_(f(7‘1),. . .,_f(r,-)) 5 s-a 5 S"‘o:.
' 1:1

With the formula X(12) for the derivative of a spline, this implies that
a B-spline of orderxk > 1 is unimodal in the sense that it has exactly
one maximum. More than that, it is bell-shaped in the sense that, for
j = 0,. . . , It -— 1, its jth derivative has at most j sign changes.

Actually, Corollary (28) is a special case of the following slightly more
sophisticated statement.

(29) B-spline Property (xii): Variation diminution. If f = 2:3. oiBi
and ri < < r,. are such that f(ri_1)f(ri) <1 0, all i, then one can find
indicesl 5j1 < <31,-5nso that

(30) C1!i,,Bj,(Ti)f(Ti'_)'> O 1001‘ ‘Z: = 1, . . . ,7‘.

In this particular form, Property is proved in de Boor [1976]1. But
the proof there is merely a refinement of arguments by Karlin [1968: Ch.
10, Thm 4.1 & Ch. 2, Thm. 3.2] in support of the above Corollary (28).
I-lere is a simple proof, based on knot insertion.
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PROOF OF (29). Let it be the refinement of the knot sequence t that
contains each of the sites ‘T,-__|_1/-,-__> —_= (Ti + 'T'i_|_1)/2 exactly I: times. Then
the index sets Ii := : §_ii,(Ti) 75 O}, i = 1,...,7", are pairwise disjoint.
Further, assuming without loss of generality that _f(T1) -< O, we must have
( ‘ ,—)l§j, > 0 for some ji E Ii all i. Thus

gtjigji (Ti) _f('T-5) > O £01‘ =1, . . . ,7‘,

with 3'1 <1 - -- < ji-. Inductive application of the following lemma therefore
finishes the proof. III

(31) Lemma. Let f =: 23, oi,-Bi and assume that, for some T1 < < T,.,
f('Ti)f('T'-i_|_1) < 0, all If there exist 1 5' 3:1 < < 1- 3 n+ 1 so that

"" A Ti)f(Ti)>-O for 'i=1,..-.,T,=3si
with 5: the B s line coeflicient sequence for f with respect to the knot' P
sequence t obtained from t by the insertion of just one knot, then there
also exist 1 $31 < <j,- $11. so that

CI_.,'iBj1. ('T'i'_)f('T'-5) > O fOI' = 1, . . . ,1‘.
..-lila-

PROOF. By (23), we must have cs,-53_.~_ > O for either j = ji — 1 or
j = Eli, while Bi(Ti) > O for both (since > O). Therefore, we can
choose ji E — 1,‘_'i-ii]-, all i, so that (32) holds, and certainly 3'1 3 -- - 5 ji.
since (ji) is strictly increasing. However, since cxi_._cx_i,+, '< O, all i, there can
be no equality here. III

B-spline Property is more precise than Corollary (28) in that it also
connects- the places at which the spline function f changes sign with the
places at which its B-spline coefficient sequence changes sign. For each 21,
the index ji corresponding to the site Ti must be “near” Ti in the sense
that B,-, (Ti) 75 0, that is, ti, <1 Ti -<' t,=,.|.ii, and also the coefficient oi, must-
be nonzero and have the same sign as the number f (Ti). To illustrate this
point further, suppose that the spline function f = E5 o:,iB,- has kc - 1
simple zeros in the open interval (t,. .. t,._|.1). It then follows that we can
find sites ‘T1 < < Tii all in the open interval (ti ..t,-+1) over which the
function f changes sign, that is, for which f(Ti_1)_f(Ti) < O, i = 2,. .' ., ls.
Property then requires the existence of it indices 1 5 3'1 < - - - < ji, 5 n
so that B5, (Ti) 75 O and cz,i,f(Ti) > O for i = 1,. . ., lc. But, since the It sites
‘T1,... ,Tii all lie in the same interval [ti .. t,..,_1], there are only ls: distinct
indices Tn for which Bi,-i(Ti) qé 0 for some i = 1,. . ., 1:, namely the indices
'r+1—-k,...,'r. Ccnsequent1y,ji = ('r+1 —-k)+(i—-1)=T—k+t, and so

a'31"—k+'i...lc(Ti) > O1 11--'1k1
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that is, the la coeflicients that determine the spline f on the interval [t,. . .
ti-+1] must strictly alternate in sign and with the same orientation as that
of f. If f is positive on the left end portion of the interval [ti . . t,..|_1], then
the leftmost coefficient for that interval, that is, the number cx,.._|_1__ii, must
also be positive.

V‘/e conclude that, for moderate I: (that is, for moderately small Diiioi),
the sequence or of B-spline coefficients (or, more precisely the control
polygon) for a spline function f gives a fair idea of the graph of f.

Schoenberg's variation diminishing spline approximation
We continue to assume that It > 1. Corollary (28) and Proposition (12)
form the basis for a very effective “shape preserving” spline approximation
method of much use in Computer Aided Design (cf., for example, Riesenfeld
[1973] or Barnhill & Riesenfeld [1974]). For a given function g on [a . . b],
this spline approximation is defined by

(33) Vg == 2 g(t;',,)Bi on [.1 . . b],
i=1 ."|.

with t* := (t:‘,,)'f the knot averages given in IX(39). From Corollary (28)
and the definition of S_g, we know that

(34) S‘ V9 5 $_(g(1I':.)) S 51;-
But more is true. By IX{38),

(35) . Vi = E for all straight lines E.

We combine this fact with. (34) to obtain the following description of
the shape-preserving or variation diminishing character of Schoenberg’s
transformation V: I

(36) S_(l/g — E) 5_ S‘ (g —_ E) for all E E I-142.

In words, the spline approximation Vg to g crosses any particular straight
line at most as _many times as does g itself. This is illustrated in Figure
(10) for the special case that g happens to be the control polygon for Vg.

This suggests that V maps nonnegative functions to nonnegative func-
tions, nionotone functions to monotone functions, and convex functions to
convex functions. A. proof of these claims is immediate: Since the B-splines
are nonnegative, so is Vg for nonnegative g. Therefore, if g is monotone
nondecreasing, then, by the formula X(12) for the derivative of a spline,
DI/g is nonnegative, hence Vg is monotone nondecreasing. Finally, using
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(37) FIGURE. Schoenbhrg’s variation diminishidg (and smooth) cubic
spline approximation to the broken line sketch of a curve.

that differentiation formula twice, if g is convex, then D21/g is nonnegative,
that is, Vg is convex.

Also, Vg provides a local approximation to g. The function Vg on the
interval [ti . . ti+1]_ depends only on the values of g at the it “nearby” sites
t:‘__,,+,‘k, . . . ,tI,,. In particular, if the points (t}‘_,,_H-I,,,g(t:'_,,+ -‘,,) ), j =
1, . . . , ls, lie on a straight line, then I/lg on the interval [ti . . ti_|.iil coincides
with that same straight line. '

These various proper ties of Schoenberg’s variation diminishing spline ap-
proximation are illustrated in Figure (37) which shows a broken line sketch
g of some shape (see Figure (10)) and its smooth cubic spline approximant
Vg. The knots of the spline are indicated by >< ‘s.

Warning: Vg is a shape-preserving linear approximation, hence V is, in
particular, a positive linear map and, for that reason, Vg cannot be a very
high order approximation. If g has T continuous derivatives for some T 2 2,
then

lls — VQII 1'5 ‘-‘~<>"I'1P=1=g.r-=|'¢I2
and no exponent higher than 2 can be put there, even if r is greater than 2;
see Example XII(11). This means thatc Vg is not as good an approximation
to a smooth function as splines are capable of providing, as shown in the
next chapter.

Ir
lProblems

1. Sharpen (3) in case ti = :13.

2. From (5),
1':

(ill) lail g 'lll 2aIIB.'i.3ll[f-i'+i--ii+el

with '7 = 3 the best possible constant.
(i) Prove that, if o:i_1, oui, czi_|_1 all have the same sign, then, (*) holds
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even with '7 = 2. (Hint: Make use of Problem IX.8.)
(ii) What is the smallest value of '7 we can choose in (*) in case ai_1 =

Cl!-if (I-1+]?

3. Verify that Corollary (8) carries real information by the following
numerical experiment: Calculate [|for the spline of order 20 with a bi-
infinite uniform knot sequence (say, with knots at the integers) and with
B-coefficients ozi = (—-)i, all i. I-Iow biga "y must you choose to have |oii[ 5
"y[|f|| be true‘? Now change just one coefficient from (—)i to (—)i + .0001
(that is, in the fourth significant place) and calculate the resulting change
in f In what significant digit did fchange‘?

4. Prove: If f = 2,, o¢iBi,3 (that is, f is a parabolic spline), then f is
monotone on [_t,.. .ti] if and only if the corresponding B-coeflicient sequence
(c:zi),f_:% is monotone. (ii) Prove that does not generalize to higher order
splines by constructing a parabolic spline that is positive on [t,. . . ti] while
some of the coefficients a,._1,. . .,o:i_2 are negative. To what an extent
does generalize to higher order splines?

5. Verify B-spline Property directly for the coefficients found in
Example IX(58).

6. Let f = Z:_,criBi_ii; then Df = 2:,-*1:-:§2)Bi,,|,,..1, by X(15)-X(16). Prove
that S" (orm) Z 1 +S" (or), incase or has only finitely many nonzero entries.
Then conclude that the B-spline coefficient sequence for the jth derivative
of a'B-spline has exactly j strong sign changes.

7. 'Prove that Vg = g at every ti with ti = = ti+i,_.1, and, in
particular, at a and b.

8. Verify that, for n = -it and [a .. b] = [0 . . 1], Vg is the Bernstein
polynomial of order lc for g (see IX(10)).

9. 'Generate the spline curve of Figure (37) with the aid of BVALUE from
the function table '

- T 4 13 3I . 0 1/3 /3 3 / 5
(»r)[2[1/2[9/2[5[ 0 [5/2'9

10. Prove that, for any continuous f E $ with B-spline coefficient se-
quence oz and any :1: G [ti ..ti_|.ii], [oii — f(:r)[ 5 const[t| ||Df|[[ij__iJ.+,,] for
some const that is independent of f or t.

11. When the single knot Q is inserted into t to obtain the knot sequence
t, then, for some i,

55:, fOI' 5: ‘ll;

:E_i]' = gr for : ll;
tJ'_1, £01‘ ‘P’ ‘ll,

with i uniquely determined by the condition ti_1 -< Q < ti if that condition
obtains. In the contrary case, there are, ofihand, several choices for i. Does
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1t matter which one one chooses‘? Test this question by proving (18).

12. Work out the details of knot insertion for the special case ls: = 1,
being sure to identify the places in the text where the assumption It > 1
was explicitly needed.

13. (Blossoming) Consider the dual functional formula IX(54) as it de-
pends on t, and as a linear functional on _II.,;ii. Specifically, prove the
following.
a) 13- is a function of t,i_|_1, . . . ,t,.-_|_ii...1 only, that is,

A3; -'= }t(l-'j+1,'. . . , IiJ'_|_,l;_1), 3-II j, '

for a certain linea_r functional A on II.i;ii parametrized by k— 1 variables.
(Recall that, for p G Iliiii, /\_,:p is independent of Ti.) _

(I3) A lS symmetric, that lS, )t(-91., . . . , S,|i._1) = )\(S.n-(1), . . . ,3.“-(,1,-,__1)) f(_)1‘
every permutation 11' of order it — 1.

(c) A is rnultiaffine, that is, an affine function of each of its It —- 1 argu-
ments. (To recall, a map f : V -+ W is afiine if f(om + (1 —- o:)w) =
o:f('u) + (1 -— o:)f('w) for all 1:, w E V and all real scalars 0:.)

(c) For any at G IR, )t(CU.,1IT, . . . , 9:) --= [:12], that is, equal to evaluation at :17.
It follows that, for each p E Iliiii, the scalar-valued map blossom(p) :

(s1,...,sii__1) 1-1» A(s1,...,s,:i_1)p is symmetric, multiafline, and satisfies
bl ssom( )(:r:,..,:r:) = p(x) all at. This identifies blossom.(p) as the po-O P =-
lar form or blossom of p, the latter a term introduced by L. Ramshaw
[1989] who uses this insight for an alternative approach to knot refinement
that has become very popular in CAGD; These observations, using the
term ‘polar form’, were already made by de Casteljau in the 60’s (see, e.g.,
de Casteljau [1963]), but did not become public knowledge until Ramshaw’s
work . _

.|l.li|'|>.l|_

\_iI-l_I|-|—n-Q
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Local Spline Approximation and the
Distance from Splines;
NEIWNOT

In this chapter, we use Schoenberg’s variation diminishing spline approx-
imation and other local approximation schemes in order to establish how
well a function of a certain smoothness can possibly be approximated by
splines of a certain order. Such results provide an ideal against which one
may then measure the actual performance of a specific spline approximation
scheme. ' ‘

We continue to use the setup of the preceding chapter. We have a knot
sequence t = (ti)'{‘+"“ with ti < ti_|_i,, all i, and ti == = ti, = a, t,i_,.1 =
---=t,.i_|_i, =bso that

[a . . b] = [tk ..t,i_,_1].

We are interested in approximating a certain function g on [a. .b] by splines
of order ls: with knot sequence t, that is, by elements of $;i_i. We use the
abbreviation

V IIQII == G1g_gg'-bIg($)|
and the modulus of continuity

wls; h) == m@~1<{|.v($) - 9(y)| I II —- 1/I 5 hazy 6 [11--bl}
of the function g, both familiar from II(18).

The distance of a continuous function from $;,,___i Choose 1-1 5
- - - 5 Tii in any way whatsoever in [a . . h] and consider the kth order spline
approximation Ag to the continuous function g on [a .. h], constructed
simply as follows: F

I["l= 92:-(1) .49 == (¢,)B, as [Ct . . b].

The transformation A reproduces constants, that is, Ag = g in case g

145
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is a constant function, g(:.r:) = c for all as in [a .. b]. This is so because,
by lX(37), B-splines sum up to one. This property, together with the fact
that B-splines are non-negative and have small support (that is, the rest of
Property IX(iv)), make it very easy to establish a useful estimate for the
error in the approximation scheme The argument is entirely analogous
to the one given in Chapter III for the error estimate IIl(18).

Take a site :i": in some interval [ti . . ti-_|_1] in [a . . b]. Then

' J
(A-Q)(11=)= 9('»"-.-:)Bi(f-'1)

1I'.=_']'—|-1—l\2

(see Figure IX(27)), while also

g(i')=9(5=) i Bi(=-i=)= i g(51)Bi(55)
i=j+1-in i=j+1--it

since B-splines sum up to one. Therefore

J‘

9(fF=)-(A9)(=5-’=)= Z (g(£)_‘g(Ti))Bi(£)1
1'.=j+1-—k

and, taking absolute values on both sitlhs and using the non-negativity of
the B-splines, '

he) - (Ag>e>| 5 2 lye) - g<-.»~.>\B.(e>
i=_'i+1——k

Sma=<{l9(i'=)-g('n)| =2‘ —k <i5J'}-
.-‘

Now choose the Ti’s appropriately, each Ti “near” the support of Bi. For
instance, we might choose

T-1"-=t1f_+k/2, Tl-:ll..,....,'l"l»

where we declare ',-_

. ti-+r~=/2 == (t-1+0-=-11/2 + *i+u~=+1>/2) /'3
in case k is odd. Then i _

mfl1<{\9(i)—9(T.-.)\=i—k <¢-52'}
- 5 max{ — g(y)[ : :t,'y E [ti_|_1_i,/2 . . ti-+1] or :t,y = [ti ..ti_,_i,i2i)

3 wly; kltl/2) if
S l(I= + 1)/2lw(9;\1=\).
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(using the monotonicity and subadditivity of ::n(g; -), see Problem ll.6), with

|t| := max Ati _
I

the mesh size of the knot sequence t, as before. We conclude that

i llg — Agll S [Us + 1)/2l=~*(g;|1=|)
and therefore

(2) dist (Q, siii) == min{ |[g - s|| = s e $,._i} 5 constiiu:(g; |1;|).
If we choose Ti = tffk = (ti_|_1 + + ti_|.;i_1)/(ls —- 1), all i, then the

transformation A becomes Schoenberg’s variation diminishing approxima-
tion method V XI(33). A more careful analysis by Marsden [1972] of the
error g — Vg produces the following striking estimate:

<3) d1s<g.$...> s ||9—I/all £2-=~=(g;mi11{ \/%‘2.|1=|\/<16/12>}>  
which brings in the order of the spline as well -as the mesh size |t| of the
knot sequence and so establishes a kind of connection between the estimate
(2) and Jackson’s theorem II(22).

The estimate (2) shows that the distance of any continuous ‘function g
from $1.3; goes to zero with the mesh size This says that we can approx-
imate continuous functions arbitrarily well by splines of a fixed order if we
are willing to use many knots. The estimate shows further that dist (g, $ii,i-,)
goes to zero at least as fast as the modulus of continuity o..=(g; of g at
|t| goes to zero with It is possible to show that this estimate is sharp
in the sense that, ‘for some continuous function g and some sequence (t) of
knot sequences with —-+ 0, the best approximation error goes to zero no
faster than the bound in The reader is reminded of the discussion of
broken line approximation with a uniform knot sequence on [~41 . . 1] to the
function g(:.r) = i/H in Chapter III (see 1n(19)) and taken up again in
Problem IIl.5 there. To recall, for g(.."c) = \/[:.'.-.:_|, ;..:(g; h) = hl/2 while, with
h -= 2/N and with ih, i = —N + 1,. . . ,N—— 1, the interior knots in [-1 . . 1]
for our spline, with I2 broken line interpolation,

dis (9~.~$2,1=) 2 ng - tan/2 = <~/F/4)/2 = |1=|*/2/8.
In this example, the continuous function g has a singularity, and this is

typical for functions for which the bound (2) is sharp as far as the order
in |t| is concerned. For smooth functions, that is, for functions with many
continuous derivatives, much better estimates can be given. '
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The distance of a smooth function from $;,,,i, can be bounded in
various ways. I-Iere is a quickie.

The distance of the function g from $ii,i is the same as the distance of
the function g -- s from $ii,i in case s is itself a spline of order ls: with knots
t. In symbols,

dist (g, $ii,i) = dist (g -— s, $i=,i) for all s E $;i,i.

Therefore, by (2),

dist (g, $ii,i) 5 constii a.=(g —- s; for all s E $ii,i H C'[a . . b].

Further, from II(20), '

w(g — S; h) 5 h[[Dg ~— Ds][

in case g and s are suficiently smooth; having them both piecewise
continuously differentiable suffices. We conclude that

dist (g, $ii,i) 5 consti, |t| [[Dg —— Ds[| for all s E $,:i,i O C[a . . b]

and, on choosing s so as to make this bound as small as possible and
recalling from X(9) that

$.le--1,1-. = {Ds : s E $i,_inC[o..b]} on [a..b],

we finally obtain the estimate

(4) dist (g, $ii,i) 5 consti, [t] dist (Dg, $;i__1,i)

in case g has a piecewise continuous derivative.
Of course, we can use (2) again, this time to estimate dist (Dg, $';i._1;i),

in case Dg is continuous and so get

(5) dist (g, $,:i,|;) 5 consti, |t[o..1(Dg; l

with consti, := constiiconst;,,_.1. If the function g is even smoother and if
ls —— 1 > 1, we can now repeat the procedure and find that

dist (Q. $I¢,t) 5 constli \1=\2w(D“9; ltl)

with consti: := consti,consti,,_2. Proceeding in this way, we obtain the
analog of .lackson’s theorem for polynomials (Theorem II(22)).
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(6) Theorem (Jackson type). For = 0,... ,1: -—- 1, there exists constiihi
so that, for all t = (ti)'i"H° with

(7) ti:---=tii=a<t;i.|.15---<b=t.,i_|_1=~~-=t,i_|.ii

and for all g E C'(~l)[a . . -‘1],

(8) dist (g, $ii,i) 5 constigi |t[5la:(Djg;

In particular, for j = k -— 1, we get

(9) dist (Q, $,,_i) 5 consti, [t[k[|Dkg||
in case g has ls: continuous derivativeg (since then a=(Dl°_1g; h) 5 h[|D"°g||).

The theorem states that the distance of a smooth function from $,:i,i.
goes to zero at least as fast as the kth power of the mesh size This
order cannot be improved except in a trivial case in which the distance is
obviously zero, as the following theorem shows.

(10) Theorem (Saturation theorem). Suppose (§(")) is a sequence of
breaks sequences satisfying the following mixing condition: For some
positive number p and all n and all interior breaks £5") there exists ii. > n
with dist (§("),§(fi)) > p|§(“)|. (This condition is, for example, satisfied by
the sequence of uniform partitions.) Then dist (g,l_I_,:,,I_,3ia>) = o (|§("')[*'°)
implies that g E l_l.;ii.

For a proof and further such results, see DeVore 8.: Richards [1973].
Theorem (6) only tells us at what rate a best approximation to a smooth

function g from $;i,i converges to g as we make the mesh size [t] small.
It does not tell us how to construct such an approximation. The reader
may feel that the proof of Theorem (6) is based on a construction, namely
the approximation Ag = z,g(Ti)Bi to g that gave us the bound In
response to this, we illustrate by an example the important fact that the
error in the approximation Ag to g is, in general, no better than O (|t|2)
no matter how smooth the function g might be.

(11) Example: The degree of approximation of Schoenberg's
variation diminishing spline approximation We take the interval of
interest to be [a . . b] = [0 . . 1], take the knots in (0 .. 1) uniform, that is,
t;i_|.i = ih, i = 1, . . . ,N — 1, with Nh = 1, and consider Schoenberg’s spline
approximation

V9 = 9(*ia)Bi
-t

to the specific function g(:r) = I2. Clearly, this function g has derivatives
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fill Cl it is even analytic, and so offers the transformation V a fairof or ers,
chance for showing just how well it can approximate to smooth functions.

Take It > 2. Then, on the interval [0 . . 1], our parabola g agrees with
some spline of order It whatever knots t, we might pick. We compute its
B-spline coeficients directly from IX(55):

___ ii-—3‘Dk-—3,"b_k(t1 2 .
ori = g(tI;,,) + (since D29 == 2)1)‘ .

and so conclude that the error on [0 . . 1] is given by

9 - Vg = ZeiBi with ei === (-)’=-=*D*=—%z».,,(t;',,)2/(la - 1)!, all a.

Further,

f
I.

k-—-1
-—1 ls:-2$1‘-r=(='B)= [<-er + (Zta+a)(—I)

i=1
k—2 l:—1

+2 Z
j'=11"=j+1

* —— “'1: -/(ls - 1), we obtain

t.£+_.it.i+i-(T-S'3r)k—3 + .

Therefore, using the fact that tik - Big, i.|_i
l

'._.3 (k— l." is--l

---—"=-———— = --1: e+- we-1>:.. - ...,— 3) :1: I 2( )k lib ( ) 2 ii. ll-[ 1:) ZCZ
(k—-1)! 2 *’= 2 .=

and so

1=2(t;',,)2 5 -1 + -Nil-I ?r'?r'

_ 1 k—1

-3) - Z1:?..~/(rt - no - 2))
'=I

a = (—>'=-=’-».:»§.’:*%:..>2/(Is - 1)! i

k—1

= [rem — Z rt,-/<1= - 1>1/ <1: - 2).
.i==-1 T

d k t se uence t with mesh size [t] = h, thisFor a uniformly space no q
expression simplifies. If ti_|.i = ti + jh,_' j = 1,. . . ,1: -— 1, then

km’ T1) k - 2) = —h2k/12.
2

5-i,=[(-lgli) --h2 _
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We conclude that the error in the approximation Vg = E, g(tfk)Bi to
our parabola g is given by

Q - V9 = $5-iBt

with
ei=-—h2lc/12 for i=lc—1,...,n—lr:+2

in case of a knot sequence t with uniform mesh size h. on [0 ... 1]. But
this implies that the error is constantly equal to —h2k/ 12 on the interval
[t2(i,,__1) .. t,i_|.1_ii]. -In particular, the error is no better than O (ha) even
though our function g has infinitelymany derivatives.

On the other hand, the error g—Vg is always 0 ([t|2) in case the function
g has two continuous derivatives. This can be seen as follows: Take T E
[ti ..ti_|.1] and let p be the straight line that agrees with the function g
at the site :i: twice, that is, p(:.r) = g(.."'E) + g"(:i‘:)(s: -— Therefore Vp = p,
hence

' 9—V9=9—P-V@—Pl
But, since the function g — p vanishes at zit, it follows that the error at T is
given by

§(f'-'5) — (V9) (51) = -We —P)(i) = — i (Q —P)(tik)Bi-
i=j-I-1--it

Consequently,

1 lglil "T (V9) iii] S. ma-Xi l(9 — Pllfllll 1 t;+1—k,k 5 -"'5 5 ti:-= l-

Now, the function g—p vanishes twofold at Lt, therefore is of order ha in any
interval of length h. containing :i:. Precisely, we have from Theorem I(14)
that

i(g — p)(w)| = (I - rF=)2ll==% it I191
and therefore, with I(vii),

lglil — (V9) (ill 5 max{ (l7;i+1 _ '3;+1-aw. (tit "* tjlz lllgnll/2
5¢0nst:.l1=|2ll9"ll-

We conclude that

(12) ||g - Vg[| 5 constii|t|2|[g”|[ for all 9 e c<2>.
E]
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Local spline approximation schemes that provide the best possi-
ble order Of approximation The argument for the [t|2-convergence of
Schoenberg’s approximation Vg to a smooth function g just given contains
a very simple idea for the construction of spline approximation schemes
that realize the potential order of approximation to smooth functions as
expressed in Theorem We take the time to discuss this idea in some
detail because such schemes also allow us to. gain some insight into the
effect of knot placement on the achievable accuracy of approximation.

Suppose we constructed a spline approximation Ag in $,:i,i in the form

(13) A9 = i(#i9)B»=:
. i=1

with each pig a number that depends linearly and continuously on the
continuous function g, that is, pi is a continuous linear functional on C'[a. .
b]. This means that

#i(9 + f) = my + /hf. #i(@-'9) = £1/J49

and that

(14) l/eel 5 ll/all ll9ll £01‘ all 9 E ole - - bl

with := sup{ [pig]/[[g[| : g E C[a. .b] } afinite constant, also called the
norm of the linear functional pi. It then follows that our approximation
scheme A is linear, ' -

A(o:g)= o:Ag , for all o:€IR., g€C[a..b],
A(g+f)= Ag+Af, forall f,gEC'[u...b],

and is continuous or bounded, that is,

(15) ll/‘ill == Sup llA9ll/ll9ll 5- maxi!/all < asgeC[e..b] 1, M

since, for any site at and any function g,

” |(Ag)<=-al s. mielael s (m,i><\\a.\\)|\a\l
by XI(3) and (14).

The approximation (1) is of this form, with pig = g(Ti), all i, hence
[[p.i = 1, all i. More generally, one might choose _

K

(16) Hag = Z:i3tjQ('l't3")
J'=1
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with Tii sites in [a . . b] and flii certain specified real numbers. For such pi,
we then have 5 Z5, |fi’ii|. Even more generally than this, one might
choose

b

<11‘) /ae= / go) dM.<1=>
with Mi a function of bounded variation, that is, the difference of two
monotone functions and the integral a Stieltjes integral. This is, in fact,

I

the most general form for such a number pig and we mention it here only
for the sake of completeness. A special case of (17) is the choice

(18) my = fl 'mi(-”'I)9(=1=) d==

for some integrable function mi, that is, some piecewise continuous function
. . ami, 1n which case |[pi[| = fa |mi(:t)[ dzr.

Suppose now, secondly, that, for each i, pi has its support in the interval
[ti . . ti_,_;i], that is, in the support of Bi. By this we mean that (14) can be
strengthened to -

(19) l/eel 5 ll/ell llgl [¢...i,+i] for all 9 E <3'[~'-1- - bl-
If pig is of the form (16), then it will satisfy (19) provided Tii E [ti . . ti+i,],
all j . If pig is of the form (18), then it will satisfy (19) provided mi has
its support in [ti .. ti_|_i,], that is, provided mi(:r:) = 0 for 1: ¢ [ti . . ti_|.ii].
A different way of stating that the linear functional pi has its support in
[ti. .ti+ii] is to say that pig = 0 whenever the function g vanishes identically
O11 [Iii . . ?l._.j_|_j,-_.].

The resulting spline approximation Ag = z,(pig)Bi is then local in the
sense that, on the interval [ti .. ti-+1], the approximation Ag to g depends
only on the values of the function g oh the interval [ti-_|.1_;i . . ti-.|.ii]. In fact,
we know that on [ti ..ti-+1], .

If 3'
Ag: Z (pig)Bi and Z B,=1, Bigu, all t,

't=_'f-I-I—-1: 'I'.;-_]i-I-1.--it: -

therefore, ( 19) implies the bound

(20) llAgll[ti..ti+1] g ll/Jill)llgll[tj+1--.I=..t_i+.I=]T g E Ola’ ' '

In particular, the approximation Ag vanishes on the interval [ti .. ti+1]
identically in case the function g vanishes identically on the slightly larger
interval [5_i'+]__k_ . . 5J'+k].
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The last ingredient for our successful local spline approximation scheme
A is the requirement that it reproduce polynomials of order k, that ls,

(21) Ap = p for all p E l'l._-iii.

Schoenberg’s transformation V, for instance, reproduces straight lines and,2 llin consequence, we were able to prove that llg - Vg|] = C7 (|t| ) for a
sufficiently smooth functions g. The combination of (20) and (21) allows
us to prove, in the same way, that ll9 -Ag|[ = (9 (|t|l‘).

(22) Theorem. Let Ag := Z::"___1(pig)Bi, all g E C[a . . b], with (Bi)? the
B-spline basis for $ii,i, t satisfyihg (7), and pi a linear functional on the

' ' ' ' f f tion Acontinuous functions C [a . . b] satisfying (19), all t. I. the trans orma
reproduces 1'I<ii, that is, if Ap == p for all p E 11.5,, then

(23) [[g—Ag[[ 5 (1+mp.x[|pi||)constii|[D"°g[| [t["°, for all g E C(l°)[a. .b].

PROOF. For any polynomial p of order ls, we have, by assumption,

9-A9=Q~—P—-(AQ—P) =9—-P—A(g—P)-
Therefore, from (20),

_ Agllltj--tj+1] s — pllitj-.tj+1] + -_ pll[t_i+1_i.=..t_i+i¢]

5 (1 + mgr llmll) IIQ — P|lrei._...e..1

Now choose the polynomial p of order ls to make g -— p as small as possible
011 [ti;_|_1_,|i . . t_i_|.,li] t0 get

I

-T S + (gI]:['(k)[ti+1_i,...tj+kj1
I. '

'.\

and our assertion (23) follows from this by a reference to II(16). E]

It is not very difiicult to construct such local approximation schemes sat-
isfying (21). But, to make them theoretically and practically useful schemes,
we must construct them in such a way that the number maxi []pi[[ appear-
ing in (23) or (24) can be bounded independently of t. Only then can such
a scheme claim to achieve the best possible order of approximation. This

akes the construction of such schemes something of a chailenge.m
The first such scheme can be found in de Boor [I968], with pi of the form

k

#19 = Z:l3ijQ('="ijl
il=1l‘,

‘i

‘fl

I.

and Til, . . . , Tiii the extreme sites of the Chebyshev polynomial of order ls
1-.
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for the largest interval in [ti_|.1 .. ti_|.ii_.1] of the form [ti .. ti_|_1], while the
weights [6-ii are so chosen that Ap = p for all p G lT<;i. For it = 2, this gives
A as- broken line interpolation (of Chapter III) (cf. Problem 2). For ls = 3,
this gives

"Ii
Ii.

M=
III!-

[\I.lI—l
= - ( - §(ti+1) + 49(ti+s/2) — §(ti+3))B-23,3

with_ti_,_3/2 := (ti_|_1 +ti_|_2)/2 (cf. Problem IX.8). For ls > 3, the weights flii
depend on t, but the choice of the sites ‘Til, . . . , Tiii in a largest interval [ti . .
ti_|.1] in [ti_|.1 . .ti.|.ii._.1] ensures that the number maxi can be bounded
independently of t. Also, it can be shown that this scheme reproduces not
only l'l._»_-ii but all of $ii,i (on [a . . b]); see Problem 3. In this connection, see
de Boor [1976]2 for a discussion of pi satisfying piBi =-- (iii, all j (which
would imply that Af = f for f E $k,1.).

The quasi-interpolant of de Boor & Fix [1973] does not quite fit the
pattern. It is of the form

(25) A Q9 I= Z (Ari?) Bi
-i=1

with Ai the dual functional IX(54). The scheme is therefore local, it re-
produces l"l._-_-ii since it even reproduces all of $ii_i on [a . . b]. But it fails to
satisfy (14) since it is not even defined on all of C [a . . b]. Still, an analysis
of the error g — Qg can be carried out along the above lines, as long as g is
a smooth function; see de Boor & Fix [1973].

The quasi-interpolant Q, and similar schemes discussed in Lyche 82: Schu-
maker [1975], provide a local spline approximation to a smooth function g
which simultaneously approximates the function g and its ls -— 1 derivatives
to optimal order, at least for knot sequences that are not too nonuniform.

(26) Theorem. Let Qg be the quasi-interpolant to the function g as given
by (25), with Ti = ti_,_;,,/2, i = 1,...,n. Then, there exists constigi, j =
0, 1, . . . , ls — 1, so that, for all t = (ti)"f"+k satisfying (7) and for all functions
g E C(l°"'1)[a . . b], that is, for all ls -— 1 times continuously differentiable
functions g on [a . . b], the error in the quasi-interpolant Qg for g satisfies

llDj9 ~— DTQQII S <=<>I1S'11=e=('1'??»1=)(2’l_'°)*ltlk7j"1w(Dk_19; ltl)
forj =0,...,ls—-1.Here, Tl’t|;I=H1El.}C{Alli-/All_.i1[T-—-S[= 1,ls 5 T,s 5n}
is the local mesh ratio for t, and this ratio enters the error bound only
for j > ls/2.

l A proof can be found in de Boor & Fix [1973]. Also, see Problems 7 and
8 for removal of the mesh ratio dependence.
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We mention, for completeness, the theoretically important fact that, for
k > 1, it is possible to choose the linear functionals pi in our approximation
scheme A so that

},L-5B3; = 5-,;J;, all j,

while pi is of the form
/1&9 = Z5ijQ(Tij)

j

with 11,; certain sites in the interval [t,_|_1 ..t,_|_;,,_.1] and Z3. |,B.;,| 5 Dkjm.
This fact can be found in de Boor [1976]2; it is equivalent to B-spline
Property XI(x) (see Xl(4)), where specific values for the constants Dhm
can be found. It follows that

heal s D.=;...||g||[..........-.1 for an Q e Ola . . b1
while, with this particular choice for the /.L,;’S in (13), we have AB,-, =_ B1,
all i, hence our approximation scheme A reproduces all of $,:,,,|;. For this
particular scheme, we then obtain the following specialization of (24):

— A-gll[tj..tj+1] ..€ + (gl 1—'['<:k)[tj+g_...]¢..tJ+,|¢_.1l'

GO0Cl l<fl0t placement The spline approximation schemes discussed
in this chapter are local and so allow us to gain some insight into the efiect
of knot placement on the achievable accuracy of spline approximation. We
have used the resulting bounds so far only to describe dist (g, $1“) 1s terms
of the (global) mesh size |t| = max, Ati, for example, the bound (9) - -

dist (g, $;,,t) 5 const;,_,|\D'°g||\tIi°

or themore elaborate bound in Theorem (26). But we have in (24) ande(27) some specific information about how wemight choose t so as i1_()_II13l£
the bound in (24) or (27) small.

If we combine (27) with lI(16), then we obtain the bound

llg _ Agllltj--tj+1l 5- C0nStklIjlkllDkgllIj i

Ij the i.I1tBI“VEI-l. (_T'Jj_|_2__k j_|_k__1 EL j . ., I

influence this bound 1n a benefic1al way 1n case the kth der1vat1ve o
varies eatly in size by choosing I5 relatively small in areas where \D'°

t l nd \I \ its length Clearly we can

Q
9

l
gr

is relatively large. But exactly how this should be done 1s not clear.- 1-1+1
E act minimization of the bound in (28) as a. function of 1: = (Q),X

t difiicult If we are w1ll.1ng to exert(satisfying (7)) for fixed n is actually qui e .1 I f

that kind of effort, then we are better ofi attackmg directly the problem
O
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determining t (satisfying (7)) for fixed n so that dist (g, $;,,|,) is as small as
possible. But this is not an easy problem and repays a.ll that effort only if
dist (g, $;,,|;) is quite sensitive to the precise location of some or all of the
knots and it is important to approximate the function g well using a spline
with as few knots as possible. In any event, we cannot even attempt to find
such optimal knots unless we know the function g well enough to evaluate
|| g —— f (see Example Xll/(34) for one such attempt).

In typical practical situations, the function g is only known approxi-
mately or known implicitly (for example, as the solution of some differential
equation). Still, we would like to have some scheme of choosing the knot
sequence t appropriately. We cannot hope to place each knot optimally. We
can only hope to obtain an optimal knot distribution or density. This being
so, we now take certain liberties with the placement of individual knots
in order to make the analysis easier. (Results by Barrow & Smith [1979]
serve to justify this simplification.) We group the knots in the open interval
(o . . b) into groups of it — 1 each and let each such group coalesce into a
knot of multiplicity ls: -— 1. If the number of knots for the knot sequence we
have set our hearts on is not an exact multiple of k -- 1, then we simply
bring in a few more. Let

.

be the distinct sites among these grouped and coalesced knots in the open
interval (o . . b) and set (1 := o, Q.-,.,,__|.1 := b. Then, on [o .. b], $,:¢,1; now
coincides with l_I<~_;,,(; F1 Clo . . b] = l'l<;,,,(;,1, and (28) becomes

— A-gll[(j..(j+1] S c0nst'kll'Dkgll[Cj.-C_-;+1]lA<f.Illlk! = 11 ‘ I 7n"

This suggests that we place (2, . . . , Qm so as to minimize
I‘

<30) my||D*g||[<...<...1|Ao|*-
Since

so. m == l|D‘l?.9|l[a..a]|5 - an _
is a continuous function of O: and if Di“ is continuous and monotone

‘I

increasing in [3 and decreasing in Oz, (30) is minimized (for fixed m) when
(2, . . . , Qm are chosen so that

ll.Dkgll[Cj__CJ.+1]lA(_:jlk = COI'lSt&I'1'l.'- fOI' = 1, . . .. ,'?T1..

The exact determination of such (2, . . . , Qm is a somewhat expensive task
and is not justified anyway, given the approximations we have already made
or are about to make, because we usually do not know the kth derivative
of g. But, the task is obviously equivalent to determining Q2, . . . , Qm so that

([|D'°g||[(;_,__(;J,__L,])1/kA§j = constant for j == 1, . .. . ,m,
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1 .1

and therefore produces asymptotically the same distribution of Q, s as does
the problem of determining (jg, . . . , Qm so that

C" 5‘+1 := 1k 1 := 11¢(31) /t; ID g(:r:)| / d:Ir= -51- |D g(:.r)| / dzr, j=1,...,m.

This latter problem is very easy to solve if we replace the function |D'°g|
by some piecewise constant approximation

h ~ |D'°9|- '
For then I

G(:-1:) == / (h(s))1/kds
is an easily computable, continuous and monotone increasing piecewise lin-
ear function, hence so is its inverse function G“ 1 (ignoring the possibility of
multivaluedness at some breaks), and the stated task amounts to nothing
more than evaluating the known piecewise linear function G71 at the m-- 1
sites jG(b)/m, j = 1, . . . ,m — 1.

It remains to discuss how one might obtain a piecewise constant ap—
proximation h to the function |D"g]. Burchard [1977:Lemma 1.5] proposes
to compute first some pp approximation of order is + 1 to g (using some
convenient choice of breaks) and then use the absolute value of its kth
derivative for the approximation h. A different proposal can be found in
de Boor [1974] and consists of constructing the function h from a current
pp approximation f of orderk to g as follows.

It really makes no difference whether we construct the piecewise constant
function h or the continuous piecewise linear function

H(a::) := /I h(s) ds.

We can easily obtain one from the other. But, to the extent that h
approximates the function lD'°g|, its integral H approximates the functionH I V ..

VB-1‘[.=..=]Di°'19==f lDi°9($)ld5-

This latter function we can compute (in principle) from the (It — 1)st
derivative of g, hence we can compute an approximation to it from an
approximation to Di“'1g.

Specifically, assume that we have some pp approximation f of order it to
g. Its (k — 1)st derivative Di°"1f is then a piecewise constant function and
can be written I

' - (Di°"1f) (ct) = o:1 + E o:,-(2: — Q-;)3_
j=2

I"

I

-1



IF,

PL|,*

;!:="."'-"'-*."'-T"-_:'-‘

.'|

I-

.- .11-

i

The subroutine NEWN OT

5+1

— 

I59

with § = (5,), the break sequence for f. The number crj is the jump of
D"°"'1_f across the break fij, j = 1, . . . , Z. The total variation‘0f the function
Dk—1f on the interval [a . . :13] is therefore

I

V&1'[a..==]Di°_1f = Z l0-6l($ *' Q-ilii-i
.T=2

and, taking this to be an approximation to the function Var [,,__,,]D'°“1g,
we construct the second order spline function H as an approximation to
Var [,_,___,,]D'°_1f. Specifically, we might choose h = H’ G lI<_,1 5 so that

2 on l<‘§1--§2l=§a'"§1
A -£— -.-1 .= + mifld O11 . . €-5+1], I. '< Z < Z,

-..i+1 "' §a-1 €e+2 - £1

 l c_,n[€,__€, 1+16+1 -* 51-1 '
where we have used the abbreviations

‘P@+1/2 5= Dk_1f 011 [Q - - §i+1l-.- all 5-
This amounts to taking for h on [5, . .§,_|_1] the slope at ({;“,_1 +35: +3§,_|.1 +
Q-1+2)/8 of the parabola that interpolates the function Var [,,,___,,]Di“_1 f at
the three sites §,-_1/2, §,_|_1/2 and §,_|_3/2.

The subroutine NEWNOT The algorithm just
in the following subprogram

OOO(_;_JQOOFJOOC;JO€'JOQOO(_EOOOQO

SUBROUTINE NEWNOT ( BREAK, COEF, L, K, BRKNEW,

outlined is carried out

LNEH, COEFG )
RETURNS LNEW+1 _KNOTS IN BRKNEW WHICH ARE EOUIDISTRIBUTED ON (A..B)
= (BREAK(1)..BREAK(L+1)) WRTO A CERTAIN HONOTONE FCTN G RELATED TO
THE K~TH ROOT OF-THE K—TH DERIVATIVE OF THE PP FUNCTION F WHOSE PP-
REPRESENTATION Is GQNTAINED IN BREAK, cosr, L, K

ammo: I N P U T ##1##:
BREAK, COEF, L, K.....CONTAINS THE PP—REPRESENTATION OF A CERTAIN

FUNCTION F OF ORDER K . SPECIFICALLY,
D**(K-1)F(X) = CUEF(K.I) FDR BREAK(I) .LE. X .LT. BREAK(I+1)

LNEW.....NUHBER OF INTERVALS INTO WHICH THE INTERVAL (A..B) IS TO BE
SECTIONED BY THE NEW BREAKPOINT SEQUENCE BRKNEW .

memo: O U T P U T aaoooo
BRKNEW.....ARRAY OF LENGTH LNEW+1 CONTAINING THE NEW BREAKPOINT SE-

QUENCE
COEFG.....THE COEFFICIENT PART OF THE PP—REPR. BREAK, COEFG, L, 2

FOR THE MONOTONE P.LINEAR FUNCTION G WRTO WHICH BRKNEW WILL
BE EOUIDISTRIBUTED.

***** OPTIONAL P R I N T E D U U T P U T *****#
CUEFG.....THE PP CUEFFS UF G ARE PRINTED DUT IF

.GT. 0 IN DATA STATEMENT BELDH.
IPRINT IS SET
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Commas: M E T H U D ######
C ES NUT EXIST

QOOOOOGLTOLDOOOOOLDLDOQOGOO

II

C

C

C

C

C

C

r

AND ITS PP COEFFS. STORED IN COEFG .

10

THE K-TH DERIVATIVE OF THE GIVEN PP FUNCTION F DO
(EXCEPT PERHAPS AS A LINEAR COMBINATION OF DELTA FUNCTIONS). NEVER-

WE CONSTRUCT A P CONSTANT FUNCTION H WITH BREAKPOINT SE-THELESS, _ .
QUENCE BREAK WHICH IS APPROXIMATELY PROPORTIONAL TO ABS(D**K(F)).
SPECIFICALLY, ON (BREAK(I)..BREAK(I+1)),

ABS(JUH AT BREAK(I) OF PC) ABS(JUMP AT BREAK(I+1) cs PC)
________________________ __ + ___________________#-_-___-_

BREAK(I+1) - BREAK(I—1) BREAK(I+2) — BREAK(I)
WITH PC THE P.CONSTANT (K—1)ST DERIVATIVE OF F .

THEN, THE P.LINEAR FUNCTION c IS CDNSTRUCTED AS
G(I) = INTEGRAL OF H(Y)**(1/K) FOR Y FROH A TO X

THEN BRKNEH Is DETERMINED BY
ERKREw(I) = A + G**(—1)((I—1)*STEP) , I=1,...,LNEw+1

WHERE STEP = G(B)/LNEW AND (A .. B) = (BREAK(1) .. BREAK(L+1)) .
EVENT THAT PC = D*#(K—1)(F) IS CONSTANT IN (A .. B) ANDIN THE

THEREFORE H = O IDENTICALLY, BRKNEW IS CHOSEN UNIFORMLY SPACED.

INTEGER K L LNEW, I,IPRINT,J
REAL BREIR(f+1).RRKREw(LREv+1),coEF(K,L),coEFc(2,L), DIF,DIFPRV,ONEDVH,ETEP,STEPI

#
DATA IPRINT /o/
BRKNEW(1) = BREAK(1)
BHKNEW(LNEH+1) = BREAK(L+1)IF c Is CONSTANT, BRKNEH Is UNIFORM.
IF (L .LE. 1) GO TO 9O

CONSTRUCT THE CONTINUOUS P.LINEAR FUNCTION G .
orsovx = 1./FLDAT(K) U
CDEFG(1,1) = o. ' -
DIFPRV = ABS(COEF(K,2) — CUEF(K.1))/(BREAK(3)—BREAK(1))
DO 1O I=2,L

DIF = ABS(COEF(K,I) — COEF(K,I-1))/(BREAK(I+1) - BREAK(I-1))
COEFG(2,I—1) = (DIF + DIFPRV)##ONEOVK
COEFG(1,I) = COEFG(1,I—1)+COEFG(2,I—1)*(BREAK(I)“BREAK(I—1))
DIFPRV = DIF

COEFG(2,L) = (2.*DIFPRV)**UNEDVK STEP = G(B)/LNEH
srsp = (CDEFG(1,L)+CDEFG(2,L)#(BREAK(L+1)—BREAK(L)))/FLDAT(LNEH)
IF (IPRINT .GT. 0) PRINT aoo, STEP,(I,COEFG(1,I),COEFG(2,I),I=1,L)

soo FORMAT(7H STEP =,E16.7/(I5,2E16.5))IF c Is CONSTANT, BRKNEH IS UNIFORM .
IF (STEP .LE. 0.) co To so

FOR I=2,...,LNEH, CONSTRUCT BRKNEH(I) = A + G#*(—1)(STEPI),
WITH sTEPI = (I—1)*STEP . THIS REQUIRES INVERSION or THE P.LINP
EAR FUNCTION c . FoR THIS, J Is FOUND so THAT

c(BREAK(J)) .LE. STEPI .LE. G(EREAK(J+1))
AND THEN

BRKNEH(I) = RREAK(J) + (STEPI-c(BREAK(J)))!DG(BREAR{J)) .
THE MIDPOINT Is CHOSEN IF DG(BREAK(J)) = 0 .
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J = 1
Do so I=2,LNEH ,

STEPI = FLoAT(I—1)*sTEP '
21 IF (J .EQ. L) ‘ co TU 2?

IF (STEPI .LE. CoEFG(1,J+1))Go To 2?
J = J + 1

co To 21
2? IF (CUEFG(2,J) .EQ. 0.) on To 29

BRKNEH(I) = BREAK(J) + (STEPI — CUEFG(1,J))/CDEFG(2,J)
co To so

29 aRRNEH(I) = (BREAK(J) + BREAK(J+1))/2.
30 coNTINuE

RETURN
c

' C . IF G IS CONSTANT, BRKNEW IS UNIFORM .
so STEP = (BREAK(L+1) - aREAK(1))/FLoAT(LNEH)

Do as I=2.LNEH
as BRKNEH(I) = BREAK(1) + FLUAT(I—1)*STEP

RETURN
END

(33) Example: A failure for NEWNOT We will give examples in later
chapters showing the effectiveness of knot placement algorithms such as the
one encoded in NEWNOT. So we feel safe to begin here with an example where,
somewhat surprisingly, NEWNUT produces only marginal improvements, even
though the function to be approximated is not uniform.

We construct our approximation to the function g(:.r:) := 1,/:.1:+ 1 on
[-1 . . 1] by cubic spline interpolation: using the routine CUBSPL of Chapter
IV with the “not-a-knot” end condition. The main program below is an
adaption of the program used in II(1) and IV(8). The initial construction
of an interpolant on a uniform knot sequence to N data points is followed
here by a cycle: the current interpol.-ant is used in NEWNDT to construct a
possibly better knot distribution and then, with these new knots, a new
cubic spline interpola.11t (at those knots) in constructed in CUBSPL. The
number of times this cycle is repeated is specified by the input parameter
ITERMX. _

CHAPTER III, EXAMPLE 2. cusrc SPLINE INTERPOLATION HITH cooD KNDTS
cALLs CUBSPL, NEHNDT

INTEGER I,IsTEP,ITER,ITERHx,J,N,NHIcH,NLow,NHAx,NM1
PARAMETER (NHAx=2o)
REAL ALGERP,ALocER,DEcAr,Dx,ERRNAx,c(4,NHAx),c,H,PNATx

* ,scRTcH(2,NHAx),sTEP,TAU(NNAx),TAUNEH(NHAx) "
c ISTEP AND sTEP = PLoAT(IsTEP) SPECIFY POINT DENSITY FOR ERRDR DET-
c ERHINATIDN.

DATA STEP, ISTEP /20., 20/
c THE FUNCTION c Is TO BE INTERPDLATED .

c(x) = soRT(x+1.>
DECAY = o. .

READ IN THE NUMBER or ITERATIUNS To BE cARRIED our AND THE LDHERC
C AND UPPER LIHIT FOR THE NUMBER N OF DATA POINTS TD BE USED.

ll

l l



READ 500,ITERH1,NLOH,NHIGH
BOD FDRHAT(3I3)

PRINT soo, ITERHI
coo FORHAT(I4,22H CYCLES THROUGH NENNoT//2aH N NAN ERRDR DECAY EXP./)LooP OVER N = NUMBER or DATA PoINTs

Ao N-NLoN,NHIcH,2 KNOTS ARE INITIALLY EoUIsPAcED
NN1 - N 1
H 2./FLoAT(NH1) .
D 1D I-1,N

TAU(I) - FLOAT(I—1)*H - 1.
ITER - 1coNsTRUcT CUBIC sPLINE INTERPDLANT. THEN, ITERNI TIMES

DETERMINE NEH KNOTS PRDH IT AND FIND A NEH INTERPDLANT
Do 15 I-1,N

c(1,I) = G(TAU(I))
CALL CUBSPL ( TAU, c, N, D, o )
IF (ITER .GT. ITERHX) co To 19
ITER I ITER+1
cALL NEwNDT(TAU,c,NH1,4,TAUNEH,NN1,scRTcH)
Do 1a I=1,N *

TAU(I) - TAUNEMI)
CONTINUE

ERRHAI = 0.

DO so I-1,NM1
DI - (TAU(I+1)—TAU(I))/sTEP

INTERPoLATIDN ERRDR IS CALCULATED AT IsTEP POINTS PER
PULYNOMIAL PIECE .

Do so J=1,ISTEP
H = FLDAT(J)*DX
PNATX = C(1,I)+H#(C(2,I)+H#(C(3,I)+H*C(4,I)/3 )/2 )

ERRHAX - ANAx1(ERRHAx,Ass(c(TAU(I)+H)—PNATx))CALCULATE DEcAr EXPONENT
ALDGER = ALoc(ERRNAx)
IF (N .GT. NLUN) DECAY =

(ALDGER - ALcERP)£ALDc(FLoAT(N)/FLoAT(N-2))
ALGERP = ALOGER
PRINT 640,N,ERRHAK,DECAY

540 FORHAT(I3,E12.4,F11.2)

4 O.1476+0O
0.1114+UD
0.941e-01
o.a3o3-o1
0.7510-01
0.6908-01
0.6431—01
o.6o41—01
0.5714-D1

GO TO 11

STOP

1

o.oo ‘Y A
-0.69 a
-0.59 a
—o.s6, 10
-0.55
-0.54
-0.54
-0.53
-0.53

‘I62 XII. The Distance from Splines

ESTIMATE HAX.INTERPOLATION ERROR ON (-1 1)

LOOP OVER POLYNOHIAL PIECES OF INTERPOIANT

O CYCLES THROUGH NEWNOT 3 CYCLES THROUGH NEMNOT

N HAX.ERROR DECAY EXP. _ N HAI.ERROR DECAY EXP
0.1461+00
0.1273+D0
0.1068+00
0.9175—01
0.8171-01
0.7197-01
0.6568—01
O.6038—01
0.5683—01

0 O0

-0 64
-0 S2
—O 69

—O 53



F"

W

I
'\

The distance from $,:¢_,., 163

The output shows the maximum interpolation error as a function of the
number of data points, both for uniformly spaced data sites and when, for
each .N, NEWNOT was used three times to achieve a better knot distribu-
tion. For the uniformly spaced case, the decay exponent is about —.5, in
accordance with (2) above (recall from Figure II(17) that, for the function
g(:.r) = A,/0: + 1 on [—-1 .. 1], the modulus of continuity is w(g; h) = hi/2).
But, even after three applications of NEWNUT, the decay exponent is still only
around —.6 whereas I had expected it, because of Theorem (34) below, to
be about —.4, the typical exponent for fourth order, or cubic, approxima-
tion. In fact, for all N >- 4 tried, the approximation with the “good” knots
is slightly worse than that with the uniform knots.

It is instructive‘ to contemplate the reason for this failure (which was
not apparent t_o me right away). NEWNUT relies essentially on the jumps in
the third derivative of the cubic interpolant to gauge the size of the fourth
derivative of the function g to be approximated, with a relatively large
jump calling for relatively many knots to be placed near that jump. In our
example, the fourth derivative of the function g grows large near -1 and it
is there that one would wish knots to be placed. Yet, on closer inspection,
it turns out that NEWNUT failed to do this. The reason: the “not-a-knot” end
condition used in CUBSPL explicitly forces the first and the last potential
jumps in the third derivative to be zero, and this makes h of (32) vanish
between the first and the second (and between the secondlast and the last)
data -sites. Therefore NENNDT puts all breaks well away from the ends of the
interval. The best laid plans . . . .

The distance from $3; T, We consider now briefly just how well a
function can be approximatled by splines of a fixed number of knots if these
knots are placed appropriately. This means that we are interested in the
number

i (g1$k,1'1)

where $,,,,,., denotes the collection of all splines of order ls with some knot
sequence t = (t,)T+'i° with t1 = = ti, = o, t,.,__|.1 = = t:,,__|_,1, ---= b, and
with n fixed.

The above arguments that led us to the knot placement algorithm above
were derived from considerations by Rice [1969], Burchard [I974], Dodson
[1972] and de Boor [].973] concerning dist (g,$k,n.)- These considerations
produced the following theorem (among others).

(34) Theorem. Assume that the function g is continuous on [o . . b] and
is ls times continuously differentiable at all but finitely many sites in [o. .b]
near which |D"°g| is monotone, and the kth root of Di‘ g is integrable, that
is, _

tr

/T |D’i°g(:.r)]1/I‘ dzr < oo.
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Then
b ‘ N

(35) dist (g,$;,,,,) § const,,n_"°(f ]D"°g(:1:)]1/1° dz‘) ,

that is, the order of approximation achievable is n"'“. This follows from the
fact that, for the choice § := ((,)'{""1 of break sequence so that

C-I-1.1 b

(B1) /g |D’°g(w)|”"‘dI= |D”g(I)|‘/kdw. i=1...-.m.
we have then

. b k

(36) dist (g,lI_dc"jCI1) § const,,,m"'°(/f ]Di°g(:r:)]1/I“ dz) .

Theorem III(20) concerning best broken line approximation is a special
case of this theorem. We can gauge its power by comparing it with Theorem
(6) which states that y

d1St (Q, $k,t) _‘§ COI1Stk]lS]k]].DkQll°¢

in case g has k continuous derivatives on [o .. b]. If we choose here the
knot sequence t uniform inside [o .. b] (so as to make the bound as small
as possible for fixed n), that is, t;,__|.,; = o. + th, i = 1,...,n. — it, with
h := (b — o)/(n — it + 1), we find that

dist (g, $,,,,) = (9 (ark) ;

But let the kth derivative of g become infinite anywhere in [o .. b], and
Theorem (6) ceases to produce such rates of approximation. For the Ex-
ample (33) of approximation to g(.."c) = 1,/as + 1 on [e . . b] = [—1 .. 1], for
instance, already the first derivative becomes infinite and so, for uniform
knot sequence, Theorem (6) produces the estimate

I dist (9, $,_,) = 0(»A-"1/2) y
which is sharp as we saw in the example. Nevertheless, when we compute
the ltth derivative of g, we find .

A _ I I ii _.._..._2'“— 3 —(2k—1>/2

and therefore

]D"g(:1:)]1(l° = c0nst;,(a: + 1)"(2'°‘1l/12")
which is indeed integrable, that is,
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1 1
/ |Di°g(r)|1/if d:1: = 2k consti, (:1: + 1)1/wk) = 2!: const,,21/mi“)

which is finite. We would therefore expect to have C7 ('n._"'°)-convergence to
this very unsmooth function g(..":) = ‘N,/Ii: + 1 on [-1. . 1] provided we choose
the knots right. Theorem (34) indicates (as does the earlier discussion of
the knot placement algorithm) that we should choose the knot sequence
according to the break sequence § for which (31) holds. This we carry out
in the next example.

(37) Example: A failure for CUBSPL We continue our attempts to
approximate the function g(.."'.:) = 1,/rr + 1 on [12. .b] = [-1. . 1] well by means
of cubic spline interpolation at knots with the not-a-knot end conditions
and using N data poi11ts. But this time, we choose those N data sites
explicitly so that the resulting break. sequence of our interpolating cubic
spline satisfies (31). Since -

f [D4g(s)|1/4 ds = const(:.r + 1)1/8 for :1: Z -1,
- -1

this amounts to choosing the N interpolation sites as
1

|

(as) -A =2((»1-1)/(N-1))."-1, a= 1,...,N.
The modification of the program for,Example (33) to use such data sites
and to make no use of NEHNDT produiies the following output

N MAX . ERROR DECAY EXP .

3834+O3 .00
.1284+O3 — 70
.4572+O2 — 59
.1138+O2 -6.23
.0OOO+OO —INF
.OOOO+O0 NaN|—~|—=|-A -l'=-I\JOOJCJ'1.i>- OCJOOQO

(DUO

What a disappointment!
The “INF ” we can understand easily enough. For N = 12, we have

T2 — T1 = 2(1/11)8 = 4.7 =1: 10“9 = 0 in single precision on a UNIVAC 1110.
But an error of 383 for N = 4 and of‘a.11 even for N = 10 is disappointing
when the function we wish to approlzlimate lies between 0 and 2. It may
well be (and we would need double precision calculations to verify that)
that, with the good knots, the error decreases like N-4, but it seems to
start oif so much larger than with the uniformly spaced data sites, it seems
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hardly worth the effort.
In order to make certain that the program is correct, l also ran it with

the following more uniform interpolation sites

T, = 2(('£ - 1)/(N - 1))“ - 1, and T, = 2((r - 1)/(N - 1))“ - 1.

This produced the following output.

N HAX.ERROR DECAY EXP. N HAX.ERROR DECAY EXP.

4882+02
1179+02
289B+01
574B+00
13B1+00
8346-01
5395-01
4629-01
2145-01

5001+01
7842+00
1217+00
5025-01
3364-U1
2408-01
1809-01
1408-01
1129-01

0.00
-4,57
-6.48
-3.96
-2.20
-2.1?
-2.14
-2.13
-2.09

Both show an improvement for larger N compared to uniform spacing,
although the point of improvement comes later as the mesh becomes more
nonuniform.-They show a decay exponent of -2 and -3, respectively. (An
analysis of the proof for Theorem (34) would lead one to expect exactly
such rates in these cases.) ~

In order to explain the difficulty with the data sites (38), we need the
following error bound (see Problem III.2). If we denote the cubic spline
interpolant to the function g by I4g_ (as we did in Chapter IV), then we
can show that

(39) llg -— Llyll S (1 + llI4ll)di3t(.91$4)
with $4 the collection of all cubic splines with knots T2, . . . , TN_1 inside of
[-1 . . 1] and

llf-1ll== ma-Kl llhfll/llfll I f 6 Cl-1--1l=llf|l as 0}

the norm of the interpolation process I4. A proof of (39) goes as follows:
For any f E $4, I4)’ = f, therefore g — I4g = (g -—- f) —- I4(g — f) for any
f E $4, hence

Ila — Lryll 5 lly — fll + llI4(9 — f)ll 3 Ila - fll + lll4ll Ila -— fll~
Now we choose f E $4 to make the Tight hand side as small as possible;
this produces (39). I

The particular choice of the data sites enters the bound (39) in two ways:
(i) It influences the approximation power of the function class I4 since

it determines the knot locations. In our case, we can expect dist (91-$4) to
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become smaller (for fixed N) as we come closer to the data sites (38) that
are “right” for our particular g.

(ii) It influences the norm of‘ the approximation process I4. As the data
site sequence becomes more nonuniform, it so happens that the number
|]I4|] gets larger and larger. Of course, this does not guarantee that the
interpolation error will also get larger since (39) is, after all, only a bound.
But it explains why it gets larger when it does. (See the case of uniform
data sites in polynomial interpolation in Example II(1).)

Connected with this is a further reason for the failure on Example (37),
namely the fact that, as ||I4[| gets larger, the approximation process be-
comes less and less local. By this we mean that the error at a site may well
depend on the behavior of the function g anywhere in [a . . b]. But, as soon
as our approximation scheme has this property, then it makes no sense
anymore to adapt a knot sequence to the local behavior of the function. In
other words, knot placement based on the local behavior of the function to
be approximated makes sense only if we use an approximation process A
that is more or less local, that is, for which we get, at least approximately,
an estimate of the form (28). '

(40) Example: Knot placement works when used with a local
approximation scheme To illustrate the point just made, we replace the
cubic spline interpolant at knots in Example (37) by the quasi-interpolant
of Theorem (26) which 'we know to be a local approximant. We choose
the same knot sequence used implicitly in that example, that is, we use
t = (t,)'["“H‘ with ls: = 4, m = N + 2 and

1:, =---=¢.,=-1, t4'+,=2(t/(N-1))8—1, i=1,...,N—2,
i tm+1="':tm+4=1-

The approximation Qg is then computed as

Q9 = fi()'~i9)B-.-:
i=1

with (B,)']" the sequence of B-splines of order 4 for t and A,g, from IX(5-=1),
computed as

1 >o = $<->3-A03-1¢.,.<T.><Dt> <7.)
j-C4

‘With 'l,b.,;'4(I.'1.."‘) I: (I-5+1 — I.IZ)(t,__|_2 - II!) (1:-5+3 —- W8 CIIOOSB T-5 = t,',_|_2, 8.11

i, then, as already,used in Example IX(58) (see IX(59)),

<41) My = go.) + §(A=:... - A¢...>g*(¢..2> - §A»=...A1:...g*'<==..2>/2.



168 XII. The Distance from Splines

For i = 1, this gives that

For i = 2, this would give Agg = oo. For this reason, we use instead T2 = t
319 = 9(-1) = 0-

This gives

329 = 9035) T 2A'349'('35)/3 + (A'54)29”(t5)/6-

CHAPTER XII, EXAMPLE 4. QUASI-INTERPOLANT WITH GOOD KNOTS.
CALLS RsPLPP(EsPLvB)
C . .

C
C

C
C

C
C

fifififi

C
C

C
C

C
C

C

C

INTEGER I,IRATE,ISTEP,J,L,H,HMK,N,NLOW,NHIGH,NH1
_REAL ALGERP,ALOGER,BCOEF(22),BREAK(20),C(4,20),DECAY,DG,DDG

A ,DTIP1,DTIP2,DX,ERRMAX,G,H,PNATX,SCRTCH(4,4),STEP,T(26),TAUI y
ISTEP AND STEP = FLOAT(ISTEP) SPECIFY POINT DENSITY FOR ERROR DET-
ERNINATIDN.
DATA STEP, IsTEP /20., 20/

c IS THE FUNcTIoN TO BE APPROXIHATED, DG Is ITs FIRST, AND
DDG ITS SECOND DERIvATIvE .

G(X) = SORT(X+1.) -
Dc(x) - .5/c(x)
DDG(X) = —.5#DG(X)/(X+1.)
DECAY = o.

READ IN THE EXPONENT IRATE FOR THE KNOT DISTRIBUTION AND THE
LDNER AND UPPER LIMIT FoR THE NUMBER N .

READ soo,IRATE,NLoN,NNIcH
500 FORHAT(3I3)

PRINT 600
oco FORNAT(2aH N HAX.ERROR DECAY EXP./)

LOOP OVER N = DIM( SPLINE(4,T) ) - 2 .
- N IS CHOsEN As THE PARAMETER IN ORDER TO AFFORD COMPAR-

IsON HITH EXAMPLES 2 AND 3 IN HHICH CUBIC sPLINE INTERP-
OLATION AT N DATA POINTs WAS UsED .

DO 40 N=NLOH,NHIGH,2
NM1 = N-1 -
H = 1./FLOAT(NH1)
H = N+2
HHK = H-4
DO 5 I=1,4

T(I) = -1.
5 - T(M+I) = 1.

INTERIOR KNOTS ARE EQUIDISTRIBUTED HITH RESPECT TO THE
FUNCTION (X + 1)#*(1/IRATE) ._

DO 6 I=1,HHK
6 T(I+4) = 2.*(FLOAT(I)*H)**IRATE — 1.

- CONSTRUCT OUASI—INTERPOLANT.
" BCOEF(1) = c(-1.) = 0.

BCOEF(1) = 0.
DTIP2 = T(5) - T(4) '
TAUI = T(5)

S ECIAL CHOICE OF TAU(2) TO AVOID INFINITE-P
DERIvAT1vEs OF c AT LEFT ENDPOINT .

BCOEF(2) = G(TAUI) - 2.#DTIP2#DG(TAUI)/3.
A + DTIP2#*2*DDG(TAUI)/6.

DO 15 I=a,N
TAUI = T(I+2)
DTIP1 = DTIP2
DTIP2 I T(I+3) - T(I+2) "

' FORMULA XII(30) OF TEXT IS USED .
15 EcoEF<I) = G(TAUI) + (DTIP2-DTIP1)*DG(TAUI)/3.

# - DTIP1#DTIP2#DDG(TAUI)/6.
CONVERT TO PP-REPRESENTATION .

i-i-in;-.|—-.1.1-i—-mi
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CALL BSPLPPCT,BCOEF,H,4,SCRTCH,BREAK,C,L)
C ESTIMATE HAX.INTERPOLATION ERROR ON (-1..1).

ERRHAX = 0.
C LOOP OVER CUBIC PIECES ...

DO 3O I=1,L
Dx = (BREAK(I+1)-BREAK(I))/STEP

c j ERROR Is CALCULATED AT IsTEP POINTS PER PIECE.
DO so J=1 IsTEP

H - FLOAT(J)*DX
PNATX = C(1,I)+H*(C(2,IJ+H*(C(3,I)+H*C(4,I)/3.)/2.)

90 ERRMAX = AMAX1(ERRHAX,ABS(G(BREAK(I)+H)-PNATX))
C CALCULATE DECAY EXPONENT .

ALOGER = ALOG(ERRHAX)
- IF (N .GT. NLOW) DECAY =

A (ALOGER — ALGERP)/ALOG(FLOAT(N)/FLOAT(N-2))
ALGERP = ALOGER

C -
40 PRINT 640,N,ERRMAX,DECAY

640 FORMAT(I3,E12.4,F11.2)
STOP

END

The output for -

17,; = 2((¢ - 1)/(N - 1))‘; - 1 and T,-_ = 2((t—1)/(N - 1))3 - 1
is as follows: "

N HAX.ERROR DECAY EXP. N HAX.ERROR DECAY EXP.

4 0.7240-O0 0.00 4 O 412B+OO 0.00
6 4.89 77
8

10
12
14
16
13
20 O

9952-01
9091-01
1197-01
5579-02
2940-02
1999-02
1035-02
9995-09

6
4.13 6
4.17 10
4.19 12
4 14.16
4.15 16
4.16 1B
4.15 20

B933-O1
3258-01
1535-O1
B372-O2
5060-O2
3281-O2
2656-O2
1289-O2

It shows clearly the O (N*4) convergence for the correct knots (before
underflow puts an end to it). Also, for the slightly less nonuniform knots,
we get O (N-3) convergence and an impressive improvement over uniform
knots.

Problems .
In the following three problems, let A be the approximation map given

by (13).

1. Verify the assertion in the text that A is linear (if each pt, is).

2. Prove: If pig = Z::,i=1 (31_;;g(T-55:) and Tgj € [ll-5+1 . . ti+k_1], j, 8.I1Cl

Ag = g (on [a .. 0]) for every constant function g, then 2;?=, 16,3; = 1.
Conclude that, if also is = 2, then necessarily 11., g = [t,.,.1]g, all 2', and A is
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broken line interpolation.
I
'|

3. Prove: If A reproduces II.<;,, and, far each i, D, has its support in some
interval [tj . . tj.[.]_] contained in [13, . . t,.,_;,], then A reproduces all of $;,,t.

4. Use the fact that [:2,:i:,:I:]g = (g'(:.I:) — [:i:,a:]g)/(T — :12) (see I(vii)) and
that [:i‘,:t]g = g'(.§) for some E between 1i‘ and :1: to show that

llg - I/g[] _-g const], |t|o(g*; |t|) AA 9 e o<1>[a . . b].
5. Cubic spline interpolation (as discussed in Chapters IV and V) is not
local, yet it is possible to construct interpolating cubic splines that are
local. The trick is to use additional knots.

Let (T,-.,)‘f be a sequence of data sites. For each i, construct a cubic spline
C’, with simple knots at the Tj’s and, possibly, also at the sites 'I'_,;+1/2 :=
(T3; + Tj.|.1)/2, so that C,;(T,) = 54,, (ii) C,;(:r) = 0 for :1: 4 (T,;_3 . . T,.,.3),
(iii) Z, p('r,-_)C'., = p for all cubic polynomials p (on [a . . b]).

(Ignore the additional difiiculties for _i = 1, 2 and T1. - 1, rt if these prove
too tricky.)

6. Prove the following fact of use in the analysis of finite element ap-
proximation: If g = hf, with f E $;,,,, and h a continuous function, then
dist (g, $;,,¢) 3 consti, w(h; (Hint: Use (27))).

7. Theorem (26) establishes the existlence of an approximation Qg E $i,,t
to g that simultaneously approximates all derivatives of order < 1-: of g
to optimal order, but, for the higher order derivatives, the error bound
involves the local mesh ratio Tm. Prove the existence of an approximation
Qg E $1,‘, to g for which

llgm - Dj@9ll S ¢9nS1*1=.i l'=l’°""‘w(y”"‘); ltl)» for 2' < 1-=.
that is, independently of mt. (Hint: Show that any strictly increasing se-
quence ti, <1 - - - -< t,,.,.1 contains a subsequence ti, = ti, < - - - < t,-4+1 = t,.,_.,.1
for which mi; 5 4 and [ii] 5 2]t]. For this, set h := [t[ and, with ti already
picked, choose $2,, = 1,. with h/2 g 1:... - 5, < 3h/2; etc.)
8. Theorem (26) as stated applies only to splines with simple knots, as
far as the approximation to higher derivatives is concerned.

Use Problem 7 to show that the conclusion of Problem 7 holds for an
arbitrary knot sequence t. (Hint: If t has multiple (interior) knots, approx-
imate t by a sequence ‘t with simple knots; then use the fact that the error
bound in Problem 7 depends only on [t] and not on t to let ii approach t.)

9. Modify CUBSPL to treat the not-a-knot end condition in the alternative
way outlined on p. 45, that is, without ever making the second and the
second last data sites breaks. Then repeat the calculations of Example (33)
with this modified CUBSPL. '1
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Spline Interpolation;
SPLINT, SPLOPT

In this chapter, we discuss spline interpolation of arbitrary order and
point out that one has to monitor the interplay between interpolation sites
and knots carefully in order to produce a reasonable interpolation scheme.
We discuss also a particular choice of knots for given data sites with
which spline interpolation becomes the optimal recovery scheme of Mic-
chelli, Rivlin and Winograd. Finally, we mention osculatory interpolation
and complete even-order spline interpolation and its best approximation
properties.

Throughout this chapter, t = (t,)‘]‘+l° is a nondecreasing knot sequence,
with ti < t,.,.,,, all i, and (B,)‘i‘ is the corresponding sequence of B-splines
of order l-:.

The Schoenberg-Whitney Theorem Since the sequence (B,)'-f is
linearly independent, its linear span, that is, the space $ := $k,t, is
n-dimensional. We‘ therefore expect to accommodate n interpolation con-
ditions. If the strictly increasing sequence T = (T,)? of data sites is given
somehow, then, for given function g,. the spline f := or,-B, agrees with
g at if and only if

T1-

(1) Z‘-1*-'jB§('c) = 9(5). i= 1.- - - - .9-
J=1

This is a linear system of 11. equations in the 11.-vector or := (o:,)"f' of 11. un-
knowns, with coefficient matrix (Bj(T,;)), the spline collocation matrix.
As it turns out, it is very easy to check whether this matrix is invertible,
that is, whether (1) has exactly one solution for every choice of g.

(2) Theorem (Schoenberg—Whitney). Let T be strictly increasing and
such that a -< t, = = t,-_+,. = T3; < b implies T < It — 1. Then the matrix
A := (B, (T,)) of the linear system (1) is invertible if and only if

(3) B£(T£);£0, ii: I,...,7't,

171
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that is, ifand only ift, < T, < t,_|.,.,, alli (except that ‘T1 = til‘ and T,., = t;_,_,, -
are also permitted).

The original theorem by Schoenberg 8.: Whitney [1953] involves truncated
power functions rather than B-splines. An elementary proof of the present
theorem, using nothing more than Rolle’s Theorem (that is, the fact that
between any two zeros of a differentiable function must lie a zero of its
derivative), can be found in de Boor [1976]1; see also Problem 1.

Actually, one direction is quite simple: If for some i, t,_|_,, 3 T,, then the
first i columns of the matrix A have nonzero entries only in the first i — 1
rows, hence this sequence of columns must be linearly dependent, and so,
A cannot be invertible. Again, if T, 5 t,, then columns 11, . . . , TL of A have
nonzero entries only in rows 1+ 1, . . . ,n, hence A cannot be invertible. This
argument uses nothing more than the fact that both the sequence T and
the sequence of the supports of the B-splines are increasing, hence we have
proved the following.

(4) Proposition. If the matrix (B,,.,_,,,,(s,) : i, j = 1,. . . ,T) is invertible
with both (mj) and (9,) increasing, then B,.,,,,,|,(s,) 75 O, all i.

For the proof of the converse, we make use of an upper bound on the
number of ‘isolated’ zeros a spline from $ can have, the bound being easily
provided using knot insertion. Here, we call z an‘ ‘isolated’ zero of f E $,,,,
in case f(z) = 0 while '

(5) ft 1: 2 l@5lB1.kn=
I " .

does not vanish at z. Note the use of the superscript t to indicate the depen-
dence of ft on the particular knot sequence we use to represent the spline
f as f ==: 2, o:_,B,. The importance of the function fl’ in considerations of
zeros of splines seems to have been first recognized by T. N. T. Goodman
[1994]. For the definition of the number S-0-: of strong sign changes in the
sequence oz, used in the next statement, see p. 138 (in Chapter XI).

(6) Proposition. Iff = Z35, c1:,B,_,,,,,, vanishes at T = (T1 < < T,.)
while ft = Z), ]a,]B,_,.,,t is positive there, then S or > T —- 1.

PROOF. Since _f"(T,) > 0 while _f(T,) = O, the sequence (o:,B,(T,)
B, (T,) 79 0) must- have at least one strong sign change, hence, so must the
sequence (tr, : B,(T,) 72 0). This gives altogether T strong sign changes
in or provided we can be sure that different T, generate different sign
changes. Off-hand, this may not be so, but it can be guaranteed by in-
serting each of the sites T,_|_1/2 == (T, + T,_|_1)/2, 2' = 1,...,7‘ —- 1,'into
the knot sequence k times. If ii and Ei are the resulting knot and coeffi-
cient sequence, respectively, then still fl‘ (T,) > 0 (since, from fl‘ (T,) > 0
we know that T, is an isolated zero of f; see Problem 9), while now
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-I"l|I" -I"'In-ll

{j : B,-('r,) 75 0} (7 {j : B_,~('r;._) 75 0} = (Fl for "i 75 h, hence, with Lemma
XI(27), T

S-0: 2 S"E"r 2 1‘.

E

Pnoor OF THE SCHOENBERG-WHITNEY THEOREM. We only need to
prove the ‘if’. Since A is square, it is sufiicient to prove that Ac: = 0 implies
or = 0. Consider f =-- Z5, cr,-B, with Ao: = 0. If a: eé 0 tl1en, by the linear
independence of the B—spline sequence, f eé 0. Let I =: (c. .d) be a maximal
open interval in

i SUPP ft = U (ti . . t_7'_|_k).

Then necessarily I = (r_,, . . t,,-_|_;,) forsome 1 ii 1/ 5 p 5 n, as well as

Pl .
f-'=_fJrI=zC1'.'jB_;; 0111'.

J'=v

In particular, f; has the ‘isolated’; zeros 1-,, -< < 'r,,, therefore, by
Proposition (6), .

S_(cr,,,...,o:,,,) Z ;.¢+1—-1/,
r I

|

which is nonsense. ' l‘ El

The Schoenberg-Wliitney Theorem has been generalized in at least two
directions: permission of coincidences in the sequence -r corresponding
to osculatory interpolation; and (ii) consideration of a subsequence (Bmj :
j = 1,... ,'r) instead of the whole sequence (for a suitably longer knot
sequence). '

Consideration of repeated interpolation sites as in osculatory interpola-
tion also raises the question to what an extent Proposition (6) still holds
when 1* there counts the number of zeros of f with an appropriately defined
multiplicity. See de Boor [1997] for verification that the sharpest result in
this direction, namely that of T. N. T. Goodman [199-4], actually uses a
very natural definition of multiplicity of a zero z of f E $, namely the
maximal number of ‘isolated’ zeros near 2: achievable by some g E $ in any
particular neighborhood of f.

Bandedness of the spline collocation matrix Assume now that
the n >< n matrix (B3,-('r,)) is indeed invertible, hence ti -< 1', < t;_|_;,, all 11
(with ti" = "r1 a11d 'r;, = 1;;_|_k permitted). Then, as a major benefit of using
B-splines, our matrix (B,{('r,)) must be banded, with fewer than k bands
above the diagonal and fewer than k bands below the diagonal. For,

BJ'('T-5) 0 and only tj < Ti < tj_|_j,;
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hence B;('r,) 72 0 and B,-(11) 76 0 together implies that t, <5. 1', < t,.|.;, and
ti < 11,- < t,-.|.;,, that is, lj -—- il < ls. This shows that the matrix (B_7'('l',;))
has bandwidth less than k (in the sense that B, (‘T-_.;) = 0 for |_;$ — il 2; k)
in the case of interest. Of course, if the 'ri’s are spaced “in tune with" the _
tfs, then the matrix (B,-(11)) might have as few as k bands.. ii,

\
‘I

n.

Total positivity of the spline collocation matrix A second impor-
tant property of the linear system (1) is the total positivity of its coefiicient
matrix. In order to describe this property, we need a notation for subma-
trices of a given matrix. For a given m >< n matrix A := (oi,-) and given
sequences I = (i1, . . .. , i,..) and J := (jl, . . . ,j_,,), we use the abbreviation

' I "r s

A ( J) := (a'*PJ'e)P=15q=1'

The matrix A is totally positive if and only if all its minors are
nonnegative, that-is, if and only if, for 1* = 1, 2, . . .,

i1 i T 1<i1<---<i,.§m
detA(_""’ T) Z0 whenever __ _ .

311*--:.?r 1.€.71<"'<.?-r~."§'"*

(7') Theorem. (Karlin) The rnatrix-(B,-('r,)) is totally positive.

___ PROOF. If ii is obtained from t by the insertion of just one knot, and
B, := B3. k-3;-, all j, then _ s

, .|-Fm. .-F-u.

. Ba‘ = (1 -' 'w;'+1)BJ'+1 +'w;;BJ*=
with all 'UJ_-f E [O . . 1]. Since the determinant of a matrix is a linear function
of the columns of that matrix, we have, for example,

det[---,B,(a:),...]= A
(1 — w,:+1) det[- - - ,Bj_|_1(::s), . . + 'w_., det[- - - ,B_.,;(a'), . . .],

with - - - unchanged in their respective places. It follows that, for any I, J,

aa A(I, J) = Z W aa EU, H),
H

with all the '73 2 O, and the sum, ofihand,____over certain nondecreasing
sequences, since only neighboring columns of A participate-in a column of
A. However, we may omit all H that are not strictly increasing, since the
corresponding determinant is trivially zero. Therefore,

det A(I, J) = 2%,. aa Eu, H),
H

‘l

'L
I

in
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with the 7;; Z 0 and all H strictly increasing.
Now insert each of the 11,- enough times so that the resulting refined knot

sequence t contains each T-5 exactly is - 1 times. By induction, we have

detA(I, J) = 2')’;-I det }i(I,H),
H

-I""lnl"

with the '75 Z O and all H strictly increasing. However, in each ro_"w of A,
there is exactly one nonzero entry, namely the entry belonging to B, with
t, <1 "r, = t,_|_1, and that entry equals 1. Further, the sole nonzero entry
in subsequent rows occurs to the right of this one. Thus A(I , H) has a
nonzero entry in every row iff A(I, H) is the identity matrix. Consequently,
detA(I, H) Z; 0 for any H, and therefore det A(I, J) Z 0. III

A different proof of this theorem can be found in Karlin [1968:X, Thm.
4.1] as a special case of a more general result, or in de Boor [1976]1.

A very simple but practically important consequence of total positivity
is given in the following lemma.

(8) Lemma. If C is invertible and totally positive, then its inverse is
checkerboard, meaning that C_1(i,j)(-—1)i"5 Z 0, all i,j.

PROOF. By Cramer’s rule,

C'_1(i,j) = (—)i_5l det C(\j, det C.

El

The subroutine SPLINT The total positivity of the collocation matrix

. (B,;(T-5))

is of interest in the present chapter in part because it is possible to show
that a. linear system with an (invertible) totally positive coefiicient matrix
may be safely solved by Gauss elimination without pivoting (see de Boor
8.: Pinkus [1977]). Since our matrix (B, (T,)) is also banded, this allows us
to solve (1) using no more storage than is required to store the 2k -— 1
possibly nonzero bands of the matrix (B, (T,)), and also to dispense with
the prograrn complications typical for a storage-efficient banded matrix
solver using row and/or column interchanges.

The following subprogram SPLINT sets up the linear system (1) for given
t and 1', and then solves it using a banded matrix solver without pivoting.
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SUBROUTINE SPLINT ( TAU, GTAU, T, N, K, Q, BCOEF, IFLAG )
CALLS BSPLVB, BANFAC/SLY

OQOOfiOQOQfi("JOOO(;OOOOOOOOOOOQQOQQOOQOQOQfigifififififi

Z 0 ‘IH

ii ‘U 'G I4

sptrur PRODUCES THE B—SPLINE COEFF.S scosr or THE SPLINE or oaoss
K wrrn KNUTS T(I), I=1, ... H + K , vnrcn TAKES on res UALUE
crau(I) AT TAU(I), I=1,..., N .

##### ######

TAU... Y or LENGTH N , conrsruruc DATA POINT ABSCISSAE.
A s s U H P T I 0 N . . . TAU rs STRICTLY rucnsnsruc

GTAU.....CORRESPONDING ARRAY OF LENGTH N , CONTAINING oars POINT os-
DINATES

T.....KHOT ssqusncs, or LENGTH N+K
NUMBER or oars POINTS AND orssnsrou or SPLINE space S(K,T)

K.....ORDER or SPLINE
meets O U T P U T ###### ;
Q.....ARRAY OF SIZE (2#K-1)*N , CONTAINING THE TRIANGULAR FACTORIZ*

ATION OF THE COEFFICIENT MATRIX OF THE LINEAR SYSTEM FOR THE B-
COEFFICIENTS OF THE SPLINE INTERPOLANT.

THE B-COEFFS FOR THE INTERPOLANT OF AN ADDITIONAL DATA SET
(TAU(I),HTAU(I)), I=1,...,N HITH THE SAME DATA ABSCISSAE CAN
BE OBTAINED HITHOUT GOING THROUGH ALL THE CALCULATIONS IN THIS
ROUTINE, SIMPLY BY LOADING HTAU INTO BCOEF AND THEN EXECUT-
ING THE CALL BANSLU ( Q, 2#K—1, N, K-1, KH1, BCOEF )

BCOEF.....THE.B—COEFFICIENTS OF THE INTERPOLANT, OF LENGTH N
IFLAG.....AN INTEGER INDICATING SUCCESS (= 1) OR FAILURE (= E)

THE LINEAR SYSTEM TO BE SOLVED IS (THEORETICALLY) INVERTIBLE IF
AND ONLY IF

T(I) .LT. TAU(I) .LT. T(I+K), ALL I. ~
VIOLATION OF THIS CONDITION IS CERTAIN TO LEAD TO IFLAG = 2 .

smtmt H E T H O D tmtmmm
THE I-TH EQUATION OF THE LINEAR SYSTEM A#BCOEF = B FOR THE B-CO-

EFFS OF THE INTERPOLANT ENFORCES INTERPOLATION AT TAU(I), I=1,...,N.
HENCE, B(I) = GTAU(I), ALL I, AND A IS A BAND MATRIX WITH 2K-1

BANDS (IF IT IS INVERTIBLE).
THE MATRIX A IS GENERATED RON BY ROB AND STORED, DIAGONAL BY DI-

AGONAL, IN THE R O N S OF THE ARRAY Q , WITH THE MAIN DIAGONAL GO-
ING INTO RON K . SEE COMMENTS IN THE PROGRAM BELOH.

THE BANDED SYSTEM IS THEN SOLVED BY A CALL TO BANFAC (WHICH CON-
STRUCTS THE TRIANGULAR FACTORIZATION FOR A AND STORES IT AGAIN IN

Q ), FOLLOWED BY A CALL TO BANSLV (WHICH THEN OBTAINS THE SOLUTION
BCOEF BY SUBSTITUTION).

BANFAC DOES NO PIYOTING, SINCE THE TOTAL POSITIVITY OF THE MATRIX
A MAKES THIS UNNECESSARY.

INTEGER IFLAG,K,N, I,ILP1MX,J,JJ,KM1,KPKM2,LEFT,LENQ,NP1_
REAL BCOEF(N),GTAU(N)=Q,T,TAU(N), TAUI
DIMENSION Q(2#K—1,N), T(N+K)
NP1 = N + 1
KM1 = K - 1
KPKH2 = 21-KH1
LEFT = K .

C ZERO OUT ALL ENTRIES OF Q
LENO = N*(K+KM1)
DO 5 I=1,LENQ

C 5 q(I) = 0.
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c ### LOOP ovER I TO coNsTRUcT THE N INTERPoLATIoN EQUATIONS
no so I=1,N

TAUI = TAU(I)
ILP1HX = HINO(I+K,NP1)

c ### FIND LEFT IN THE CLOSED INTERvAL (I .. I+K—1) SUCH THAT
c T(LEFT) .LE. TAU(I) .LT. T(LEFT+1>
c MATRIX Is sINcuLAR IF THIS Is Nor POSSIBLE

LEFT = NAxo(LEFT,I)
IF (TAUI .LT. T(LEFT)) co TO 99s

15 IF (TAUI .LT. T(LEFT+1)) so To 1s
LEFT = LEFT + 1 .
IF (LEFT .LT. ILPIMX) co TO 15

LEFT = LEFT - 1
~ IF (TAUI .GT. T(LEFT+1)) GO TO 993

OOOOO

### THE I—TH EQUATION ENFoRcEs INTERFoLATIoN AT TAUI, HENcE
A(I,J) = B(J,K,T)(TAUI), ALL.J. ONLY THE K ENTRIEs WITH J -
LEFT—K+1,...,LEFT ACTUALLY MIGHT BE NDNZERO. THEsE K NUNBERS
ARE RETURNED, IN BCOEF (USED FUR TEHF.sToRAcE HERE), BY THE
FOLLOWING

16 cALL BsPLvE C T, K, 1, TAUI, LEFT, BCOEF )
NE THEREFORE WANT scoEF(J) = B(LEFT—K+J)(TAUI) TO co INTo
A(I,LEFT—K+J), I.E., INTO G{I—(LEFT+J)+2*K,(LEFT+J)-K) sINcE
A(I+J,J) Is To co INTO Q(r+K,J>. ALL I,J, IF NE CONSIDER q
As A TWO—DIM. ARRAY , WITH 2*K—1 ROWS (sEE coHHENTs IN
EANFAC). IN THE PRESENT FRocRAH, NE TREAT Q As AN EQUIVALENT
oNE-oINENsIoNAL ARRAY (BECAUSE OF FORTRAN RESTRICTIONS ON
DINENsIoN sTATENENTs) . NE THEREFORE WANT BCOEF(J) To co INTO
ENTRY

I —(LEFT+J) + 2*K + ((LEFT+J) ~ K—1)*(2*K-1)
= I-LEFT+1 + (LEFT —K)*(2*K—1) + (2*K—2)*J -

OOOOOQOOOOO OF Q .
JJ = I-LEFT+1 + (LEFT—K)#(K+KH1)
DO so J=1,K

JJ = JJ+KPKH2
so Q(JJ) = BCOEF(J)

C
c *#*OBTAIN FAcToRIzATIoN OF A , STORED AGAIN IN Q.

CALL sANFAc ( Q. K+KM1, N, KH1, KH1, IFLAG )
J co TO (40,999), IFLAG

c ### soLvE A#BCDEF = GTAU BY BACKSUBSTITUTION
40 no A1 I=1,N
41 BcoEF(I) = oTAU(I)

CALL EANsLv ( Q, K+KH1, N, KH1, KH1, BCOEF )
RETURN

99a IFLAG = 2
999 PRINT 599 i
ass FORNAT(41H LINEAR SYSTEM IN SPHINT NUT INvERTIELE)

' RETURN
END

The program makes use of an unspecified banded matrix solver BAN-
FAC/BANSLV to solve by Gauss elimination without pivoting. For
completeness, we include here a listing of one such.

'SUBROUTINE BANFAC ( W, NROWW, NROW, NBANDL, NBANDU, IFLAG )
RETURNS IN W THE LU-FACTORIZATION (WITHOUT PIVOTING) OF THE BANDED
MATRIX A OF ORDER NRON WITH (NBANDL + 1 + NBANDU) BANDS OR DIAG*
ONALS IN THE WORK ARRAY N .

C1000
C###### I N P U T smears
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OOOQOOOOOOOOOOOOQQOOQOO
NROHW

UURX ARRAY UF SIZE (NRUNU,NRUN) CONTAINING THE INTERESTING
PART OF A BANDED MATRIX A , WITH THE DIAGONALS OR BANDS OF A
STORED IN THE ROWS OF W , WHILE COLUMNS OF A CORRESPOND TO
COLUMNS OF H . THIS IS THE STORAGE MODE USED IN LINPACK AND
REsULTs IN EFFIGIENT INNERMUsT LUUPs.

EXPLIUITLY, A HAs NBANDL sANDs RELUN THE DIAGUNAL+ 1 (MAIN) DIAGUNAL
+ NRANDU BANDS ARUYE THE DIAGUNAL

AND THUS, WITH MIDDLE = NBANDU + 1,
A(I+J,J) IS IN W(I+HIDDLE,J) FUR I=-NsANDU,...,NsANDL
~ _ J=1,...,NROW .

FUR EXAMPLE, THE INTEREsTING_ENTRIEs UF A (1.2)—BANDED MATRIX
UF URDER 9 WOULD APPEAR IN,THE FIRsT 1+1+2 = 4 ROWS UF W
As FULLUNE.

13 24 35 45 5? se 79
12 23 34 45 5s er 78 as

11 22 33 44 55 as 77 as 99
21 32 43 54 e5 76 s7 es

ALL UTHER ENTRIES UF W NUT IDENTIFIED IN THIS WAY UITH AN EN-
TRY UF A ARE NEYER REFERENGED .
....RUU DIMENEIUN UF THE UURH ARRAY H .
Musr BE .GE. NBANDL + 1 + NBANDU .

NEANDL.....NUMsER OF BANDS UF A EELUU THE MAIN DIAGUNAL
NBANDU ....NUMsER UF BANDS UF A AEUYE THE MAIN DIAGUNAL .

GOO
##### U U T P U T ######

OOOOOOOOOOOOOOOIE

IFLAG ....INTEGER INDIGATING SUCCESS( = 1) UR FAILURE ( = 2) .
IFLAG - 1, THEN I

CONTAINS THE LU-FAGTURIZATIUN UF A INTU A UNIT LUNER TRIANGU-
LAR MATRIX L AND AN UPPER TRIANGULAR MATRIX U (BOTH BANDED)
AND STORED IN cUsTUMARY FAEHTUN UYER THE GURREEPUNDING ENTRIES
UF A . THIS MAKES IT POSSIBLE TO sULvE ANY PARTIGULAR LINEAR
sYsTEM A*X = B FUR X BY A

. "CALL EANsLv ( U, NRGNN, NRUU, NEANDL, NBANDU, B )
UITH THE SOLUTION X GUNTAINED IN B ON RETURN .

IFLAG - 2, THEN l ~- _
UNE UP NROH-1, NEANDL,NsANDU FAILED TO BE NUNNEGATIUE, UR ELsE
ONE UF THE PUTENTIAL PIvUTs UAs FUUND TO BE ZERO INDIGATING
THAT A DUEs NOT HAVE AN LU-FACTORIZATION. THIs IMPLIEs THAT
A Is SINGULAR IN cAsE IT IS TUTALLY PUsITIvE .

##### M E T H U D ###### i
GAUSS ELIMINATIUN U I T H U U T PIUUTING Is USED. THE RUUTINE Is

INTENDED FOR USE UITH MATRIGEE A NHIGH DU NUT REQUIRE RUN INTER-
CHANGES DURING FAGTURIZATIUN, ESPECIALLY FUR THE T U T A L L Y
P U s I T I v E MATRICES NHIGH DUGUR IN sPLINE GALcULATIUNs.

THE RUUTINE SHOULD NUT BE UsED FUR AN ARRITRARY BANDED MATRIX.
OOCICIQOAE

INTEGER IFLAG,NEANDL,NsANDU,NRUU,NRUNw, I,IPK,J,JMAX,K.KHAX
# ,MIDDLE,MIDNK,NROWH1

REAL H(NROWH,NROW), FACTOR,PIVOT _
C

IFLAG = 1
MIDDLE I NBANDU +-1

W(MIDDLE,.) CONTAINS THE MAIN DIAGONAL OF A .
NRONM1 I NROH - 1
IF (NROWM1) 999,900,1

1 IF (NBANDL .GT. O) GO TO 10

DO 5 I=1,NROWM1
A IS UPPER TRIANGULAR. CHECK THAT DIAGUNAL Is NONZERO .

IF (w(MIDDLE,I) .EQ. O.) GO TO 999
CONTINUE

GO TO 900
1D IF (NEANDU .GT. U) GU TO 2o
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C - A IS LOWER TRIANGULAR. CHECK THAT.DIAGDNAL IS NONZERO AND
C DIVIDE EACH COLUMN BY ITS DIAGONAL .

DO 15 I-1,NRDwH1
PIUOT = H(HIDDLE,I)
IF(PIv0T .EQ. 0.) G0 TO 999
JMAX = HINO(NBANDL, NRON - I)
DO 15 J=1,JHAx

15 H(MIDDLE+J,I) = W(MIDDLE+J,I)/PIVOT
- RETURN

c
c A Is NOT JUST A TRIANGULAR MATRIX. CONSTRUCT LU FACTURIZATIUN

20 DO so I=1,NRDNN1
c U(HIDDLE,I) Is PIVOT FOR I-TH STEP .

PIVOT = H(HIDDLE,I)
IF (PIVOT .EQ. 0.) GU TO 999

0 JHAX Is THE NUHEER OF-(NONZERO) ENTRIES IN COLUMN I
0 EELOH THE DIAGONAL .

JHAX = HINo(NEANDL,NR0H - I)
c DIVIDE EACH ENTRY IN COLUMN I EELOH DIAGONAL BY PIUOT .

DO 32 J=1,JHAx
32 N(HIDDLE+J,I) = w(HIDDLE+J,I)/PINDT

0 KHAX Is THE NUHEER OF (NUNZERO) ENTRIES IN RON I TO
0 THE RIGHT OF THE DIAGONAL .

KMAX = MINO(NBANDU,NRUH — I)
c sUETRAcT A(I,I+K)*(I—TH COLUMN) FROM (I+K)-TH COLUMN
c (BELDH RON I ) .

DO A0 H=1,HHAx
IPK = I + K
MIDMK = MIDDLE — K
FACTOR = H(HIDHK,IPH)
DO 40 J=1,JHAx

40 w(HIDHR+J,IPH) = H(MIDHH+J,IPH) - H(HIDDLE+J,I)*FACTOR
so CONTINUE

c CHECK THE LAST DIAGONAL ENTRY .
900 IF (U(NIDDLE,NROH) .NE. 0.) RETURN
999 IFLAG = 2

- RETURN
END

SUBROUTINE BANSLV ( W, NROHW, NROH, NBANDL, NBANDU, B T
COMPANION ROUTINE TO BANFAC . IT RETURNS THE SOLUTION X OF THE
LINEAR SYSTEM Aii = B IN PLACE OF B , GIUEN THE LU-FACTORIZATION
FOR A IN THE HORKARRAY H .

Qfififififiiifififigfifififififigfifififi

DJU21_.

##1## I N P U T ####*# '
H, NRUHW,NHOH;NBANDL,NBANDU.....DESCRIBE“THE LU-FACTORIZATION OF A

HANDED MATRIX A OF ORDER NED“ AS CONSTRUCTED IN BRNFAC .
FOE DETAILS, SEE BANFAC .

.EIGHT SIDE OF THE SYSTEM TO BE SOLVED .

##*## O U T P U T ******
.CONTAINS THE SOLUTION X , OF ORDER NROH .

##1## H E T H O D ******
(HITH A = L*U, AS STORED IN U,) THE UNIT LOWER TRIANGULAR SYSTEM

L(U*X) = B Is SDLVED FDR Y = Utxl AND Y sTDRED IN B . THEN.THE'
UPPER TRIANGULAR SYSTEM U*X = Y Is sDLvED FDR x . THE CALCUL-
ATI0Ns ARE so ARRANGED THAT THE INNERN0sT LOOPS STAY NITHIN c0LUHNs.

1
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INTEGER NBANDL,NBANDU,NROH,NROHN, I,J,JMAX,MIDDLE,NROHM1
REAL N(NROHN,NROH),B(NROH)
MIDDLE = NBANDU + 1
IF (NROH .EQ. 1) GO TO 49
NRONM1 = NROH — 1
IF (NBANDL .EQ. 0) GO TO 30

C FORWARD PASS
C FOR I=1,2,...,NROH—1, SUBTRACT RIGHT SIDE(I)*(I-TH COLUMN
C OF L ) FROM RIGHT SIDE (BELOW I—TH RON) .

GOOD

DO 21 I=1,NRONM1
JMAX = MINO(NBANDL, NROH—I) _
DO 21 J=1,JHAx

21 B(I+J) = B(I+J) — E(I)*N(HIDDLE+J,I)AssBACKWARD P
FOR I=NRON,NROH—1,...,1, DIUIDE RIGHT SIDE(I) BY I-TH DIAG-
ONAL ENTRY OF U, THEN SUBTRACT RIGHT SIDE(I)#(I-TH COLUMN
OF U) FROM RIGHT SIDE (ABOVE I-TH RON).

30 IF (NBANDU .GT.-O) GO TO 40
C . A IS LOWER TRIANGULAR .

DO 31 I=1,NROH
31 B(I) = B(I)/H(1.I)

" RETURN
40 I = NROH
41 B(I) = B(I)/W(HIDDLE,I)

JMAX = MINO(NBANDU,I-1)
DO 45 J=1,JMAX

45 B(I-J) = B(I-J) - B(I)*W(MIDDLE-J,I)
I=I—1
IF (I .GT. 1) so TO 41

49 B(1) = E(1)/H(MIDDLE,1) RETURN
END

Readers unfamiliar with the computational (and theoretical) aspects of
solving systems of linear algebraic equations are urged to consult the fine
textbook on that subject by Forsythe 8: Moler [1968] or any textbook on
numerical analysis, for example, Conte & de Boor [1980]. They will then
recognize the splitting of the task of solving Cx = b for x into factoring C’
and then solving for x with the aid of that factorization as quite custom-
ary. In fact, the only special feature of BANFAC/BANSLV above compared
to other banded matrix solvers available (see for example, Wilkinson Sc
Reinsch [1971:pp. 71—92]) is the fact that no pivoting for size is used. This
makes BANFAC/BANSLV in general inappropriate for band matrices other
than totally positive or strictly diagonally dominant ones.

The interplay between knots and data sites We consider now
some bounds on the interpolation error. We continue to measure the size
of a function g by its max-norm '""

llyll == a1g§%_¢b|9(I)l

for some fixed interval [a . . b] that also contains all the data sites 1'1, . . . , Tn.
Although we could be more general, we consider only knot sequences t =
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(t,)‘,‘+" with o.= 1, = =1, < ¢,,+1 5 gt, <t,,,., = =1:,,,.,, = b,
just as in Chapter XII. We assume that

B-,j(T-,-;)>0, ‘i-'=I.,...,7't,

so that has exactly one solution and we denote the corresponding
interpolating spline function f = E, o¢,Bi by

Ig.

We derived in Chapter XII the 'error bound XII(39) for cubic spline
interpolation at knots. The same argument establishes the following more
general result.

(9) Lemma. For every continuous function g on [a . . b], the interpolation
error is bounded by '

(10) Ila — IQII 5 (1 + ll-Ill) dist (9-= $1-=.1=)
with

llfll == 111%-I>¢{|IIy||/Ilyll =9 E Cl<1--bl\{0}}- I
Since Chapter XII already provides us with various bounds on the num-

ber dist (g, $;,,t), this lemma then focuses attention on the norm ||I of our
interpolation process I .

The linear system (1) becomes singular when the condition (3) is violated.
We therefore expect the number |]I|| to grow large as T1; approaches the
limits ti or t,+;, of its allowable range (and the knot multiplicity of this
limit is < la).

A different cause for large ||I is nonuniformity of ‘T, as we saw already
in Example XII(37). To recall, we saw there an interpolation error of more
than 383.4 when using cubic spline._inte1"polation at knots at four (very
nonuniformly spaced) data sites, with = 1,/:1: + 1 the function to be
approximated in [-1 . . 1]. We know from Example II(12) that the distance
dist (g, II.,,;-.1) of the function ~,/:1: + 1 on [-1 .. 1] from cubic polynomials is
5 .03005. Therefore, since II._;-4 C $4,, whatever t might be, dist (g,$4,t) _<§
.03005. In consequence, 383.4 _<§ (1 + ||I||).O3005, therefore

||I]] > 12 754.,
with a corresponding loss of five decimal places in the accuracy achieved.

The next lemma shows this to be no accident.

(11) Lemma. There exists a positive constk (closely related to the num-
ber DE; of B-spline Property XI(x); see Xl(-4)) so that the norm of the
interpolation process I is bounded below by '

_> constk max II'llI1{tJ'+;¢._..1 — ts; I . . tj+,I;_1) Fl (T5 . . 'T'-5+1) ¢

-_- i AT-5
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A simple proof of this lemma can be found in de Boor [1975]; see Problem
3 below. '

The lemma shows that we can make "I arbitrarily large by letting two
interpolation sites approach each other while keeping everything else fixed.
It shows that we should pay careful attention to how we place data sites
and knots so as to avoid making the constant 1 + || in (10) large, for a.
large HI would mean throwing away all that approximation power in $;¢,t.

To be sure, (10) is a bound and does not guarantee a relatively large
interpolation error for every g whenever [II is large. But, as we will see
below, a large "I makes the noise inherent in floating-point calculations
an important contributor to the approximation error.

Even order interpolation at knots For even order ls,
I-:=:2-m

say, one can make most of the data sites also knots. One chooses t;,,+1, . . . ,t,,
so that

tk=a_'§T1 <---<Tm<tk+1,

(12) 1',,-,.,.,- =t;,+j, j= 1,...,'n.—l-:,
tn<Tn—m+1 <"'<Tn_€b=tn+1-

For ls: = 4, this corresponds to cubic spline interpolation with the “not-a~
knot" end condition discussed in Chapter_IV (see p. 44). We denote the
resulting interpolation process by L1,.

(13) Theorem. There exists a positive const;,_M(.,,,,,) which depends on
1-: = 2m and increases to infinity as the following global mesh ratio

MPH ml == sex1-,] 1-3+1?‘ T-J

goes to infinity, so that, for every m times continuously differentiable
function g,

ll9 -' Ikgll S ¢°flStk,M(¢,}.~»») E1131? (gm), $m.rll'»"lm-

A proof can be adduced from de Boor [1976]_-3.
This theorem shows that spline interpolation at knots to a smooth func-

tion g produces good results even for nonuniform data site spacing, that is,
even when Lemma (11) shows that HI,1,“ must be very large, and so shows
that a large HI], may have an adverse effect on the quality of the approx-
imation I1, g to g, but is not guaranteed to do so. But, Theorem (13) uses
the smoothness of the function g and is therefore valid only to the extent
that this smoothness is not destroyed in calculations by noise.
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(14) Example: A large amplifies noise We choose 1-: = 4,
g(:t) = $3 + :02 + :1: + 1, hence I4g = g in exact arithmetic. We perturb
the function values g(*rr) by errors of size SIZE, pick n. '= 7, and T1 <

< T7 equally spaced in [0 .. 1], except that AT3 =: h, initially equal
to 1/6, is allowed to grow small. The program is written to invite further
experimentation.

CHAPTER IIII, EXAMPLE 1. A LARGE NORM AMFLIFIES NOISE.
CALLS SPLINT(BANFAC/SLV,BSPLNB),BSPLPP(BSPLVB#),PPUALU(INTERU),ROUND
C AN INITIALLY UNIFORM DATA POINT DISTRIBUTION OF N POINTS IS

CHANGED I T E R M x TIMES BY MOvING THE J C L O S E —TH DATA POINT
TOWARD ITS LEFT NEIGHBOR, CUTTING THE DISTANCE BETWEEN THE THO BY A
FACTOR OF R A T E EACH TIME . TO DEMONSTRATE THE CORRESPONDING
INCREASE IN THE NORM OF CUBIC SPLINE INTERPOLATION AT THESE DATA
POINTS, THE DATA ARE TAKEN FROM A CUBIC POLYNOHIAL (WHICH HOULD BE
INTERPOLATED ENACTLY) BUT UITH NOISE OF SIZE S I z E ADDED. THE RE-
SULTING NOISE DR ERROR IN THE INTERPOLANT (COMPARED TO THE CUBIC)
GIVES THE NORM OR NOISE AMPLIFICATION FACTOR AND IS PRINTED OUT
TOGETHER HITH THE DIMINISHING DISTANCE H EETHEEN THE THO DATA
POINTS.

INTEGER I,IFLAG,ISTEP,ITER,ITERMx,J,JCLOsE,L,N,NMAx,NM1
PARAMETER (NMAx=2oo)
REAL AMAX,BCOEF(NMAX),BREAK(NMAX),COEF(NHAX*4),DX,FLTNM1,FX

1 ,GTAU(NMAX),H,RATE,SCRTCH(NMAX#7),SIZE,STEP,T(NMAI+4),TAU(NMAX),X
C REAL AMAx,RCOEF(20o),BREAK(2oo),cOEF(soo),Dx,FLTNM1,Fx
c # ,GTAU(2oo),H,RATE,SCRrcH(140O),sIzE,STEP,T(2o4),TAU(2oo),x

COMMON /ROUNT/ SIZE
DATA STEP, ISTEP / 20., 20 /

c - _ FUNCTION TO BE INTERPOLATED .
C(x) = 1.+x*(1.+x*(1.+x)) I
READ 5oo,N,ITERMx,JCLOSE,sIzE,RATE

500 FORMAT(3I3/E1o.3/E1o.3)
PRINT 600,SIZE

soc FORMAT(1sH SIZE OF NOISE =,EB.2//
a 25H H MAx.ERROR)

C ' START HITH UNIFORM DATA POINTS .
NM1 = N — 1
FLTNM1 = FLOAT(NM1)
DO 10 I=1,N

10 TAU(I) = FLOAT(I—1)/FLTNH1
C , SET UP KNOT SEQUENCE FOR NOT—A-KNOT END CONDITION .

- DO 11 I=1,4
T(I) = TAU(I)

11 T(N+I) = TAUCN)
DO 12 I=5,N

12 T(I) = TAU(I—2)

OOOOOOOOOO

C
DO 100 ITER=1,ITERMX

DO 21 I=1,N
21 GTAU(I) = ROUND(G(TAU(I)))

CALL SPLINT ( TAU, GTAU, T, N, 4, SCRTCH, BCOEF, IFLAG )
GO TO (24,23),IFLAG

23 PRINT 623
623 FORMAT(27H SOMETHING HRONG IN SPLINT.)

STOP
24 CALL BSPLPP ( T, BCOEF, N, 4, SCRTCH, BREAK, COEF, L )
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CALCULATE MAX.INTERPOLATION ERROR .
AMAI - 0.
DO so I-4,N

Dx - (BREAK(I-2) — BREAK(I-3))/STEP
DD 25 J=2,IsTEP

x = RREAK(I-2) — DX*FLOAT(J—1)
Fx = PPvALU(RREAK,COEF,L,4,x,0)

25 AHAX - AMAx1(AMAx,AES(Fx-G(I)))
so CONTINUE

H - TAU(JCLOSE) — TAU(JCLOSE—1)
PRINT ssO,H,AMAx

630 FORMAT(E9.2,E15.3)
MOVE TAU(JCLOSE) TOWARD ITS LEFT NEIGHBOR SO AS TO CUT
THEIR DISTANCE BY A FACTOR OF RATE .

TAU(JCLOSE) = (TAUCJCLOSE) + (RATE—1.)#TAU(JCLOSE"1))/RATE
100 CONTINUE

STOP
END

REAL FUNCTION ROUND ( X )
C FROM * A PRACTICAL GUIDE TO SPLINES * BY C. DE BOOR
CALLED IN EXAMPLE 1 OF CHAPTER XIII

REAL X, FLIP,SIZE
COMMON /ROUNT/ SIZE
DATA FLIP /—1./
FLIP = —FLIP
ROUND I I + FLIP#SIZE

RETURN
END

The input N = 7, ITERMX = 10, JCLOSE = 4., SIZE = 10"-6 and RATE = 2.
produces the -following output, on the left.- _

SIZE OF NOISE =O.10-O5 SIZE OF NOISE =0.00+OO

R HH MAX.ER OR MAX.ERROR
o.17+oO 0.143-05 o.17+Oo 0.238-06
0.83-O1 0.250-05 O.83—01 O.23B—06
O.42—O1 0.691-cs 0.42-011 0.47?-oe
0.21-O1 o.159—o4 0.21—01 0.47?-oe
0.10—O1 0.353—O4 O.10—O1 0.143-O5
0.52-02 0.672-O4 0.52-O2 .O.477-O6 .
0.26-O2 o.146—o3 O 26-02 o.954—o6
0.13-02 0.259-03 O.13—02 0.204-O4
0.65-03 O.57o—O3 0.65-O3 0.763-O5 _
0.33—03 O.111—O2 O.33—O3 0.157-O4

The increased magnification of the initial noise is very noticeable. The
magnification factor increases like 1/h, confirming that the lower bound
for “I in Lemma (11) is qualitatively correct. The Same input, but with
SIZE = 0., produces the output on the right which Shows the same kind of
noise increase even when starting with supposedly correct data._ El

In a very simplified form, the machinery at work here is the following.
If we consider the linear functional Ah of approximate differentiation on
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C’ [a . . b] given by the rule

,\hg ;= , all 9’

then its size or norm is

llihll == max{ IAAQI/llyll =9 E Cl¢1-- bl \ {0}} = 2/71-
In particular, the norm becomes arbitrarily large when h becomes small.
This corresponds to Lemma (11). But now, for any continuously differ-
entiable function g, Ahg -—-> g’(a) as h -—-» 0, hence for a smooth g, |)\hg|
stays bounded even though ||/\;,|| -—+ oo as h -1- O. This corresponds to
Theorem (13). But, finally, if the computed function values are inaccurate
because of the finite precision arithmetic used, then the computed value for
Ahg equals Ahg -P s//1, with s the noise or error in the computed function
values. Therefore, the computed number A,-,g may become quite large as h
becomes small, that is, as the noise irithe data or in the machine arithmetic
becomes the dominating phenomenon. (See also Problem 7.)

Now a final observation to prevent the reader from jumping to un-
warranted conclusions. A large ||I does not come from some small Ar;
per se. If, for example, the data sites are chosen uniformly spaced, then
|lI4]| 5 1.7- - - regardless of how small each Ar, might be!

Interpolation at knot averages If one has the freedom to choose the
data sites (T,-_) for given knot sequence t, then use of the Greville sites

(15) It = tie 1: (“+1 + ' ' ‘ + ti+k-1)/(Uh - 1)

is to be recommended. These points are those used in Schoenberg‘s varia-
tion diminishing approximation XI(33). Call the resulting interpolant I}: g.
Then IQ‘ is just broken line interpolation, and = 1. It can be shown
(Marsden [1974] (see Problem VII), de Boor [1975]) that

|lI5|l s 2. IIIZII S 27 ~
(in fact, ||Ij,"!| 5 3 seems a more realistic, but as yet unproven, bound). It
has been conjectured that

sup < oo, for any particular k.
t

However, R.Q. Jia [1988] gives a counterexample to this, for k = 32.
Nevertheless, since

ng - rall s (1 +,||I.:||) ds1=<g.a..t>.
ll

it is likely that, for moderate k (and certainly for k 5 4), Ij',‘g is about as
good an approximation to g from $;,,,t as possible.

|
ll
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(16) Example: Cubic spline interpolation at knot averages with
good l(fl01ZS In this example, we conclude our experimentation with
the knot placement algorithm NEWNOT begun in Chapter XII; See Example
XII(33)iI. We now have a cubic spline approximation process at hand which
has a small norm, namely cubic spline interpolation at knot averages. We
return therefore to the goal of Example XII(33), to guess a reasonable
knot distribution from an approximation to the function g(:1:) =- A/1 + :1: in
[-1..1]_
CHAPTER XIII, EIAHPLE 2. CUEIC SPLINE INTERPOLANT AT KNOT AVERAGES
C WITH GOOD KNOTS.
CALLS sPLINT(BANFAC/SLV,RSPLVE),NEHNDT,ESPLPP(EsPLvH*>

INTECER I,IsTEP,ITER,ITERMx,N,NHIGH,NMAx,NMR,NLov
PARAMETER (NMAI-20)
REAL ALGERP,ALOGER,BCOEF(NMAx+2),BREAH(NMAx),DEcAr,Dx,ERRMAx

* ,C(4,NMAX),G,GTAU(NMAX),H,PNATX,SCRTCH(NHAX*?),STEP
# ,T(NMAx+s),TAU(NMAx),TNEU(NHAx)

REAL ALGERP,ALOGER,BCOEF(22),BREAK(20),DECAY,DX,EHRMAX,
# C(4,2O),G,GTAU(2O),H,PNATx,sCRrCH(14o),sTEP.T(2S),
* TAU(20}.TNEW(20)

ISTEP AND STEP - FLOAT(IsTEP) SPECIFY POINT DENSITY FOR ERROR DET-
ERMINATION.
DATA STEP, ISTEP /20., 20/

CICICIOCI

C THE FUNCTION G IS TO BE INTERPOLATED .
G(x$ - SCRT<x+1.)
DECAY I O.

C READ IN THE NUMBER OF ITERATIONS TO BE CARRIED OUT AND THE LOWER
C AND UPPER LIMIT FOR THE NUMBER N OF DATA POINTS TO BE USED.

READ 500,ITERHI,NLOW}NHIGH
sou FORHAT(sIs)PRINT sun, ITERMI .
sun FORHAT(I4,22H CYCLES THROUGH NEWNOT//# 28H N HAx.ERRuR DECAY EkP.£)

C “LOOP OVER N = NUMBER OF DATA POINTS .
DO 4O N'NLOW,NHIGH,2

4 NHK ' N-4
H - 2./FLOAT(NMK+1)
DO 5 II1,4

T(I) = -1.
5 T(N+I) I 1. '

IF (NHK .LT. 1) GO TO 1O
DO 6 I=1,NMK

6 T(I+4) - FLOAT(I)*H - 1.
1O ITER I 1

C CONSTRUCT CUBIC SPLINE INTERPOLANT. THEN, ITERMX TIMES,
DETERMINE NEW KNOTS FROM IT AND FIND A NEW INTERPOLANT.C

11 DO 12 I-1,N
TAU(I) I (T(I+1)+T(I+2)+T(I+3))/3.

12 GTAU(I) - G(TAU(I))TAU GTAU T N 4 SCRTCH BCOEF IFLAG )( 1 | 1 1 II I 1

CALL BSPLPP ( T, BCOEF, N, 4, SCRTCH, BREAK, C, L )
IF (ITER .GT. ITERHI) GO TO 1a
ITER = ITER + 1
CALL NEWNOT ( BREAK, C, L, 4, TNEW, L, SCRTCH )

15 DD 1a I=2,L
18 T(3+I) -= TNE'J(I) _

C ESTIMATE MAx.INTERPOLATION ERROR ON (-1 .1) .
19 ERRHAX = O. GO TO 11

C LOOP OVER POLYNOMIAL PIECES OF INTERPOLANT .
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DO 30 I=1,L
DX = (BR.EAK(I+1)-BR.EAK(I))/STEP

C INTERPOLATION ERROR Is CALCULATED AT ISTEP POINTS PER
C POLYNOMIAL PIECE .

DO so J=1,IsTEP
H = FLOAT(J)#DX I
PNATX = C(1.I)+H*(C(2.I)+H*(C(3.I)+H#C(4.I)/3.)/2'.)

so ERRHAX - AHAX1(ERRMAX,ABS(G(BREAK(I)+H)-PNATX))
C CALCULATE DECAY EXPONENT .

ALOGER = ALOG(ERRHAX)
IF (N .GT. NLOW) DECAY =

* (ALOGER — ALGERP)/ALOG(FLOAT(N)/FLOAT(N—2))
ALGERP = ALOGER

C
40 PRINT s40,N,ERRMAx,DECAY

640 FORMAT(Ia,E12.4,F11.2)
STOP

END

The program allows one to specify the first and final value for the
number N of data points to be used. For each choice of N, the knots are ini-
tially equally spaced and are then modified through ITERMX Cycles through
NEWNOT. ITERMX IS specified on input.

The output for N = 2,4, . . . , 20, and for ITERMX = O, 3, 6, is Shown below,
to the left. Both decay rate and error do indeed improve as NEWNOT is used
more and more. But, even with 6 Cycles through NEWNOT, we do not get the
hoped for N"4-convergence.

N

030141-
10
12
14
16
18
20

N

4
6
8

10
12
14
16
18
20

1476+00
9126-01
7070-01
5975-01
5270-01
4767401
4385-01
4082-01
3834-01

1476+0O
7753-01
4044-01
2593-01
1822-01
1364-01
1065-01
8637-02
7155-02

0
-1
-0
-0.
-0
-0
-0
-0
-0

0
-1
-2
-1
-1
-1
-1
-1
-1

0 CYCLES THROUGH NEWNOT

MAX.ERROR DECAY EXP.

00
19
89
75
69
65
63
61
59

3 CYCLES THROUGH NEWNOT

MAX.ERROR DECAY EXP.

00
59
26
99
94
88
85
78
79

N

4
6
8

10
12
14
16
18
20

N

4
6
8

' 10
12
14
16
18
20

1476+00
9126-01
6436-01
4381-01
2896-01
1919-01
1278-01
8604-02
5865-02

1476+00
8335-01
5004-01
2833-01
1647-01
9871-02
6103-02
3895-02
2568-02

0 CYCLES THROUGH NEWNOT _

MAX . ERROR DECAY EXP .

CYCLES THROUGH NEWNOT

MAX.ERROR DECAY EXP.
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6 CYCLES THROUGH NEWNOT 2 CYCLES THROUGH NEWNOT

N NAx.ERROR DECAY EXP. N NAx.ERROR DECAY Exp.
4 O 1476+0O 0.00 4 0.14?6+O0 0.00
6 0.7545-01 -1.65 6 O.T954-O1 ' -1.52
8 O 3413*O1 -2.76 8 0.4183-O1 -2-23

O 8110 O.18TO-O1 *2.70 10 .2240-O1 -2.
12 O.1139—O1 -2.72 12 0.1259-01 -3.16

1414 0.7548-02 -2.67 0.7395-02 -3.45
16 0.5329-O2 -2.61 16 0.4526-02 -3.68

0 3924-O2 -2.60 0.2878-O2 -3.8418 l

20 0.3009-02 -2.52 20 0.1891-02 -3.99

We try the following reasonable variant. Instead of starting afresh with
uniform knots for each new N, we use the Cubic spline approximation last
computed for the preceding N to determine the initial knots for the next
N. This requires the following modification of the earlier program between
the DO - 40 statement and the statement labeled 4.

CHAPTER XIII, EXAMPLE 2M. CUBIC SPLINE INTERPOLANT AT KNOT AVERAGES
C WITH GOOD KNOTS. MODIFIED AROUND LABEL 4.
CALLS SPLINT(BANFAC/SLV,BSPLVB),NEWNOT,BSPLPP(BSPLVB#)

INTEGER I,ISTEP,ITER,ITERMX,N,NHIGH,NMAX,NMK,NLOW
PARAMETER (NMAXI20) .
REAL ALGERP,ALOGER,BCOEF(NMAX+2),BREAK(NMAX),DECAY,DX,ERRMAX,

I C(4 NMAX),G,GTAU(NMAX),H,PNATX,SCRTCH(NMAX*7),STEP,T(NMAX+6),# TAUINHAX),TNEW(NMAX)
REAL ALOERP,ALOOER,SCOEF(22>,SREAH(2o),OECAY,Ox,ERRMAx,

A c(4,2o),G,GTAu(20),H,PNATx,sCRTcH(14o).sTEP,T(2s),
* TAU(20),TNEW(20)

ISTEP AND STEP = FLOAT(ISTEP) SPECIFY POINT DENSITY FOR ERROR DET-
ERMINATION. _
DATA STEP. ISTEP /20.. 20/ -A HTHE FUNCTION G Is TO BE INTERPOLATED .

FJOOOFJ

C
G(X) I SORT(X+1.)
DECAY I 0.

C READ IN THE NUMBER OF ITERATIONS TO BE CARRIED OUT AND THE LOWER
C AND UPPER LIMIT FOR THE NUMBER N OF DATA POINTS TO BE USED.

READ 500,ITERMX,NLOW,NHIGH
500 FORMAT(3I3)

PRINT 600, ITERMX _
600 FORMAT(I4,22H CYCLES THROUGH NEWNOT//

I 28H N MAX.ERROR DECAY EXP./)
LOOP OVER N = NUMBER OF DATA POINTS .C

DO 4O N=NLOW,NHIGH,2
IF (N .EQ. NLOW) GO T0 4 ‘
CALL NEWNOT ( BREAK, C, L, 4, TNEW, L+2, SCRTCH )
L = L + 2
T(5+L) I 1.
T(s+L) I 1.
ITER I 1 CO TO 15

4 NHK I N-4
H - 2./FLOAT(NMK+1)
DO 5 I-1,4

T(I) I -1.
5 T(N+I) I 1.

IF (NMH .LT. 1) GO TO 10

 I$.—»—;-L
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l’

D0 6 I=1,NHK
6 T(I+4) = FLOAT(I)*H - 1.

10 ITER = 1
C CONSTRUCT CUBIC SPLINE INTERPOLANT. THEN, ITERMI TIMES.
C DETERMINE NEH KNOTS FROM IT AND FIND A NEW INTERPOLANT.

11 DO 12 I=1,N
TAU(I) = (T(I+1)+T(I+2)+T(I+3))/3.

12 GTAU(I) = G(TAU(I)) .
CALL SPLINT ( TAU, GTAU, T, N, 4, SCRTCH, BCOEF, IFLAG )
CALL BSPLPP ( T, BCOEF, N, 4, SCRTCH, BREAK, C, L )
IF (ITER .GT. ITERHX) GO TO is
ITER = ITER + 1
CALL NEWNOT ( BREAH, C, L, 4, TNEW, L, SCRTCH )

_ 15 DO 18 I=2,L
18 T(3+I) = TNEN(I)

GO TO 11
C ESTIMATE MAx.INTsRPOLATION ERROR ON (-1..1) .

19 ERRNAI = 0. _-
C LOOP OVER POLYNOHIAL PIECES OF INTERPOLAHT .

DO 3O I=1,L
DX = (BREAK{I+1)—BREAK(I))/STEP

C INTERPOLATION ERROR IS CALCULATED AT ISTEP POINTS PER
C POLYNOMIAL PIECE .

DO so J=1,ISTEP
H = FLOAT(J)*DX
PNATX = C(1.I)+H*(C(2,I)+H*(C(3,I)+H#C(4,I)/3.)/2.)

so EHRHAX = AMAxI(ERRMAx,ABS(G(BREAH(I)+H)-PNATx))

C CALCULATE.DECAY EXPONENT .
ALOGER I ALOG(ERRMAX)
IF (N .CT. NLOW) DECAY =

* (ALOGER ~ ALGERP)/ALOG(FLOAT(N)/FLOAT(N-2))
ALGERP I ALOGER

C
40 PRINT 640,N,ERRMAX,DECAY

640 FORMAT(I3,E12.4,F11.2)
. STOP

END -

The resulting output is also listed above, to the right, and shows the
desired O (N'4) Convergence after a few applications of NEWNOT. Cl

Interpolation at the Chebyshev-Demko sites While, according to
R.Q. Jia [I988], use of knot averages may not guarantee a ‘small’ ||I;,|],
the analogue of the Chebyshev sites II(9) for polynomial interpolation is
readily available for interpolation from $k,t as S. Demko [1985] has pointed
out. To be sure, use of these sites 1'“ does not minimize the norm ||I of
the resulting spline interpolation map

IE
over all possible choices ‘T of interpolation sites. But it does mininlize the
max-norm of the inverse Al}1 of the spline collocation matrix

A, := (Bj(r,):i,j= 1,....,n)
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over all possible choices of 1' and thereby (see Remark (23)) gives the
t-independent bound I

(17) ~ ll-Fill 5 Dk,oo-
Here and below, the norm "C of a ‘matrix C is taken as its max-norm,
that is

__ __ IICXII _ - -<18) IICII .- ||@|1.. .- mg-X -W - mgx; lC'(m)l
with the vector norm

nxu == |1=<||.. == m_f-'1-X|$il-
In what is to follow, it will be important to recall from Theorem (7) that
A.,- is totally positive, hence, by Lemma (8), the inverse of AT, if it exists, is
necessarily checkerboard. In that case, the unique interpolant to any given
g is Igg = E3, Cl‘IjBk‘1' with or = A;1(g('rj) :j :- 1, . . . ,n), hence

IIIZQII S |lA¥1l|ll9|l-

Consequently,

(19) ll-Bill S l|A¥1|\-
With this in mind, Demko proposgs to choose as interpolation sites the

sequence 1' (if any) that minimizes ||A,,‘Z' 1 This turns out to be the sequence
1"’ of extrema of the Chebyshev spline of order k for the knot sequence
t. This is, by definition, the function

__ (—)"'j _
(20) Tk't ‘-—- dist (B_,,span(B, : i qé B3’

with the distance measured in the max-norm. The basis for this choice is
the following lemma.

(21) Lemma. Let f., =: :5, a;fB_, satisfy

(22) 1 = (-)"-*f,(¢,*) ='||f,||, ¢= 1, . . .','n.,
for some strictly increasing sequence;-*. Then

(—-)'"-iaf = 1/ dist (B;,span(B_-; :j qé ii: 1, . . . ,n.
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In particular, f, is uniquely determined by (22).

PROOF SKETCH. Let A. := A.,-- and set

Pi = $.=.,t —> 1R= f H Z A:1<w">r<T;>~
- 3'

Then MB, = 5,3-, hence, using the checkerboard nature of A,',f.1,

<—>"*-Q: = <->"-ms. = Zj<—>""*A:‘<m<->""~*‘
' =2!/-1.T‘(m')| = ||»».||.

J.

while, for any linear functional p on any normed linear space X and for
any f E X,

lufl = Hull dist (f, ker /1)-
Hence, 1 = dist (f...,kerp,), while kerp, ‘=1 span(B,- : j qé i), and so

CllSt I l{€I' pi) = Cll.Si3 (fa, l{6I‘ pt-5) = El

(23) Remark This shows that any f... G $x=,1; satisfying (22) is neces-
sarily the Chebyshev spline Tkit, hence that, conversely, the Chebyshev
spline, if it exists, has n local extrema, each of which is a global ex-
tremum, with neighboring extreme values having opposite signs. Also,
or‘ = Aj'1((—)""‘ : i = 1,. . .,n), hence, as AI1 is checkerboard,

- |l¢I*|l = ||1‘1I1l|-

On the other hand, from B-spline Property Xl(x) (see XI(4)),
'4

I

H“ ||a*|| 5 DE.-:=-=1

since 23- a;TBj|| = 1. This, together with (19), proves (17). ' El

It remains to prove the existence of the Chebyshev spline.

(24) Proposition. For 1- = (T1 < < 1-,,) with t, < T, < T,+;.., all i, let
ft =: Z), oi be the unique element of $1.; that satisfies f.,-(T-,3) = (-)'"*‘,
all i.

Then, min, ||cr"'[| is taken on, at a 'r for which f.,. satisfies the conditions
(22) imposed on f... in Lemma (21).

PROOF. The proof provides (not just coincidentally) an algorithm for
the construction of the minimizing 1' =: T“. This algorithm is, essentially,
the (second) Remez Algorithm for the construction of a best approximation
in the uniform norm.
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We start with the observation that

(—)'"_iaI > 0, all i,

since of -= E3, A.,'T1(i,j)(—)"_j = (—)"'"i E5, |A.,'T1(i,j_)|, with the sum nec-
essarily positive. Further, since f.,. strictly alternates in sign at the sequence
T1, . . . ,'r,, and vanishes outside (t1 . .t,.,_,.;,,), it follows that _f.,- has n distinct
local extrema o'1 < - - ~ < 0,1, with

(-)“-ma.) 2 1, 3.11 1.
This implies that ti < 0", < t,_,_;,,, all i. Indeed, if, for example, 0', $ t, for

some i, then B,,('r,,) = O for all -12 § i § 11., showing that, at (J1, . . . ,cr,),
_f,- agrees with Ej<,'a;Bj. In particular, with Corollary XI(28), we would
have i—2 Z S"(o¢'{, . . . , cr;?'__1) 2 s-(21%, a§B_,) = i—1, which is nonsense.

Consequently, there is exactly one f, =: Z5, a;'B,= with fa-(0,) = (--)'"'“i,
all i. For any '7 < .1, the difference, _f.,- — '7_f,._,., strictly alternates in sign on
01 < * - - < on, hence we must have S’ (or"' — ya“) = 11 — 1, and therefore

1.

(25) (—)"_ifiIl-' 2 (—)"'i<1F 2 0, all i-

lteration of this process generates _a sequence fm := 23- a_'T,-"Bj, m =
1, 2, . .. (with f1 = _f.,-, f2 = _f,_,.), whose coefficients converge monotonely
to some sequence o:*. The corresponding sequences (UT < < 0;“) of
extrema for fm therefore also converge, necessarily to a strictly increasing
sequence Tf < - -- < T; since fm strictly alternates in sign on 0?“ < <
0:‘.

It follows that the function f* := 23- a;B_-,- satisfies (22) since 1 =
(—)“_ifm(o','§") while ||fm\| = max, |fm(a1’")l and f... is the uniform limit
of (fm : m = 1,2, . . By Lemma (21), this function is uniquely deter-
mined by the conditions (22). In particular, it is independent of the 1' with
which we started this process. On the other hand, by (25), ||o:*|| _§

~A MATLAB program for the calculation of 1'“ for given t can be found in
an example in the SPLINE TUDLBDX (de Boor [1990]g); see chebdem there.
It turns out that a good choice for the 'r to start off the iteration just
described is the sequence of knot averages (15), and the resulting 1'“ is
often not all that different, so one might not even bother carrying out the
iterations. The only difficulty with interpolation at knot averages is the
unhappy fact that it is, in general, impossible to choose t for given (T,)
so that (15) holds. For example, take It = 3 and 1' = (1,2,5,6). Forthis
reason, we describe, finally,



..:p:I;'-"1.--*-"

Optimal interpolation 193

Optimal interpolation We have seen now several examples of error
estimates of the form -

(36) H9 -~ 5'9" S ¢O11$11s||9(k)|l
with S some approximation scheme. Micchelli, Rivlin, 8.: Winograd [1976]
have determined, for given data sites 1', an interpolation scheme S for which
COI1Sl'.,5' in (26) is as small as possible. This scheme, which we will denote
by

£12
S (read “Clap. ess crowned")

for the obvious reasons, turns out to be given by interpolation at the given
data sites 'r by splines of order k with its knot sequence t = (t,)‘f+"‘
determined as follows. Let

[a..b]:=['r1..'r,.,_],_

choose t1 = = tr, = a, t.-,_+1 = = t,,_.,.;,, = b, and choose the n — I:
points t;,,_,_1, . . . , tn in {(1. . b] as the breaks of the unique step function h for
which '

|h(:r)| = 1 for all .17 E [rt . . b], with h(a+) = 1,
(27) h llas § n -ls: sign changes in [a . . b],

/ f($)h(:r:) dzr = O for every f E $1,,-r.

The subprogram SPLDPT_below calculates this knot sequence t for given
1', using Newton’s method, starting with the initial guess

(28) ¢,,,, = 13;, = (1-,,. + - - - + ~r.,,.,._,)/(t - 1), ¢= 1, . . . ,n _ 1;.
This initial guess for the optimal knots is often very close to the optimum.
This suggests ‘the reasonable alternative of forgetting about the optimal
knots altogether and using instead the knot choice (28) directly, together
with the usual choice for the first and last Ir: “boundary” knots. Such choice
would certainly satisfy the conditions of the Schoenberg-Whitney Theorem.

Details concerning the program SPLDPT can be found in de Boor [1977];-,3
from which the program is adapted.

.l ,
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SUBROUTINE SPLOPT ( TAU, N, K, SCRTCH, T, IFLAG )
CALLS BSPLNB, BANFAC/SLY
COHPUTES THE KNOTS T FOR THE OPTIMAL RECOVERY SCHEME OF ORDER K
C FOR DATA AT TAU(I)- I-1...-IN .C .
C###### ##e###
C TAU.... F LENGTH N , CONTAINING THE INTERPOLATION POINTS.

A s s U H E D TO BE NONDECREASING, HITH TAU(I).LT.TAU(I+K).ALL I.
.NUHBER OF DATA POINTS .
.ORDER OF THE OPTIMAL RECOVERY SCHEME TO BE USED .

OOOOOOOOOOOOOOOOOOOOOilfififiiifififififififififififiiifiCifitzfifififi

FEE

I-'l' Z ‘U
HUG DI-l

I-ICICI
I-P‘

350'-l
[Tl

>4

##### H O R K A R R A Y #####
SCRTCH.....ARRAY or LENGTH (N—K)(2R+3) + 5K + 3 . THE VARIOUS

CONTENTS ARE SPECIFIED IN THE TEXT BELUU .
##### O U T P U T ######

IFLAG.....INTEGER INDICATINO sUccEss (=1) OR FAILURE (=2) .
IF IFLAG I 1, THEN

T.....ARRAY OF LENGTH N+K CONTAINING THE OPTIMAL KNOTS READY FDR
USE IN OPTIMAL RECOVERY. SPECIFICALLY, T(I) = ... = TCK) =
TAU(I) AND T(N+1) I ... = T(N+K) = TAU(N) . NHILE THE N-K
INTERIOR KNOTS T(K+1), ..., T(N) ARE CALCULATED AS DESCRIBED
BELOH UNDER #HETHOD* .

IF IFLAG - 2. THEN
K .LT. 3, OR N .LT. K, OR A CERTAIN LINEAR SYSTEM HAS FOUND TO
BE SINGULAR.

***** P R I N T E D O U T P ######
A COMMENT HILL BE PRINTED IN IFLAG I 2 OR NEWTON ITERATIONS
FAILED TO CONVERGE IN‘ N E N ITERATIONS .

##### H E T H O D ######
THE (INTERIOR) KNOTS T(K+1), ..., T(N) ARE DETERMINED BY NENTONS

METHOD IN SUCH A HAY THAT THE SIGNUH FUNCTION WHICH CHANGES SIGN AT

AL TO THE SPLINE SPACE SPLINE( K , TAU ) ON THAT INTERVAL .
LET xI<J) BE THE CURRENT GUESS FOR "T(K+J), J=1,...,N-K. THEN

THELNEXT NEHTUN ITERATE Is OF THE FORM
- xI(J) + (-)**(N—K—J)#X(J) , J=1,...,N—K,

HITH X THE SOLUTION OF THE LINEAR SYSTEM
C#K I D .

HERB, c(I,J) - B(I)(xI(J)), ALL J, HITH B(I) THE I—TH B-sPLINE or
ORDER K FOR THE KNOT SEQUENCE TAU; ALL I, AND D IS THE VECTOR
GIVEN BY 0(1) - suH( -A(J) . J-I,...iN )*(TAU(I+K)—TAU(I))/K, ALL I,
HITH A(I) - SUM ( (—)**(N—K-J)*B(I,Ka1,TAU)(xI(J)> . J=1.....N—K )
FOR I-1,...,N-1, AND A(N) - -.5 .

(sEE CHAPTER XIII or TENT AND REFERENCES THERE FOR A DERIVATION)
THE FIRST GUESS FOR T(K+J) Is (TAU(J+1)+...+TAU(J+K—1))/(K-1) .
ITERATION TERHINATES IF HAx(ABs(x(J))> .LT. T o L , NITH

T 0 L - T 0 L R T E #(TAU(N)-TAU(I))/(N—K) .
OR ELSE AFTER N E H T H x ITERATIONS , CURRENTLY,

NEHTHI, TOLRTE / 10, .ooo001
INTEGER IFLAG,K,N, I,ID,INDEX,J,KM1,KPK,KPKM1,KPN,KP1,L,LEFT

1,LEFTMK,LENH,LL,LLMAX,LLHIN.NA,NB,NC,ND.NEHTMX,NEHTON,NNK,NHKH1,NX
REAL scRTcH,T,TAU(N), nBL,nELHAx,FLcATH,sIcN,sIcNsT,sUH

# ,ToL,ToLRTE,xIJ
DIMENSION sCRTcH((N-K)*(2#K+3)+5#K+3). T(N+K)
DATA NEHTHx,TULRTE-/ 10,.OOOOO1/
NHK - N-K
IF (NHK) 1.55.2

1 PRINT ac1,N,K
601 F0RHAT(13H ARGUMENT N =.I4,2sH IN SPLOPT IS LEss THAN K =,I3)'00 TO ass

T(K+1), ..., T(N) AND NOWHERE ELSE IN (TAU(I) .. TAU(N)) IS ORTHOGON-

 i

-1.-._n_-1.
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2 IF (K .GT. 2) GO TO 3
PRINT 602,K

602 FORMAT(13H ARGUMENT K -,Is,27H IN SPLOPT Is LEss THAN 3)
Go TO see

s NHKM1 = NHK - 1
FLOATK = K
KPK = K+K
KP1 = K+1
KN1 = K-1
KPKM1 = KPK—1
KPN = K+N
sIGNsT = -1.
IF (NHK .GT. (NHK/2)*2) sIGNsT = 1.

c scRTcH(I) = TAU-ExTENBEB(I), I=1,...,N+K+K
NX = N+KPK+1

c scRTcH(I+Nx> = xI(I).I=0,...,N—K+1
NA = Nx + NNK + 1

c scRTcH(I+NA> = -A(I), I=1,...,N
ND = NA + N

c SCRTCH(I+ND) = x(I) OR D(I), I=1,...,N—K
NB = ND + NNK

c scRTcH(I+NB) = BIATx(I),I=1,...,K+1
NC = NB + KP1

c SCRTCH(I+(J—1)*(2K—1) + NC) = H(I,J) = C(I—K+J,J), I=J—K,...,J+K,
C J=1,...,N-K.

LENH = KPKH1#NHK
c EXTEND TAU TO A KNOT SEQUENCE AND STORE IN SCRTCH.

no 5 J=1,K
scRTcH(J) - TAU(I)

5 scRTcH(KPN+J) = TAU(N)
DO a J=1,N

s SCRTCH(K+J) = TAU(J)
c FIRST GUEss FOR SCRTCH (.+Nx) = xI .

scRTcH(Nx> = TAU(I)
SCRTCH(NNK+1+NX) = TAU(N)
no 10 J=1.NHR

sun = 0.
no a L=1,KH1

9 sun = sun + TAU(J+L)
10 scRTcH(J+Nx) - SUM/FLOAT(KM1)

c LAST ENTRY OF SCRTCH (.+NA> = — A IS ALNAYE ...
scRTcH(N+NA) - .5 '

c START NEHTON ITERATION.
NEWTON =.1 ~_
TOL = TOLRTE*(TAU(N) - TAU(I))/FLOAT(NMK)

c START NEWTON STEP
COHPUTE THE 2K—1 BANDS OF THE MATRIX c AND STORE IN scRTcH(.+Nc).
c AND COHPUTE THE VECTOR scRTcH(.+NA> - —A. '

20 no 21 I-1,LENH
21 ScRTCH(I+NC) - 0.

no 22 I=2,N
22 SCRTCH(I—1+NA) = 0.

SIGN = sIGNsT
LEFT = KP1

E no 2a J=1,NHK
XIJ = SCRTCH(J+NX)

23 IF (XIJ .LT. SCRTCH(LEFT+1))GO TO 25
LEFT = LEFT + 1
IF (LEFT .LT. KPN) GO TO 23
LEFT = LEFT — 1

25 CALL BSPLUB(SCRTCH,K,1,XIJ,LEFT,SCRTCH(1+NB))
C THE TAU SEQUENCE IN SCRTCH IS PRECEDED BY K ADDITIONAL KNOTS
C THEREFORE, SCRTCH(LL+NB) NOH CONTAINS B(LEFT—2K+LL)(XIJ)
C HHICH IS DESTINED FOR C(LEFT—2K+LL,J), AND THEREFORE FOR
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H(LEFT—K—J+LL.J)= SCRTCH(LEFT—K—J+LL + (J—1)#KPKH1 + NC)
SINCE HE STORE THE 2K—1 BANDs OF c IN THE 2K—1 R O H OF
THE NDRK ARRAY H, AND H IN TURN Is STORED IN s c R
HITH N(1,1) = scRTcH(1 + Nc) .

ALSO, c BEING OF ORDER N—K, NE NUULD NANT 1 .LE.
LEFT—2K+LL .LE. N—K OR

LLNIN = 2K—LEFT .LE. LL .LE. N—LEFT+K = LLHAY .
LEFTHR = LEFT-K
INDEN = LEFTHK—J + (J—1)*KPKH1 + Nc
LLHIN - NAxD(1,N—LEFTHN)
LLHAX = MINO(K,N—LEFTHK) ,
DO 25 LL=LLNIN,LLHAx

25 scRTcH(LL+INDEN) = scRTcH(LL+NB)
A A CALL BsPLvB(scRTcH.NP1,2,xIJ,LEFT,scRTcH(1+NB))

ID = HAx0(c,LEFTHH-NP1)
LLNIN -_1 — HINO(O,LEFTHK-KP1)
DO 27 LL=LLNIN,KP1

ID = ID + 1
2? scRTcH(ID+NA) = scRTcH(ID+NA) - SIGN*SCRTCH(LL+NB)
2s sIGN = -sIGN .

CALL BANFAC(SCRTCH(1+NC).KPKM1,NMK,KH1,KH1,IFLAG)
GO TO (45,44),IFLAG

nnooooo

-1 om :r:

44 PRINT s44
544 FORMAT(32H C.IN SPLOPT Is NOT INYERTIBLE)

RETURN -
GDNPUTE SCRTCH (.+ND) - D FROM SCRTCH (.+NA) - — A .

45 I=N
4s scRTcH(I~1+NA) = scRTcH(I—1+NA) + scRTcH(I+NA)

I a-I-1
IF (I .GT. 1) GO TO 45

DO 49 I=1,NMK
49 scRTcH(I+ND) = SCRTCH(I+NA)#(TAU(I+K)—TAU(I))/FLOATK

CDMPUTE SCRTCH (.+ND) = I .
cALL BANsLv(scRTcH(1+Nc).NPNH1,NHK,KH1,KN1,scRTcH(1+ND))

COHPUTE scnrcn (,+Nn) - CHANGE IN II . MODIFY, IF NEcEssARY, TO
c PREYENT NEH XI FROM MOVING HDRE THAN 1/3 OF THE HAY TO ITs
c NEIGHBORS. THEN ADD TO XI TO OBTAIN NEH NI -IN scRTcH(.+Nx).

DELHAI = 0. .
sIGN - sIGNsT
DO 53 I-1,NN

DEL = SIGN#SCRTCH(I+ND)
DELMAX - ANAx1(DELHAx.ABs(DEL))
IF (DEL .GT. 0.) G0 TO 51
DEL - AHAx1(DEL,(scRTcH(I-1+Nx)-scRTcH(I+NI))/3.)

GO TO 52 ~
51 DEL - AHIN1(DEL.(scRTcH(I+1+Nx)-scRTcH(I+Nx))/3.)
52 sIGN = -sIGN
53 scRTcH(I+Nx) = scRTcH(I+Nx) + DEL - .

CALL IT A DAY IN CASE CHANGE IN XI NAs sHALL ENDUGH OR TOO MANY
c STEPS HERE TAKEN.

IF (DELNAN .LT. TOL) GO TO 54
NEHTDN = NENTDN + 1
IF (NEHTDN .LE. NENTHN) GU TO 20
PRINT a5s,NENTHx

553 FORHAT(33H NO CONVERGENCE IN SPLOPT APTER,I3,14H NENTUN STEPS.)
54 DO 55 I=1,NHK _
55 T(K+I) = scRTcH(I+Nx)
56 DO 57 I=1,K

T(I) - TAU(1)
5? T(N+I) - TAU(N)

RETURN
RETURN

999 IFLAG I 2

END
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(29) Example: "Optimal" interpolation need not be "good" We
consider a function g that describes a property of titanium as a function
of temperature and whose values g('r,) at T, = 585 + 1011, i = 1, . . . ,49, we
know from a table (experimentally determined). The following subprogram
provides these value-s_(except that the second .644 should have been .664).

SUBROUTINE TITAND ( TAU, GTAUI N )
C THESE DATA REPRESENT A PROPERTY OF TITANIUM AS A FUNCTION OF
C TEMPERATURE. THEY HAVE BEEN USED EITENSIVELY AS AN EXAMPLE IN SPLINE
C APPROXIMATION HITH VARIABLE KNOTS.

INTEGER N, I
REAL GTAU(49),TAU(49),GTITAN(49)
DATA GTITAN /.644,.622,.638,.649,.652,.639,.646,.657,.652,.655,

.644,.663,.663,.668,.676,.676,.EB6,.679,.67B,.6B3,

.694,.699,.710,.730,.763,.812,.907,1.044,1.336,1.BB1,
2.169,2.075,1.59S,1.211,.916,.746,.672,.62T,.615,.6OT

,.606,.609,.603,.601,.603,.601,.611,.601,.6OB/
N = 49

U1:-I=\UJI"J

DO 10 I=1,N
TAU(I) = 5s5. + 10.*FLOAT(I)

10 GTAU(I) = GTITAN(I)
RETURN

END

A plot of these data (see Figure (30)) shows g to be quite fiat (~ .6)
except for a peak around 905 where it rises to a value of ~ 2.2. We pick 12
data points somewhat more densely distributed around the peak and use
optimal interpolation.

CHAPTER XIII, EXAMPLE 3 . TEST OF OPTIMAL SPLINE INTERPOLATION ROUTINE
C ON TITANIUM HEAT DATA .
CALLS TITAND,SPLOPT(BSPLFB,BANFAC/SLV),SPLINT(*),BVALUE(INTERV)
C

GOO

DATA N,K /12,5/ ,
LENSCR = (NeK)(2K+3)+5K+3 IS THE LENGTH OF SCRTCH REQUIRED IN

SPLOPT .
INTEGER K,LENSCR,N,NTITAN
PARAMETER (N=12,NTITAN=49,K=5,LENSCR=(N-K)#(2*K+3)+5#K+3)
INTEGER I,IFLAG,IPICK(N),IPICKI,LX,NMK
REAL A(N),GTITAN(NTITAN),GTAU(NTITAN),SCRTCH(LENSCR),T(N+K),TAU(N)

* ,X(NTITAN) - -
C INTEGER I,IFLAG,IPICK(12),IPICKI,LI,NMK
C REAL A(12),GTITAN(49),GTAU(49),SCRTCH(119),T(17),TAU(12)
C * ,X(49)

.,,.=|-=1"==l'»'-Iv+=:.*'-'*'"""**"

DATA IPICK /1,5,11,21,2?,2s,s1.sa,s5,40,45,49/
cALL TITAND ( X, GTITAN, Lx ) ~
DO 10 I=1,N

IPICKI = IPIcN(I)
TAU(I) = x(IPIcKI)

10 GTAU(I) = GTITAN(IPICKI)
CALL SPLOPT ( TAU, N, K, SCRTCH, T, IFLAG )
IF (IFLAG .GT. 1) STOP
CALL SPLINT ( TAU. GTAU, T, N, K, SCRTCH, A, IFLAG )
IF (IFLAG .GT. 1) STOP
DO 20 I=1,LX

GTAU(I) = BVALUE ( T, A, N, K, 1(1), 0 )
2D scRTcH(I) = GTITAN(I) — GTAU(I)
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Optimal quarlic spline interpolant
3
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(30) FIGURE. An optimal quartic spline interpolant (solid) to given data
(a) at twelve points taken from a data sequence (o) of 49
points.

PRINT s20,(I,x(I),GTITAN(I),GTAU(I),scRTcH(I),I=1,Lx)
620 PGRNAT(41H I, DATA POINT, DATA, INTERPOLANT, ERROR//

2 (Is,Fs.o,F1o.4,Pa.4,E11.s))
NMK - N-K
PRINT 621,(I,T(K+I),I-1,NMK)

521 P0RNAT(///15H OPTIMAL KNOTS -/(I5,P15.s))STOP
END

Ll
OPTIMAL KNOTS - 51 1ao.sa54125ss

2 va4.41a?51s24,
s44.41s44o4ao

- asu.o5a5oa217s07.a14oass14
ess.G004aa2a1
976 . 751708984"~lO'IUl|-I=\l'.ll

Instead of the full output, we give here a picture (Figure (30)) showing
data and approximation. The points of interpolation are easily picked out
since the approximation oscillates so badly around the flat part, having
been set off by the peak. Clearly, more information about the fiat part

I
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needs to be made available to the approximation process (see Problem 5).
Using a lower order spline would help, too (see Example XVI(17)). El

The optimal interpolation scheme was also derived independently by
Gaffney 3.5 Powell [1976]. In fact, the term “optimal interpolation" for it
is due to them; Micchelli, Rivlin 8.: Winograd [1976] call it an “optimal
recovery scheme”. Gaffney 8-: Powell came to it by a way of “envelopes”,
and we now discuss this idea briefly since it gives us an excuse to question
the basic notion underlying the optimality aspects of spline interpolation,
namely the notion that making a derivative smaller makes the function
smoother.

Gaffney 32: Powell [1976] investigate in detail the following question posed
earlier in more generality by Golomb & Weinberger [1959]:

Given that we know the values g(Tl), . . . , g(T,,) and the bound [|g(“) jg 0:,
what can we say about the value g(.T) of g at some site :1: (other than
T1 , . . . ., Tl-l)?

The answer turns out to be surprisingly elegant:

(31) Theorem (Gaffney & Powell [1976]). Let

Fa =={f=f('»"-.-:)=g('e).i=1.---.12; ||f“")|l S <1}
be the set of all functions on [a . . b] with It derivatives that agree with the
given function g at T and whose lath derivative is uniformly bounded by 0:.

If Fl, is not empty, then it contains two function fl and fl with the
property that, for anya: and any f G Fa, f(a:) lies between fl(.T) and f2(:r).
Both fl and fg are perfect splines of degree ls with n — It knots, that
is, both are splines of order k+ 1 with n — ls simple (interior) knots and with
absolutely constant lcth derivative, that is, |(D“fl)(:1:)| = |(D“f2)(T)| = a,
all 2:.

Gaffney 82: Powell come to the optimal interpolant by the following device.
For each 0:, for which FD, is not empty, the average (fl + fg)/2 of the two
envelope functions fl and fg is also in F,,,, and is, in a sense, its center. This
average or center does depend on Cr, but, as 0: grows without bound, the
average converges and, as it turns out, its limit is the optimal interpolant
N2
S g to g discussed earlier.

For the promised questioning, through, we want to make 0: as small as
possible. It is clear that we cannot make 0: arbitrarily small in general. For
example, for F,-_, to be nonempty, we would need lcla 2 max, |[T,, . . . , T,+;,]g|
since, by divided difference Property I(vii), [T,, . . . , T,+l,_,]g/ls! = g(“)(Q) for
some Q in the interval containing Tl, . . . , T,+;,,. It can be shown (see Favard
[I940], de Boor [1976]4) that there is a smallest 0: for which FC, is not empty,

of“ := min{a : Fl, 75 ill}.

An f G F,-,- is a “best interpolant” for g in the sense that, among all in-
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Flange ol possible values ol interpolants with smallest 5tn derivative
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(32) FIGURE. All “best” interpolants to the selected 12 from the given 49
data points must lie between the upper and lower envelope
(solid lines) shown.

terpolants to g, its kth derivative is as small as possible. Such interpolants
were first studied by Favard [1940] who developed (as explained in complete
detail in de Boor [1976]._l) a reasonable way for picking from the possibly
many best interpolants one that is best (or, better than best) among them.
But,'it and all other best interpolants would have to lie between the enve-
lope for F.,,- . I am indebted to Patrick Gaffney for the information that the
value ct = .1838 >< 10*“ is very close to 62* for the data actually interpo-
lated in Example (29). The envelope function for that value of at is shown in
Figure (32) along with the Titanium Heat data fron1 which it is taken. Far-
vard’s best interpolant and all other “best” interpolants must lie between
those strongly oscillating boundsll Clearly, the price being paid here for a
uniformlysmall 5th derivative (we took I-c = 5 here-as in Example (29))
is a “smooth” oscillation. In effect, since a zero 5th derivative implies that
the function is 5. polynomial of order 5, we are looking for the interpolant
that is most polynomial-like, that is, we are ignoring the reasons that led
us in Chapter II to piecewise polynomial functions. _ '

Osculatory spline interpolation As in polynomial interpolation (see
Chapter I), it is possible in spline interpolation to let some of the inter-

l

l
ll
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polation sites coalesce and so achieve osculatory or repeated interpolation,
that is, a matching to value and some of the derivatives. To recall, T-fold
interpolation at a point T means matching of derivatives from the zero-
th up to but not including the rth at T. The condition for existence and
uniqueness of an interpolant stays exactly the same as in the case of simple
interpolation points.

(33) Theorem (Karlin 8: Ziegler [1966]). Given the nondecreasing
sequence T = (T,)"f with T, < T,.l.;.,, all i, assume that

tk'<:T-l;_|_1="'=T»i_[_,-=tj_[_1="'=tj+5'<t-“+1 IIHPIIGS ‘l"'-I-S5_k,

Then, for any smooth function g, there exists exactly one f G $;,_l, that
agrees with g at T if and only if Tl G supp B, = (t, ..tl_|_,,), all i.

A simple proof of this theorem can be found in de Boor [1976]l.
It is not hard to extend the subprogram SPLINT to construct osculatory

interpolants, but we do not talte the time for it here. Instead, we discuss
briefly a limiting case of even order spline interpolation at knots, namely
complete spline interpolation. In this scheme, the order is even,

I: =1 2m,

and the data site sequence is a := Tl = -—- = T,,., < T,,,_|_l < - -- < ‘T,l_,,-,.|_1 =
- - - = T,, =: b. Correspondingly, one chooses the knot sequence

CtI=t1=---=t,t;<It,t;_|_1<"'<t.,,_<t,-,__|_1=---=1-"__|_k=Ib_

with
t;.,_,_,=-T,.,,+,-_, i=1,...,n--lc (=n——2m).

This is the customary generalization of complete cubic spline interpolation
discussed in Chapters IV and V. We take the occasion to prove here its
best approximation properties.

(34) Theorem (Best approximation properties of complete spline interpo-
lation). Let t = (t,_)‘f+"'° with A = 2m, a = tl = = tl, < t,,+l 3 t,,+2 5

'5 tn < t-n__|_]_ = Z tl-l_|_k "-7- Ola-Ildti < t£+m I-Urk 3 5

Denote by
[A9

the complete spline interpolant to g from 8,-.,,l, that is, Ikg is the unique
element in $l,_l that agrees with-g at T = (T)? := (t,;)j,'.‘,,"_]_'T. Then:
(1') The mth derivative D""I;,g of the interpolant is the least-squares

approximation from $,,,,,l- to the mth derivative ofg, that'is,

(35) jb(n"*(g-1,g)(1=))2 da: 5 /6 ((D”‘g-—-_f)(s:))2 da: for all f e $,.,.,_,-
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with equality if and only iff = D""*Il,g. ' th derivative
) Also among all functions f with a piecewise continuous Tn(ii .

that agree with the function g at T, the particular function Ikg is
smoothest in the sense that it uniquely minimizes

b 2
I (D”“'f(:t')) dz.

P OF. The proof parallels the arguments given in Chapter V forR0
complete spline interpolation. In particuliar, the proof relies on the following
transcription

(36) [T,;,...,T,_+,,,]_f = jB,,,,,_-l-(s)(D”"'f)(s) ds/ml

of IX(6) using IX(5).
Apply (36) to the error

6 i: g — Iltgi

a function that vanishes at Tl, . . . , T,+,,,_, to get that

I)

j B,;,,,,__1-(s) (D'”'e)(s) ds = (Tl_,_,,,_ —- T-,;)('l'Tt —- 1)![T,, . . . ,T,+,,,]e = 0,
i 1, ,nI

- til
-ii II I I I

This shows the mth derivative of the error to be orthogonal to the linear
‘I1’, -' ' h" dspan of (B.,l_,,,,,q-)1 , that 1s, to $,,,,,-l-. Since, on the other an ,

Dmltg E {D'""f = f e $t,t} =-—- $...,»r (on la . - bl).
this proves that Dme is, in particular, orthogonal to D”“.I,-., g, and so we

l I l- I 1 i ' I I

obtain, once again, a special Instance of Pythagoras eorem:

5 .
L (D"v<w>)’ <14 = ,

b I b 2(37) ,[ (Dorm-c>)2 d=»+ f (Dm(9--ltgll-T-‘Ell at
valid for all g with a piecewise continuous mth derivative.

Now, to prove (i), substitute g — f for g in (37) and use the fact thath tI f*-Igforanyf
Ikf = f for f E $l,_,l,. To prove (ii), use the fact t a l, -- ;._, El
that agrees with g at T. P .
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These best approximation properties of complete spline interpolation are
still, for-many, the major justification for using splines. I have bothered
to mention them here only because the proof brings out the important
connection (36) between divided differences and B-splines. In preparation
for the next chapter, we now indicate the following important consequence
of (36). '

(38) Lemma. If t = (ti)'[‘+” is in [a . . b], nondecreasing, with ti < ti_,_;.,
for all i, and the integrable function g is orthogonal to $;i_i,-, on [a . . b], that
IS, b

_f(.T:)g(T) da: =0 for all f G $;.i,i;,

then there exists E = (§i)‘[‘+1 in [a . . b], strictly increasing, with ti § {fi §
ti+li_ l (any equality holding only in the trivial case when ti = ti+i,._.l),
i = 1, . . . ,n -i- 1, so that g is also orthogonal to $1 é-.

PROOF. We can always choose a polynomial p of order It so that the
functionI 5Go) == Po) + f o - s>’1-19(5) di/(A - 1)!
vanishes at tl, . . . , tl,. Further, by (36),

t _ S

l‘"'"*‘*+*lG =1 it
hence vanishes by assumption. Consequently, G vanishes at all points of
t. Since G is also It -—- 1 times continuously differentiable, (It — 1)-fold ap-
plication of Rolle’s Theorem proves the existence of a strictly increasing
sequence 5 =4 (§'["+1) with ti 5 Ei ‘_§ ti_l_i,._l, all i, at which

1 b
D”'1G =_const +/ (- — s)'§]_g(s) ds

G-1

vanishes, which proves the lemma. El

The following corollary is of particular interest.

(39) Corollary. If, in addition, the function g is continuous, then there
exists T -= (Ti)? strictly increasing, with ti < Ti < ti+;,, all i, so that
g(Ti) =0, i = 1,...,n.

PROOF. Lemma (38) says that
511+:

f g(T) da: == 0
. £1-_

for i = 1, . . . , n, hence, if g is continuous then it must vanish somewhere in
each of these n disjoint intervals (Er - - Eii-1). El
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This corollary proves that any least-squares approximation from $;,,i-,
to some continuous function g can also be gotten by spline interpolation
(apply the corollary to the error in the least-square approximation) at some
appropriate n sites that depend on g. In other words, there isn't all that
much difference between interpolation and least-squares approximation if
one knows which sites to choose. In a way, least-squares approximation is
a very reasonable way to choose the interpolation sites.

Problems i

..---..l----.l_|

(Another proof of the Schoenberg-Whitney Theorem)
i) Prove: If B,_,(T,,) = 0, that is, if ‘T.-,., g t,, or t,_,+;, 3 T,,, for some '-v, then
B,-(Ti)) is not invertible. (Hint: Assume without loss that T,_, § ti, and

show that then B,,(T,.) = 0 for 1 g T g ‘U 5 s § n; conclude that columns
‘U, ‘U + 1, . . . , n of (B,-(Ti)) form a linearly dependent sequence.)

Now assume, conversely, that t,, < Ti, < t,,;+ii, all '0. ' '
(ii) Show that it is sufficient to prove the invertibility of (B,(T,)) under
the stronger assumption that t,,+ l § T2,, § t,_,+i,._l, all U. (Hint: Show that
the invertibility of (B_-,:(‘T‘i)) follows from the invertibility of the two smaller
matrices (B_.,-(Ti))'_:_1’h,,=1 and (Bj(Ti))§fj=,,+1 in case Ti, 3 t,_,+l or t._.,_,_i, § T,,+l.)
(iii) Prove the invertibility of (B,-,i,(Ti)) by induction on the order It, using
(ii) and Rolle’s Theorem.

2. (i) Show that the tridiagonal (square) matrix with general row 1, 1, 1
is not totally positive.
(ii) Use Theorem (7) to show that the tridiagonal matrix with general row
1, 4, 1 is totally positive. i '

3. Give a proof of Lemma (11). (Hint: Write Ig = o¢iBi,i, and use
earlier material to verify that [Ti,T,_,_l]g = [Ti,Ti+l](Ig) = (DIg) (fii) for
some fii between Ti, Ti_|_1._, while then

\(DIg)(a)|=|(1= — 1) Z  Bi.k-1(§t)l 5 at - 1)ll-all/di. A
di I= tj+-,ti_1 — 53* I (55: . . tj+k_1) I-l (‘T-l‘_ .. 'Ti_|_1) -75 SIIICE

llflll S Dtmlllglll one sets from this 2(A'o)‘1 = H1319 ll'R.n+1l9l/l|9|| 5'.mamk — 1)/di)Dt.s5l|I9ll/llgll = on - 1)Di=l~=-Q/dililflli ea)
4. Use Lemma (11) to show by an example that the choice of knots at
data site averages does not avoid large [II Show also that the lower bound
for [[1 in that lemma stays bounded when we choose, instead, the data
sites at knot averages, that is, when Ti = ti}, = ti+_i)/(I: — 1), all i.

5. For comparison, construct the optimal interpolant of order 3 and of
order 4 in Example (29). Also, construct the optimal interpolant of order
5, but bring in more data points from the fiat part, especially from the two

-In-I-rlflilt.-_.£nh-I".-
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transition regions next to the peal-t.

6. Prove that the norm ]|I for spline interpolation at T by f G $1,;-, can
be calculated as ||A||, with A(.T:) := |Ci(:r:)| the Lebesgue function for
the process, that is, Ci is the unique element in $i,_i satisfying Ci(T_,-) = 6,-,3-,
all j.
(ii) Prove that Ci = Z5, Iii, B,-, with (fli,-) the matrix inverse to the matrix
(B:'(Ttl)- i
(iii) Use Theorem (7) to show that the Hi, alternate in sign, that is,
(—)i+j5tl 2 0-. 61-11%.)-
(iv) Given that Ci changes sign only at the sites T, for j 75 i, set up
a program to calculate (approximately) ||I = Then use it to get
as large a lower bound for maxt llfiill as you can. For what kind of knot
sequence t, do you think, is this maximum taken on?

7. With Ahg := (g(a + h) —- g(a))/h, show that, for any particular choice
of g and a and all small h, the computed value of Ahg is not “large” (as
maintained on page 185) but, invariably, 0.

8. Rewrite SPLINT to make use of CWIDTH (see the Appendix for a listing,
but change it to inhibit pivoting) since this would require roughly only half
the storage used by BANFAC/SLV.

9. An isolated zero of a function f is, by definition, any point z that is
the sole site in some neighborhood of z at which the function f vanishes.

Prove that any ‘isolated’ zero of f G $,|,,i (as defined on p. 172) is an
isolated zero of f, but that the converse does not hold.

I

‘I.

it l
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XIV D

Smoothing and Least-Squares
Approximation;
SMOOTH , LZAPPR

Interpolation is efiective as a means of constructing spline approximation
only if sufficiently accurate function values are available. Otherwise, other
methods of approximation must be used. In this chapter, we discuss the
computational aspects of cubic smoothing splines, and of (discrete) least
squares approximation by splines of arbitrary order.

The smoothing spline of Schoenberg and Reinsch Given the ap-
proximate values yi = g(:1:i) + si of some supposedly smooth function g at
data sites IE1, . . . . TIN, and an estimate ciyi of the standard deviation in yi,
we try to recover g from these data by constructing the function f = f,_,
that, for a given parameter p G (0 . . 1) (to be chosen somehow), minimizes

= (-P?-%i_5“51"l)2+<1-1») (r<""><o)2d¢1'3‘ --...--' ‘ti J42
over all functions )5 with Tn. derivatives. Minimization of (1) establishes a
sort of compromise between our desire to stay close to the given data and
our desire to obtain a smooth function, and the choice ofp depends on
which of these two conflicting goals we accord the greater importance.

The solution f,, turns out to be a spline of order ls: := 2m, with simple
knots at IE2, . . . , £I'IN_ l, and satisfying the “natural” end conditions

r,§i><w1) = r,§§>(w~) = 0 for 1“ = m. . .-.1: - 2.
or, for short,

fr G

Indeed, it is clear that, in minimizing (1), we need only consider f G $22;
since, for any choice of f, substitution of its unique interpolant at x in

for f in (1) leaves the sum unchanged while possibly decreasing the
integral, by the minimum property of spline interpolation (see Problem 1).

207
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As p approaches 0, f,, converges to the 1:2-&ppI‘OXIITl&I1i3 (with respect to
the inner product (g,h.) := Z, g(;1:i)h.(;ri)/(6yi)2) from l'I..;,,, to the data
y, hence we should denote the latter by f@+ rather than by jig, since (1)
is only semidefinite when p = 0, hence has infinitely many minimizers.
Nevertheless, we will also use '_fQ for it, forsimplicity. As p approaches 1, f,,
converges to the “natural” spline interpolant to the data y in $fif';_, hence we
denote the latter by fl_ , since (1) is only semidefinite when p = 1 , hence has
many minimizers, but may also use fl for it, for simplicity. Correspondingly,
with

N

<2) 8(1) == (oi — 1(a))/wt)”.
S(f,,) strictly decreases as p goes from 0+ to 1", to a value of 0 at p = 1
(see Problem 2), unless S(f,,) = 0 for all p. It is therefore possible to
determine, for given S, the function f5 that minimizes If (f('"")(:r))2d:1:
over all those f for which S(f) 3 S simply by finding the smallest p in
[0+ ..1_] for which S(f,,) 5 S; then fg = f,.,.

Perhaps one should call f,, a Whittaker spline since the proposal to
smooth data by minimizing (1) goes back to W'hittaker [1923]. To be pre-
cise, VVhittaker. only considered uniformly spaced data sites and proposed
to use the sum of squares of mth differences rather than f(f("'")(:1:))“ dzr: as
a measure of smoothness, but the essential idea on how to balance the two
conflicting goals of accuracy and smoothness (which make up the problem
of smoothing) is there. This idea was picked up again by Schoenberg [1964]
who realized that the above simple solution could be given to Whittakeris
smoothing problem when _f(f("")(:1:)) da: was used instead of the mth dif-
ferences. C. Reinsch [1967], apparently quite independently, proposed the
same scheme and worked out the solution for m = 2 in explicit detail, and
even provided an ALGOL program for the construction of cubic smoothing
splines that is, for example. incorporated as the program ICSSCU in the
IMSL Library [1977].

In Chapter XVII, we encourage the reader to construct a two-dimen-
sional smoothing routine, and for it we need to redo Reinsch’s algorithm
somewhat. We present this variant here, as incorporated in the subprogram
SMOOTH and its subroutines below. '

Briefly, the mathematics entering the construction of the cubic smoothing
spline is as follows. We already pointed out that _f,, would have to be in
$232, that is, in II.,-;.l,,, I’) Cl?) with f,‘,',’(:1:l) = f;,'($N) = 0. We can describe
_f,, on [sci . . :r:i_l.l] completely once we know _f,, and jg at sci and :ri+l (see
Problem IV.6). Set

mlmi

 __;;.5

in_I __-,,,,,,_,,,,,_,,_,

[Ii :2 fp(I.i),[ Ci I".-."-'-" Z1i---,N- g
1

Then the “natural” boundary conditions and the requirement that f,, have



The smoothing spline of Schoenberg and Reinsch 209

a continuous first derivative combine to give the linear system

C1 = 0

(3) Ci—1A1-I-it--1 -|-f-‘t2(A11'»‘t-1 -l-A117-1)-I-¢t+1A1I?-I =
3(A(Ii/A111‘-5-AC1-lj._1/AZI3i_1), i=2,...,N—I,

(IN = O

for the ci’s in termis of the ai’s. If we take c := (ci)§”"1 and a := (ai)i” —
note that c has length N — 2 while a is an N-vector - then we can write
(3) in matrix form as

(4) Rc = 3QTa
with R the symmetric tridiagonal matrix of order N — 2 having the general
row

£\I.I'.'i_.1, 2(A$-,-1-1 + A117-i), A117-i

and QT the tridiagonal matrix of order (N —- 2) >< N with general row

I/AII'Ii_1, -1/A11?-l'__1— I/A117-l‘, I/A1715.

Next, we express (1) in terms of a. and c. For any straight line E,

/Oh (Raf d-A - (A/3) lace)? + @<0>@<h> + <@<h>>2]-
Therefore, at f = f,,, (1) has the value

N 111- -4- 2 4(1 -2) "HP2 + 13.. Z; A:ti(c§ +oo+, +¢?,,).
i=1 i=

In matrix form, this reads

T -2 2 TP(3"“3~l D (N-H)+§(1—1>)<= RC

with D the diagonal matrix [6yl, . . . , 6yN_[. But, by (4), c = 3R"1QTa, so
that (1) can be written entirely in terms of a as

(5) Po - a>TD:2<y — =1) + 60 - p)<R"‘QTa)TR<R"‘QTa>-
Since both D'“ and (R“1QT)TR(R“'1QT) are (symmetric and) positive
definite, (5) is minimized when a satisfies

—2pD"'”(y - 3.) + 12(1 - p)(R"‘1QT)TR(R"1QT)a = 0



. i
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01‘, using the fact that R"1 = (R“1)T and simplifying,

(6) ' PD“2(¥ — =-1) = 2(1 — P)Q¢-
In particular,

2

S(-fl’) = (Y - a>TD-gs -—- =1) = llDQ¢\l%,
with := 2,, |b,;|2, which allows us to compute S(_f,,) once we know c.

In order to obtain a linear system for c, we multiply both sides of (6) by
3QTD2 and then use (4) to get

p(3QTy - Re) = 60 — P)QTD2Qc
OI‘ "(@<1 - p>Q'-‘"D%2 +;pR)<= = 3PQTy-i .

J.

Now let u be such that l
c = 3pu.

Then, in summary,

<7) (Bu - p)c2TD2c2 ‘+ pR)u -= QTY
and i l

(8) Sm) = (60 - P))2HDQ11ll€.
while. by (6).
<9) i a = y — sci — pwzcu.
From this, we obtain the information for the ppform of fp as follows:

fP($i) = ‘Ii
f;,(:r:.;_) = Aai/Ax, - (f;'._($,)/2)Aw, - (f;”(:1:g')/6)(A$,)2

(10) fgmi) =__ em r F
f;”(w$') = (fg($i+1) — f;’(="vi))/ AI-=1

'\



The subroutine SMOOTH and its subroutines 211

The subroutine SMOOTH and its subroutines Equations (7) - (10)
form the basis for the construction of f5 (= fp for appropriate p in [O . . 1
for given S, in SMOOTH and its subroutines.

REAL FUNCTION_SHOOTH ( X, Y, DY, NPOINT, S, V, A )
CALLS SETUPQ, CHOLID
C

Ofififififififififififififififififififififififififififitgfififififififitafififiiifififififififififiiifififififi

cDNsTRUcTs THE cusrc SHOOTHING sPLINE F TO GIVEN DATA" (x(I).Y(I)),
I=1,...,NPDINT. EEIcH EAs As sEALL A sEcDND DERIVATIVE As POSSIBLE
EEILE
s(F) = sUN( ((Y(I)-F(X(I)))/DY(I))**2 , I=1,...,NPDINT ) .LE. s .

term: I N P U T route:
X(1)i---,X(NPOINT) DATA ABSCISSAE, A S S U H E D TO BE STRICTLY

INCREASING .
‘T(1),...,Y(NPDINT) CORRESPONDING DATA DRDINATES .
DY(1),...,DY(NPOINT) ESTIMATE OF UNCERTAINTY IN DATA, A S S U M-

E D TO BE POSITIVE .
NPOINT.....NUMBER OF DATA POINTS, A S S U H E D .GT. 1
S.....UPPER BOUND ON THE DISCRETE WEIGHTED HEAN SQUARE DISTANCE OF

THE APPROXIHATION F FROM THE DATA .

###** H O R K A R R A Y S *****
V.....UF SIZE (NPOIHT,7)
A.....UF SIZE (NPOIHT,4)

#### U U T P U T meet:
A(.,1).....CONTAINS THE SEQUENCE OF SMOOTHED ORDINATES .
A(I,J) = F“(J—1)(X(I)), J=2,3,4, I=1,...,NPOINT-1 , I.E., THE

FIRST THREE DERIVATIVES OF THE SHOOTHING SPLINE F AT THE
LEFT END OF EACH OF THE DATA INTERVALS .

H A R N I N G . . . A NOULD HAVE TO BE TRANSPOSED BEFORE IT
COULD BE USED IN PPVALU .

tteer M E T H U D ##1##:
TEE NATRIcEs Q-TRANSP*D AND O—TRANSP*D**2*Q ARE c0NsTRucTED IN

s E T U P Q FROM x AND DY , As Is TEE vEcTOR QTY = Q—TRANSPrY .
TEEN, FOR cIvEN P , TEE vEcT0R U Is DETERMINED IN c H 0 L 1 D As
THE SOLUTION OF TEE LINEAR SYSTEM

(6(1-P)Q—TRANSP*D*#2*Q + P#O)U = QTY .
FRDN U , TEE SHOOTHING sPLINE F (FDR THIS CHOICE DF SHOOTHING PAR-
AHETER P ) Is DETAINED IN TEE sENsE TEAT

-._ F(x(.)) - Y — 6(1—P)D**2nQ:U AND
1 F"(X(.)) = 6*P#U .

TEE sNDDTEINs PARAMETER P Is FOUND (IF PDssIELE) so THAT
sF(P) - s ,

RITE sF(P) = s(F) . EEERE F Is TEE SHOOTHING sPLINE As IT DEPENDS
DN P . IF s = O, THEN P = 1 . IF sF(o) .LE. s , THEN P = D .
DTEERNIsE, THE sEcANT NETEDD Is USED TD LocATE AN APPRDPRIATE P IN
THE DPEN INTERVAL (0 .. 1) . HOHEVER, sTRAIcETFDRNAED APPLICATION OF
THE sEcANT EETEDD, As DONE IN THE ORIGINAL FEREIDN OF TEIs PROGRAM,
cAN BE VERY SLUH AND Is INFLUENCED BY THE UNITs IN EHIDE x AND Y
ARE NEAsURED, As c. REINscE EAs POINTED OUT. INsTEAD, DN REcDEEEND-
ATIDN FRDN c. EEINscE, TEE sEcANT NETEDD Is APPLIED TO TEE FUNCTION

G:Q -> 1/sqRT{sFQ(Q)} - 1/SQRT{S} . '
HITH sFQ(Q) == sF(Q/(1+Q)), sINcE 1/SORT{SFO} Is NDNDTDNE INCREASING
AND CLOSE TO LINEAR FDR LARGER Q . ONE sTARTs AT O = 0 HITH A
NEETDN sTEP, I.E.,

q_o - D, Q_1 = -c(u)/s=(0)
HITH c*(0) = —(1/2) sFq(0)*{-s/2} DSFO, HEEEE DsFq - —12*U—TRANSP*R*U
AND u As DBTAINED FOR P = D . ITERATIDN TERHINATES As s0DN As
ABs(sF - s) .LE. .o1ss .
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c LOGICAL TEsT
c PARAMETER (TEST = .TRUE.)
c INTEGER ITERcNT

INTEGER NPDINT, I,NPH1
REAL A(NPDINT.4),DY(NP0INT),s,v(NP0INT,?),x(NP0INT),Y(NPDINT)

A ,cEANsE,00ss,00sF,P,PREvsF,PREvn,q,sFn,sIxP,sIx1NP,UTRu
cALL sETUPQ(x.DY,Y,NPDINT,v,A(1,4))
IF (s .GT. D.) A so TO 20

10 P = 1_
cALL cEDL1D(P,v,A(1,4),NPDINT,1,A(1,3),A(1,1))

- SFQ - D.
_ co TD so

20 P - O.
cALL cE0L1D(P,v,A(1,4).NPDINT,1,A(1,s),A(1,1))
sFu - 0.
DO 21 I=1,HPOINT ,

21 SFQ - SFO + (A(I,1)*DY(I))**2
SFQ I SFQ#36. _
IF (SFQ .LE. s) so TO so
UTRU - D. .
DO 25 I-2,NP0INT

25 UTRU - UTRU + V(I-1,4)#(A(I—1,3)*(A(I—1,3)+A(I,3))+A(I,3)**2)
OOSS - 1./sQRT(s) A
OOSF - 1./SQRT(SFQ)
D - -(OOSF—OOSS)*SFQ/(6.*UTRU*DOSF) A

c sEcANT ITERATIDN FOR THE DETERMINATION OF P sTARTs HERE.
c ITERcNT fi 0

PREVQ_= 0.
" PREvsF - OOSF

so cALL cE0L1D(Q/(1.+q),v,A(1,4),NP0INT,1,A(1,s),A(1,1))
sFu - 0.
DD as I-1,NPOINT A y

as SFQ = SFQ + (A(I,1)*DY(I))**2
SFO = SFQ*36./(1.+Q)*#2
IF (ARs(sFq—s) .LE. .o1~s) GD TD 59
OOSF - 1./SQRT(SFQ) A
CHANGE - (Q—PREVQ)/(OOSF-PREVSF)*(DOSF—OOSS)
PREVQ - 0 .Q - D - cEANcE
PREvsF - OOSF

c ITERCHT - ITERCNT + 1
co To so

59 P = Q/(1.+Q)
cDRREcT VALUE OF P EAs BEEN FOUND.
COHPUTE POL.COEFFICIEHTS FRDN awn (IN A(.,1)).

so SMOOTH = SFQ
c IF (TEsT) TEEN
c PRINT A, *NUNEER OF ITERATIONS = 1, ITERcNT
c END IF

sIx1NP = 6./(1.+q)
DO 61 I-1,NPOINT

61 A(I,1) - T(I) - SIX1HP*DY(I)**2*A(I,1)
sIxP - 6.*P _
DD 62 I=1,NP0INT

62 A(I,3) - A(I,3)*SIXP
NPN1 - NPDINT - 1
DO as I-1,NPN1

A(I,4) = (A(I+1.B)—A(I,B))/v(I.4)
as A(I,2) - (A(I+1,1)-A(I,1))/v(I,4)

1 - (A(I.3)+A(I.4)/3.*V(I.4))/2-*V(I.4)
RETURN

END

‘hall-|lL_I|-I\-_-.l-|.I_-_-|i1-I-_-|I-J__.--i._|1...-

.|--1-3-iv-r@ --1-ii
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SUBROUTINE SETUPQ ( I, DY, Y, NPOINT, V, QTY )

The subroutine SMOOTH and its subroutines

TO BE GALLED IN s N D D T H
PUT DELI = x(.+1) - RC.) INTD v(.,4).
PUT THE TEREE BANDS OF Q—TRANSP#D INTD v(.,1-3), AND
PUT TEE TEREE BANDS OF (DIQ)-TRANSP*(D*Q) AT AND ABOVE THE DIAGDNAL

INTD v(.,5-7) .
HERE, Q Is THE TRIDIAGDNAL NATRIR OF DRDER (NPDINT-2,NPDINT)

WITH GENERAL RON 1/DELX(I) , -1/DELX(I) - 1/DELX(I+1) I 1/DELK(I+1)
AND D IS THE DIAGONAL MATRIX WITH GENERAL ROH DY(I) .

INTEGER NPOINT, I,NPH1
REAL DY(NPOINT),QTY(NPOINT),V(HPOINT,7),X(NPOINT),Y(NPOINT), _

r
NPH1 = NPOINT P 1
V(1,4) = X(2) - X(1)
DO 11 I=2,NPM1

X(I+1) — X(I)
DYCI-1)/V(I—1,4)

V(I.4) =
V(I,1) =
V(I,2) =

11 v(I,3) =

12 v(I,5) - V(I,1)**2 + V(I,2)**2 + V(I,3)**2
IF (NPM1 .LT. 3) GO TO 14

- DY(I)/V(I,4) — DI(I)/v(I-1,4)
V(NPDINT,1) = U.

DU 12 I=2,NPH1

. DO 13 I=3,NPH1
13 v(I-1,6) = U(I—1,2)*V(I,1) § V(I—1,3)*V(I,2)O ,14 V(NPM1,6) =

IF (NPH1 .LT. 4) ~ GO TO 16
DO 15 I=4,NPH1

1s V(I—2,?)
16 v(NPE1-1,?)

v(NPE1,?) = O
CONSTRUCT Q-TRANSP

PREV = (Y(2)

V(I—2,3)*V(I.1)
O. LP

. * Y IN QTY.
— Y(1))/V(1.4)

DO 21 I=2,NPM1
DIFF = (Y(I+1‘*Y(I))/V(I,4)
QTY(I) = DIFFJ~ PREV

21 PREV = DIFF

END

SUBROUTINE CHOL1D ( P, V, QTY, NPOINT, NCOL, U, QU )
C TO BE CALLED IN S M O O T H
CONSTRUCTS THE UPPER THREE DIAGS. IN V(I,J), I=2,,NPOINT-1, J=1,3, OF
C THE MATRIX 6*(1—F)*Q-TRANSP.#(D**2)*Q + P*R, THEN COHPUTES ITS

L*L—TRANSP. DECOMPOSITION AND STORES IT ALSO IN V, THEN APPLIES
FORWARD AND BACKSUBSTITUTION TO THE RIGHT SIDE Q-TRANSP.*Y IN QTY
TO-OBTAIN THE SOLUTION IN U . 'GOO

C CONSTRUCT 6*(1-P)*Q-TRANSP.*(D**2)*Q + P*R

INTEGER NcDL,NPDINT, I,NPN1,NPN2
REAL P,DTYcNPDINT),Du(NPDINT>,u(NPDINT),v(NPDINT,T), PREv,RATID

P ,SIX1MP,THOP '
NPM1 = NPOINT — 1

SIIIHP = 6.*(1.—P)
THOP = 2.*P
DO 2 I=2,NPM1

v(I,1) = SIX1MP#V(I,5) + THOP*(V(I—1,4)+V(I,4))

RETURN

VCI,2) = SIX1HP*V(I,6) + P*V(I,4)
2 V(I,3) = SIX1HP*V(I,?)

DIFF,PREV
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NPH2 I NPDINT - 2
IF (HPH2 .GE. 2) G0 TD 1O
u(1) - O.
u(2) I QTY(2)/V(2,1) .
UCB) - 0. GO TD 41

G FACTORIZATIOH I
10 DO 2O I-2,NPN2 -

RATID - V(I,2)/V(I,1) -
V(I+1,1) - V(I+1,1) - RATIO*V(I,2)
V(I+1,2) - V(I+1,2) - RATIO#V(I,3)
V(I,2) - RATID
RATID - V(I,s)/V(I,1)
V(I+2,1) - V(I+2,1) - RATIO~V(I,3)

2D V(I.s) - RATIO
G
G FDRVARD SUBSTITUTION

U(1) - 0. A
V(1,s) - 0.
u(2) - qTV(2)

so U(I+1) - QTY(I+1) — V(I,2)#U(I) - V(I—1,3)#U(I~1)
c BACK suEsTITUTION

U(NPDINT) - O;
u(NPN1) - U(NPN1)/V(NPN1,1) 1
I - HPH2 .

40 g(I) - UCI)/V(I,1)-U(I+1)*V(I.2)-U(I+2)*V(I,3)
- I - 1

IF (I .GT. 1) ‘ GD TD 40
G CONSTRUCT Q*U :

41 PREV -‘D. '
DO 5O I-2,HPOIHT

OU(I) - (U(I) - U(I-1))/V(I-1,4)
qU(I-1) - DU(I) - PREV

so PREV - DU(I)
Du(NPDINT) - -QU(HPOINT) RETURN
END

The number S has to be chosen somehow. Reinsch [1967] proposes to
choose S somewhere within \/TV of N in case 6y, is a good estimate for the
standard deviation of the ordinate 3,1,. More naively, S represents a knob
that one may set or turn to achieve a satisfactory approximation to the
data. Of course, if one really has no idea how to choose 5', then one might
as well dispense with it altogether and twiddle the smoothing parameter p
directly. Else, if one can make precise what constitutes a “satisfactory"_ fit
to the data in terms other than the function AS (f), then one should change
the program so as to find the p appropriate for such a satisfaction.

Craven 8-: Wahba [1977] propose a much more sophisticated choice for S
based on an estimate of the noise in the data obtained by a process called
“Gross validation" .

(11) Example: The cubic smoothing spline In order to gain SOl"I1e
feel for how this smoothing technique works and just what the effect of
choosing particular values for S might be, we consider now the smoothing

|f}|
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( 12) FIGURE. Error in the second derivative of the smoothing spline fg to
ii noisy data as an approximation to the second derivative of
sf, the underlying smooth function g for various values of the
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-...-1,

1; smoothing parameter S. An S between 30 and 60 seems
_ optimal.
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of certain data, equally spaced on [O . . 6] with mesh spacing 1/10 and ob-
tained from the B-spline of Examples X(7), X(20), and X(30) by rounding
its values to a certain number of places. Precisely, with NDIGIT input, we
use

yi = Lg($£) * 10HDIGIT + .5]/10hTDI(‘-IT.

An input of NDIGIT -= 2, for example, would round the function values to
two places after the decimal point. Correspondingly, we choose

5,, = .5 =1-= 1D""“°I", A11 4:.

In addition, various values of S are input. _ _
Figure (12) gives the error in the second derivative of the smoothing

spline f5 (as an approximation to the second derivative of the underlying
noise-free function g) as a function of the smoothing parameter .5’. For
large S , f5 is simply a straight line. The error therefore is just the second
derivative g” of the underlying function, clearly demonstrating that g is
a cubic spline with simple knots. As S decreases, ff; becomes a better
approximation to g” (note that the plotting scale changes). Notice the
spikes in the error at :I: = 3 and :1: = 4. These points are knots for- g,
indicating that the smoothing spline smooths out these “rough spots" in
the B-spline g. But, while the error decreases until 5' = 30, there is already
some roughness for S = 60, and this roughness increases as S decreases
further, indicating that we are approximating the noise more and more.
For S = 6 the second derivative error is already as large as it was for the
simple approximation fg = 0, and, for S- <2 .1, the error remains pretty
much as shown, of size ~ 2.5 and looking like the noise it represents.

The data for Figure (12)i were supplied by the following program which
also provides the printed output below in response to the input NDIGIT =
2, NS = 7, S = (600000, 60000, 6000, 600, 60, 6, .6).

CHAPTER xIV, EXAMPLE 1. GUEIG sNDDTEING sPLINE A
cALLs EsPLPP(ssPLVB), PPVALUcINTERV), SMOOTH(SETUPQ,CHOL1D)
G VALUES FRDN A GURIG B—SPLINE ARE RDUNDED TD N D I G I T PLAGEs
G AFTER TEE DECIHAL PDINT, TEEN sNDDTEED VIA -s N O D T H FDR
G VARIDUs VALUES OF THE GDNTRDL PARANTER s .

INTEGER I,IS,J,L,LSH,NDIGIT,NPOINT,NS
REAL A(s1,4),EcDEF(7).BREAK(5).GDEF(4,4),GDEFsN(4.60),DELY.DY(61)

A ,s(2D),scRTGE(42?),sFP,T(11),TENTDN.x(s1).r(61)
EDUIVALENGE (sGRTGE,GDEFsN)
DATA T /4#O.,1.,3.,4.,4*6./
DATA BCOEF /3*O.,1.,3*O./
GALL BSPLPP(T,BCOEF,7,4,SCRTCH,BREAK,COEF,L)
NPDINT A s1
READ 500,HDIGIT,NS,(S(I),I=1,NS)

5OO FORHAT(2I3/(E10.4))
PRINT 600,HDIGIT Q

600 FORHAT(24H EXACT VALUES RDUNDED TD,I2,21E DIGITs AFTER DEGINAL
* ,TH POINT./)



21
26 .
31
36
41
46

Example: The cubic smoothing spline 7

TENTDN = 10.c#NDIGIT
DELV = .5/TENTON
DD 1D I-1,NPDINT

X(I) = .1*FLOAT(I—1)
T(I) = PPVALU(EREAR,GDEF,L,4,x(I),D)
V(I) = FLOAT(IFIX(Y(I)*TENTON + .s))/TENTDN

10 DY(I) = DELY
DO 15 I=1,NPOINT,5

15 I I I I

PRINT 615,(I,(A(I,J),J=1,4),I=1,NPOINT,5)
615 FORHAT(52H VALUE AND DERIVATIVES OF NOISEFREE FUNCTION AT SOHE

* ,7H POINTS/(I4,4E15.?))
DO

16

18

c

EN

6 O.
11 O.
16 O.

O.
O
O.
O.
O.
O.

51 O.
56 O.

1 .
6 O.

11 O.
16 O.
21 O.
26 O.
31 O.
36 O.
41 0.
46 O.
51 O.
56 O.
61 O.

DO 15 J=1 ,4
ACI J) = PPVALU(BREAK COEF,L 4 x(I),J-1)

2O IS=1,N
SFP
LSM
DO 16

DO

DO 18
DO

S

J=1

J=1

16 ,4
COEFSH(J,I} = A(I,J)
I=1,NPOINT,5
18 ,4

i

A

SMOOTH ( X, Y, DY, NPOINT,,S(IS), SCRTCH, A )
NPOINT - 1
I=1,LSM

A(I,J) = PPVALU(x,GDEFsE,LsN.4.x(I).1-1)
PRINT

,7H POINTS/(I4,4E15.?))

D

OOOOOOO+OO
1041667-O1
8333334—O1
2562500+OO
465666?+OO
627OS34+OO
65000O0+OO
4895S34+O0
266666T+OO
1125000+OO
3333333—O1
4166633—O2
2980232—O7

2949416+OO
2B65339+OO
27B1245+OO
26Q??O5+OO
2614206+OO
2530047+OO
2450134+OO
2371033+OO
2291455+OO
2212827+OO
2134389+OO
2056005+OO
19T?749+OO

D
D
O
D
D

-D
-D
-D
-D
_0_
"O.

-..0_

—D
-D
-O.
-O.
-D
-O.
-D
-D
-O.
-O.
—D

OOOOOOO+OO
625000O—O1
25000OO+OO
4125000+OO
4000OOO+OO
2125000+OO
15000OO+OO
43T5000+OO
4000OOO+OO
225000O+OO
1000OOO+OO
2499998-O1
OOOOOOO+OO

1681417—O1
J6B576S—O1
1674324-O1
1671850-O1
1718161-O1
164484?-O1
15B2173—O1
1604510-O1
15?71?O—O1
15T6Q47—O1
1572163-O1
1565324-O1
1565041-O1

|
J

A STOP

0.0000000+OO
O.2500000+OO
O.5000OOO+OO
O.15000OO+OO

—O.1999999+OO
-O.55000OD+O0
-O.9000OOO+OO
-O.25000OO+OO

O.40000OO+OO
O.3000OOO+OO
D.2qDDDDo+DD
O.1000OOO+OO
O OQOOOOO+0O

O
O
O
O
O
O
O
O
O
O
O
O
O

61 O O .
PRESCRIBED S = O.600+O6, S(SMOOTHING SPLINE) =
VALUE AND DERIVATIVES OF SMOOTHING SPLINE AT CORRESP. POINTS

O O . OOOOOOO+OO
OOOOOOO+OO
OOOOOOO+OO
OOOOOOO+OO
OOOOOOO+OO
OOO0OOO+OO
OOOOOOO+OO
OOOOOOO+OO
OOOOOOO+OO
OOOOOOO+OO
OOOOOOO+OO
OOOOOOO+OO
OOOOOOO+0O

20 620, SCIS), SFP, (I,(A(I,J),J=1,4),I=1,NPOINT,5)
62O FORHAT(15H PRESCRIBED S =,E10.3,23H, S(SHOOTHING SPLINE) ,E1O 3/

* 54H VALUE AND DERIVATIVES OF SHOOTHING SPLINE AT CORRESP

EXACT VALUES ROUNDED TO'2 DIGITS AFTER DECIHAL POINT.
VALUE AND DERIVATIVES OF NOISEFREE FUNCTION AT SOME POINTS

1 O O O.5000OOO+0O
O.5000OOO+OO

-0.6999999+OO
—O.6999999+OO
—O.6Q99999+OO
-O.6999Q99+OO

O.13000OO+O1
O.13000OO+O1

-O.2000OO0+OO
-O.2000OO0+OO
—O.200000O+OO
—O.20000O0+OO
-O.2000OO0+OO

O.137+O6

0.0000000+OO
0.0000000+OO
O
O
O
O
O
O
O
O
O
O
O

OOOOOOO+OO
OOOOOOO+OO
O0OOOOO+00
OOOO00O+OO
OOOOOOO+OO
OOOOOO0+OO
OOOOOOO+OO
OOOOOOO+OO
0OOOOOO+OO
OOOOOOO+OO
o0OOO00+o0
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PRESCRIBED S I 0.600+05. S(SHO0THING SPLINE) I 0.563+05
VALUE AND DERIVATIVES 0F SHDDTHING SPLINE AT cognnsp. POINTS

1 0O
0
0
0

6
11
16
21 O
26 U
31
36
41
46
51

0
O
D
D
0

56 0
61 0

101034B+00
16B6429+00
23459B2+00
29453B1+00
3415664+00
36B1B09+0D
3691794+00
343B94B+D0
2967495+0D
235DB07+UD
1657661+0D
9353174-D1
2067093-01

.13B4746+00
0.1344B5B+DD
0.127B7B3+UD
0.1095352+DD
0.7594109—01
U.2B72458—01

—0.251?5B1—U1
—0.7462048—01
—D.1114196+0D
-U.133D21?+DD
-0,1427211+0U
—0.1455DD3+0D
—0.145T925+00

0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0

0

VALUE AND DERIVATIVES OF SHDDTHING
1 0 0 D
6 O

11 0
16 0
21 O
26 0
31 0
36 0

O
0
0

-0

41
46
51
56
61 -O

7?1659B—01
2649403—D1
149B199+00
302096B+00
45591B7+00
55?7974+00
5622612+0D
46621B9+00
3153B33+00
1695B1B+00
6311121—01
5010B76—02
5553601-D1

.2021496+0D
0.2195B54+D0
0.2780035+00
0.3214137+00
0.2747B74+0D
0.1163412+UD

-0.99B2967—01
-0.2677240+0D
-0.3141730+00
-0.2573432+DD
—0.1694264+DD
—0.110BB45+DD
-D.97D7B1D—01

0
0
0

-0
-0
-0
-0

0
D
0
0

0000000+00
5500094-02
2a05??5—01
5174045-01
0290301-01
10454s5+00
10s5237+00
070702?-01
s??77g2—01
2963? 0-01
1067000-01

SPLINE AT
000000D+D0
B1B31B5—D1
1311077+00
1600463-D1
210B194+D0
4057107+DD
4215109+0D
2242713+D0
3059394—U1
1705B36+0U
16D7977+0D
6B529UB—D1
DO0UODD+D0D

PRESCRIBED S I 0.60D+03, S(SHDDTHING SPLINE) = D
VALUE AND DERIVATIVES OF SHDDTHING SPLINE AT CDRRESP. POINT

1 -0 0 0
6 0 D 0

O
D
U

11
16
21
26
31
36
41
46

0
O
D
0
0
0
0

51
66
61 -0

2963135—01
1512B13—D1
1052970+00
2695D77+0D
4664122+D0
6D94426+DD
619DU19+0D
4B452D2+00
2B75099+00
1252274+00
34942U6—D1
1165251-D3
1190371-01

.7783630-D1

.11?220B+00
0.2556B2D+DD
0.3B56237+00
0.3713391+0D
D.17233?U+D0

—0.13BB132+DD
—0.36B6439+0D
-0.3840763+DD
—0.2533469+00
-0.1145922+0D
—D.366182B—01
—0.1B97625—D1

D.0DUODOD+0D
U.1B60341+00
D.3274755+DD
-0.1453501+DD

—0.2193?56+00
-D.5597129+D0
—D.615328D+0D
—0.2554220+UD

0.163B9D1+0D
D.3D71B2B+00
D.22?997D+DO

PRESCRIBED S 1 D.6D0+D2, S(SHOUTHI
VALUE AND DERIVATIVES OF SHDUTHING

1 0 0 0
D
D

6
11
16
21 0
26
31
36
41
46
51
56
61

O

D
O
O
D
0
O
0
O

8416147-02
1195798-01
B925421#01
2591429+D0
467B741+UU
6247162+00
6391436+DD
4B7BU75+00
2740B52+0D
113314D+0D
3150354-D1
2944320—U2
30653B2—02

.25B6523—D1
D.752924B—D1
0.25D4269+D0
0.4U62449+00
0.3973D49+0D
0.1993473+00

—U.1522276+DD
~0.4132321+0D
—0.3996694+00
-0.2373B65+0D
-0.9931158-01
—0.2602?29—01
-0.6137666-D2

0
-0
-0
-0
-0

0
0
0
0
0

0
0

0.8773695-D1
D O000000+D0

NG SPLINE) = 0
SPLINE AT CDRRESP. POINTS

OD00000D+DU
230D497+0D
41B3564+00
15?62?0+DD
2159979+DD
594D326+00
7221369+00
253D46S+U0
2466919+D0
3303DB3+D0
2192190+D0
9219799-D1
0UDDO0D+D0

-0
-0
-0
-0
-0

0
0
0
0
0

1053300-02 0
0000000+00 0

PRESCRIBED s - 0.e00+04, SCSHODTHING SPLINE) = 0

31627BO—D2
24?US36—D1
5U135BB—D1
641126B—01
5473658-01
2177846—01
22B3935—D1
553961B—01
6117421-O1
4636624—D1
25D9925—01
7798635-D2
6470B01—03
605+04

connasp. POINTS
0
0

-0
-0
-0
-0

-.0.

-0-

0
0

D
0
D
D
D
O
0

D
D
D
0
D
D
D

0
O

D
0

D
D
D
0
0.
0.
D
D

B301824—U1
1BB6?32+00
916255B—01
4003466+00
4661664+0D
2156D6?+DD
2512339+00
5341B90+00
4074625+00
B7D1154—01
1504202+00
192B409+00
5974?86—01
60D+D3

1881339+00
4513534+D0
1D74531+D0
6319BU2+0D
7647599+U0
4544454+D0
4416D12+D0
9618?05+0D
5534UB3+00
4325990-01
2802214+00
2464721+DD
7557644-01
603+02

251TOB2+DD
5643039+D0
2171Q?5+00
643DB17+DO
?4446B4+DD
721B559+00
5304460+D0
12BB554+D1
5556258+D0
1B59542+UD
29145B0+UU
2136636+DD
916YB75—D1

S
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PRESCRIBED s = 0.e00+01, S(SMDOTHING SPLINE) = 0.e05+01
VALUE AND DERIVATIVES OF SHUUTHING

1 _
6

11
16
21
26
31
36
41
46
51
56
61

PRESCRIBED S = 0.600+0D, S(SHDDTHING SPLINE) =
VALUE AND DERIVATIVES OF SHDDTHING

1 0 D D
6

11
16
21
26
31
36
41
46
51
56
61

7999242*D4
119648?-D1
811395?—D1
259723B+00
4704U15+D0
62B7B5?+00
64904B?+D0
48822BB+DD
2690169+0D
1116D?5+0D
29803B9—01
223B924—D2
2720560—04

1190162"05
10663?0—01
8046399—01
2599986+0D
4704916+DD
629?976+DU
6500599+00
4893048+00
27DD603+00
1106943+DD
2947696—D1
6650722~D3
6?15251—D7

-0
0
0.

-0
-0
-0
-0
-0

0

D
0
0
0
D

-0
-0
-0
-0
-0
-0
-0

.4D34437+0D
D
O
D.2456323+0D
D

:2s?221s+00

.3257304-02
59155D4—01
2499736+00
4002945+DD

15D5DB9+00
445046B+00
403B542+DU

993D097—01
4050564-D1
1763557—O3

160B201—D3
3943658-01
24999?6+D0
40001B2+00
399262B+00
259144B+00
1500207+D0
459B495+00
399B543+0D
2600034+00
9997959—01
6054529—D1
4D705B4—05

0
D
0
O
O
D
D
D
0
0
D
0
0

0
0
0
0
D
O
0
0
0
0
D
D

SPLINE AT CUHRESP. POINTS
0DUUDOU+00
3677506+0D
62B937D+DU
4620?01—01
4443??4+00
S2310B0+UD
9929BB2+DD
4194268+00
152B473—01
3930041+00
3888U30+U0
413365?+DD
0DDUO00+DD

SPLINE AT CDRRESP. POINTS
DDOUOUD+UU
165Q509+D1
1445260+D1
441147?-02
459B409+00
12D8435+01
976986B+00
1666B94+D1
2349750—D1
166B7B1+01
46?1Q30+O0
16551D?+01
0UO0DDO+DU

2954947+00
1B2394B+01
2U46229+01
723?461+00
1941344+D1
2U05794+01
1608B02+U1
620?655+D1
2161185+01
2912464+00
47B223?+00
2117302+01
10049B4+0D
6D3+D0

9?04943—U1
1B82163+U2
18914?9+D2
4853381-D1
1B90B9B+02
2333732+01
2431476+01
3546511+02
235?399+D1
213?029+02
213162D+02
18BB451+D2
54?5B27—D2

This output shows the increasing roughness (see the third derivative
values, in the last column) of the cubic smoothing spline as the value of S
is decreased toward 0. Reinsch [1967] would pick S between 50 and 72, and
the approximation for S = 60 seems indeed reasonably close to the original
noise-free data, in value and derivatives.

There is a sign of slight trouble, though. The first derivative of the
smoothing SpllI'16._f,5' is not as “continuous” as it could be. This is quite
evident for S = 600600 in which case f5 should be a straight line, that is,
fg should be constant, yet fg fails to be constant by an amount of 2 =+= 1O'"4.
Since the calculations were carried out in better than 7 decimal digit arith-
metic and the function values are of order 1, this means a loss of over
threedecimal digits of accuracy in these slopes. For smaller values of S,
one can make this discontinuity evident by rerunning the calculations but
using the routine PPVLLC instead of PPVALU, thus making the pp function
f5 left-continuous (see Problem VlI.2), and comparing with the output
listed above. This-magnification of rounding errors becomes less prominent
as S is chosen smaller and could, of course, be combated easily by going to
higher precision arithmetic. El

This slight trouble, though, is to me a symptom of a conceptual difi-
culty with the smoothing spline. The smoothing spline is chosen from an
approximation family with slightly more degrees of freedom than there are
data points; its (admittedly redundant) ppform consists of about 4N items
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compared to the 2N original data items. These many degrees of freedom
are held in check by the presence of the _f(_f(:1:))2 dz term in the expression
to be minimized, but do appear, for instance, to cause the rounding error
trouble mentioned earlier.

It strikes me as more straightforward to approximate noisy data from an
approximation family with many fewer degrees of freedom than there are
data points. There should be enough degrees of freedom to approximate
the underlying function g well, but not enough to approximate also the
faster varying noise. In this, splines are very efiective as an approximating
family and least-squares approximation should be considered first since it
leads to a banded and linear system of equations to be solved.

Least-squares approximation is best approximation with respect to a
norm that derives from an inner product. While -much of the development
below is valid for any inner product, we will discuss here only discrete inner
products, that is, innerproducts of the form

_ N

(13) (Q= '1) == Z 0('e)h('e)wi-
11:1 _

Here, T is a sequence of data sites in some interval [c .. b], and we will
assume it to benondecreasing, for convenience. The sequence w = (w,-_){“'
of weights is assumed to be nonnegative. A typical choice is

AT1/2,

(14) w. == (A1-...; + A1-,-,)/2, »z= 2,...,N - 1
ATN_1/2,

in which case (g, h) is a reasonable approximation to the continuous inner
product TN .

I [H g(:r:)h(:1:)d:i:.

Other choices for w are used to include trends in the data and/or to reflect
the varying accuracy of, or confidence in, the given data gr ~ g(1-i).

We use the customary symbol

nhug 1- <h.h>*/2
for the ‘norm’ induced by the ‘inner product’ ( , The quotes here con-
stitute an asseiiting nod to the alert reader who is about to protest that
ll ' ll2 is only a seminorm since there are many functions it other than the
0 function for which Hhllg = 0.
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We will use the Cauchy-Schwarz-inequality

(15) K0. Fill S llQll2 Wille-
Let now $ be a finite-dimensional linear space of functions, all on [a . . b].

We seek a best approximation from $ to ‘g ’ with respect to the ‘norm’ - "2
that is, we seek an 1°” G $ so that ' ,

i i___ 1|: 1 ' I i__ .ll 9 1° H2 I}'g§1ll9_ J°||2

The finite dimensionality of $ guarantees that such an _f* actually exists.
We have put g in quotes here because we do not know g. Instead, we intend
to use the approximate value gs whenever the value g(r,-_) is called for. In
effect, ‘g’ is an equivalence class of functions.

( 16) Lemma. The function f"‘ is aibest approximation from $ to ‘g’ with
respect to ll ' lie if and only if the function f " is in $ and the function

1

‘g’ — f", that is, the error, is orthogonal to $, that is,

(17) for all f E $, (f, ‘g’-— f‘) = O.

PROOF. For any function f E $, we compute

||‘9’-flli = |l‘9’—f* + f"‘—f||§
(18) =l|‘.<1’- f’||§ + 20" — fig’ — f’) + llf’ —- fili-

e $
Therefore, .

f 1 ii__ 2l,l’__ :i____ 1:2 1r___ 2Or a1fE$. H9 fllz-‘"9 f ||2+||f file
in case (17) holds, that is, in case the error ‘g’ — f* is orthogonal to $. But
then, indeed,

||‘g’ - f“Q Z [|‘g’ — f"‘[|2, all f E $, with equality iff ||_f" —:_f||2 = 0.

Conversely, assume that, for some f E $, (f, ‘g’ — 1"’) 75 O. Then

2<e. ‘9’ - r> = t(2<r. if - J-"*>) > tgllflli = lliflli
for all nonzero t of the same sign as (f, ‘g’ —- f‘) and sufiiciently close to O
(since t2 goes to zero faster than t). Hence, for all such t, we get from (18)
(with —tf substituted for f —— f, hence with f replaced by f"' + tf G $)
that -

ll‘!-Y’ " (f" + ifllli < ||‘9’ -' f"||i=
showing that then. f* + tf E $ is a better approximation. El

i |
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This proves, incidentally, that the difference between best approxima-
tions l'iB.S ’l‘io1'm’"U, therefore shows that g has a unique best approximation
in $ if and only if ll ' l|2 is a norm on $, that is, if and only if the only function
fin $ for which [[_f[[3 =0 is f =0.

Assume now that [I ' llz is indeed a norm on our linear space $ and that
(pi)? is a basis for $. Then we know that (17) has a unique solution _f* in
$. Further, one easily verifies that (17) is equivalent to

(19) for i = 1, . . . ,n, (<,o,,‘g’ — _f*) = 0,

hence this latter system of equations has a unique solution f“‘ E $. Also,
f"' has a unique representation asp; in terms of the basis (cp,-,)’{’, hence,
the linear system y 1,

l[i[ 1'1

(20) for i= 1,...,n, (<,o._,,‘g’-Z:cr,-<,03.-) =0,
I I. J=1

has a unique solution (on). These latter equations constitute the system of
normal equations, usually written

1'1

(21) for i= 1»---="= Z(<Po<P;-‘la; = 49059’).:i=1

using the linearity of the inner product ( , ) in its second argument.
The determination of _f"' via the normal system may or may not be a good

thing. It depends on what particular basis (90,) for $ we happen to have
chosen. If we have somehow succeeded in choosing (<p,) to be orthogonal,
that is, so that

(wt, ‘P;-’) = 9 for i at J1
then it is quite easy to solve the normal system; the solution is then simply

Q.-i=(<P;:=‘9’)/(<P.»mP.i)= J'=1-.-----»"»-
On the other hand, we might be unlucky and end up with a basis (<,p,=) that
is badly conditioned, that is, for whiph relative changes of a certain size
in the coeflicient vector (on) may result in relative changes in the function
2, asp, represented of widely varying sizes. A classical example is the basis
(p-,',(£1'£) = :r:’°'i, i = 1, . . . ,k, for the linear space II.“ on the interval [0 . . 1].
If the inner product _1

ah) = [0 ge>h<1=> dz .
is used, then the coefficient matrix for the normal system (21) is the Hilbert
matrix, the textbook example of an illconditioned matrix. The reader to
whom these considerations are unfamiliar is urged to consult a text on the
numerical solution of linear systems, for example, Forsythe 8.: Moler [1967]
or the book Lawson to Hanson [1974] on "Solving least-squares problems

‘IT

i 

—i--Ti.—-j-_-__-.,,Z,___,
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Least-squares approximation from $;c’t For the specific linear space
$ = $1.4; of splines, with t = (t,-)’f"", the B-spline basis (Bi)? seems 0011-
venient since it is relatively well conditioned (see Cor. XI(8)), at least for
moderate it. Further, the coefficient matrix for the normal system

‘H'-

(22) SB-5, Bj)Cl'5j = (B-5, ‘g’), 'l= 1, . . . ,, Tl,

.i=1

has bandwidth less than It in the sense that (B,,B_,=). = O for |i - j| Z
la. This follows readily’ from the fact that B,(;i.:) = 0 for a: ¢ [t,- .. t,+,i,,],
hence |i — j] 2-_ It‘ implies that Bi(:r::)B_,= (rs) = 0 for all as. Since the matrix
({B,, B_,i))'is also symmetric, this allows one to store it by storing just its it
lower diagonal bands. Further, the matrix is positive (semi)definite. We can
therefore solve (22) by Gauss elimination without pivoting, and, since the
matrix is symmetric, we can carry this out within its lower diagonal bands.
This version of Gauss elimination, without pivoting and for a symmetric
matrix, is called Cholesky factorization: In its squareroot-free form, the
symmetric matrix A is factored into LDLT, with L a unit lower triangular
matrix and D a diagonal matrix. The triangular system Ly = b is then
solved for y, and, finally, the triangular system DLTx = y is solved for the
solution x of Ax = y. Furtherdetails can be found, for example, in Forsythe
3: Moler [1967]. These calculations are carried out in the subprograms
BCHFAC/BCHSLV given below.

We must verify that our discrete ‘norm’ is, indeed, a norm on $;,,,t if we
want to make certain that the normal system (22) has exactly one solution.
Since |[_f[|2 = O implies that, for all i (with wi 75 0), _f(r,) = 0, we are asking
for conditions on ‘T’ that ensure that (_f(r,)) = 0 implies that f = 0. From
the Schoenberg-Whitney Theorem (Theorem XIII(2)), we have at once the
following lemma. i

(23) Lemma. The“~‘norm’ ||f||2 == (Z,w,(f(r,))2)’/2 with w, > 0, all i,
and (T,) nondecreasing, is a norm on $a,t if and only if, for some 1 3 3'1 <
' ' ' < jfl 3 Ni i

ti<Tji<ti+k,

If the condition of this lemma is violated, then f i—-> wi(_f(r,))“) 1/2
fails to be a norm on $1,; and the normal system (22) is singular. Since the
normal system always has solutions, by Lemma (16), this implies that it
has many solutions in this case, with any two solutions agreeing at all the
T-5:3.

In sucli a situation, it has been proposed to select a “best” least-squares
approximation by the requirement that it be smallest in some sense among
all least-squares approximations. In effect, the singular problem is made
nonsingular by the imposition of additional conditions on the solution.
This process is also called “regularization” and is also used to rescue ill-
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conditioned, or nearly singular, problems.
The approach taken in the subprogram below is somewhat difierent. If

|| - [|2 fails to be a norm on $i,,t, then, the B-spline basis (B,-)‘i" for $,:.,,t fails
to be linearly independent over ‘T, that is, one or more of the Bj’s depends,
over 1', linearly on the Bis preceding it in the sequence. We choose a “best”
least-squares approximation by forcing the coefficients corresponding to
these dependent B,;’s to equal zero. (See Example (26) below.)

The subroutine L2APPR (with BCHFAC/BCHSLV)

susaourrus LZAPPR ( T, N, K, 0, arts, scosr )
c r0 BE CALLED IN mars PROGRAM L 2 H A r n .
CALLS suspaocntus ssptvs, scnrtc/stv
c
cousraucrs THE (HEIGHTED orscnsrs) L2—APPRDXIMATION BY SPLINES OF ORDER
c K urru KHOT ssnusucs r(1). ..., r(n+x) T0 crvsu DATA POINTS

( TAU(I). GTAU(I) ), I=1,...,NTAU. THE B—SPLINE COEFFICIENTS
B c 0 E F OF THE APPRDIIHATING SPLINE ARE DETERMINED Fnou THE
uoautt EQUATIOHS_USING cuotssxvis usrsoo.

nfjflfifififififififlfifififiiaoOfifiofififififlfifioCafififififififififgfifififi

E‘F’F

MFG 11H i-Hflflw IIIIIJQ _‘U

seem: I N P U T moose:
T(1), ..., T(N+K) THE KNOT SEQUENCE
N.....THE DIHENSION OF THE SPACE OF SPLINES OF ORDER K HITH KNOTS T.

.THE ORDER

w A R N I N c . . . THE assrarcrrou K .LEI KHAX (= 20) IS IMPO-
SED BY THE ARBITRARY DIMENSION STATEMENT FOR srtrx BELOW, BUT
IS N 0 v H E R E c H E c K E D FDR.

eeooe H D R K A R R A Y 3 euros:
.A WORK ARRAY OF SIZE (AT LEAST) K*N. ITS FIRST K ROWS ARE USED
FOR THE K LOWER DIAGONALS OF THE GRAHIAN MATRIX C .

DIAG.....A HORK ARRAY OF LENGTH N USED IN BCHFAC .

****** I N P U T VIA C O H M O N /DATA/ #*##*#
NTAU.....NUHBER OF DATA POINTS
(TAU(I),GTAU(I)), I=1,...,NTAU ARE THE NTAU DATA POINTS TO BE '

FITTED .
HEIGHT(I), I=1,...,NTAU ARE THE CORRESPONDING HEIGHTS .

ttrtte U U T P U T snore:
BCOEF(1), ..., BCUEF(N) THE B—SPLINE CDEFFS. OF THE L2-APPR.

##1## H E T H O D ttttee
THE B—SPLINE COEFFICIENTS OF THE L2-APPR. ARE DETERMINED AS THE SOL"
UTION OF THE NORMAL EQUATIONS

SUM ( (B(I),B(J))*BCOEF(J) = J=1,...,N) = (E(I),G),
I = 1, ..., N .

, B(I) DENOTES THE I—TH B—SPLINE, G DENOTES THE FUNCTION TO
BE APPROKIHATED, AND THE I N N E R P R O-D U C T OF THO FUNCT-
IONS F AND G IS GIVEN BY

(F,G) := SUH ( F(TAU(I))*G(TAU(I))*HEIGHT(I) : I=1,...,NTAU) .
THE ARRAYS T A U AND H E I G H T ARE GIVEN IN COHHON BLOCK

D A T A , AS IS THE ARRAY G T A U CONTAINING THE SEQUENCE
G(TAU(I)), I=1,...,NTAU.
THE RELEVANT FUNCTION VALUES O — LINES B(I), I=1,...,N, ARE
SUPPLIED BY THE SUBPROGRAH B

THE COEFF.HATRIX C , WITH
C(I..J) := (B(I), B(J)}. I.J=1.---.N,

ri-—-i-u-_.i—-u-

-inn-ru-u.n—|-|—|
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The subroutine LQAPPR

OF THE NORMAL EQUATIONS rs SYHHETRIC AND (2*K~1)-HANDED, THEREFORE
CAN BE SPECIFIED BY crvrus rTs K BANDS AT OR BELOH THE DIAGONAL. FOR
I=1,...,N, HE sT0RE .
(B(I),B(J)) = C(I,J) IN n(I-J+1,J). J=I,...,HIHD(I+K-1,N)

AND THE RIGHT SIDE _
(B(I), s ) IN sc0EF(I) .

SINCE B—SPLINE VALUES ARE H0sT EFFICIENTLY GENERATED BY FINDING srH-
ULTANEDUSLY THE VALUE OF E v E R Y NDNZERU B—SPLINE AT 0HE POINT,
THE ENTRIES 0F c (I.E., 0F Q ), ARE GENERATED BY COMPUTING, FDR
EACH LL, ALL THE TERMS INVOLVING ;TAu(LL) SIMULTANEOUSLY AND ADDING
THEM T0 ALL RELEVANT ENTRIES.

INTEGER K,N, r,J,JJ,xHAx,LEFT,LEFTHK,LL,HH,HTAu,HTHAx
PARAMETER (xHAx=20,HTHAx=200)
REAL Bc0EF(H),orAo(H).Q(x,H).T(1), srATx(KHAx),ou,cTAU,TAu,HErcHT
DIMENSION T(N+K) ,
COMMON / DATA / NTAU, TAu<HTHAx).cTAU(HTHAx),HErcHT(HTHAx)
DO 7 J=1,N

Bc0EF(J) = 0.
00 7 I=1,K

7 Q(I.J) = 0.
LEFT = K
LEFTMK = 0 .
DD 20 LL=1,NTAU

L0cATE L E F T s.T. TAu(LL) IN (T(LEFT),T(LEFT+1))
10 IF (LEFT .E0. N) cu T0 15

IF (TAU(LL) .LT. T<LEFT+1)) 00 T0 15
LEFT = LEFT+1
LEFTMK = LEFTHK + 1

c0 T0 10
15 cALL BSPLVB ( T, K, 1, TAU(LL), LEFT, BrATx )

BrATx(HH) CONTAINS THE vALUE OF B(LEFT-x+HH) AT TAU(LL).
HENCE, HTTH DH == BIATX(HH)*HEIGHT(LL), THE HUHBEE DH#GTAU(LL)
rs A SUHMAND IN THE INNER PRODUCT A

(B(LEFT—K+HM), 0) HHICH’GDES INTO BCOEF(LEFT—K+MH)
AND THE NUMBER BIATJC(JJ)*Di-i[!IS A SUI-{HAND IN THE INNER PRODUCT

(B(LEFT—K+JJ), s(LEFT-x+HH)), INTD 0(JJ-HH+1,LEFT-x+HH)
SINCE (LEFT—K+JJ) - (LEFT—K+HM) + 1 - JJ - HH + 1 .
00 20 HH=1,K

ow = BIATX(MH)*UEIGHT(LL)
J - LEFTHK + MM"
Bc0EF(J) = DN#GTAU(LL) + Ec0EF(J)
r = 1~
DD 20 JJ=HH,R

q(r,J) = BIATX(JJ)*DH + 0(r,J)
2O I = I-+ 1

CONSTRUCT CHOLESKY FACTORIZATION FOR C IN Q , THEN USE
IT TO SOLVE THE NORMAL EQUATIONS -

C*X = BCOEF
FOR X , AND STORE X IN BCOEF .

CALL BCHFAC ( Q, K, N, DIAG ) '
CALL BCHSLV ( Q, K, N, BCOEF )

RETURN
END
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SUBROUTINE BCHFAC ( W, NBANDS, NROW, DIAG )
CONSTRUCTS CHOLESKY FACTORIZATION

CEOOOOO

C I L * D * L-TRANSPOSE
HITH L UNIT LOHER TRIANGULAR AND D DIAGONAL, FOR GIVEN MATRIX C OF
ORDER N R O H , IN CASE C IS (SYMHETRIC) POSITIVE SEMIDEFINITE
AND B A N D E D , HAVING N B A N D S DIAGONALS AT AND BELOW THE
HAIN DIAGONAL.

##### I N P U T eaten:

OOOOOOOOOOOOFJOOOO

NROH.....IS THE ORDER OF THE MATRIX C .
NBANDS.....INDICATES ITS BANDHIDTH, I.E.,

C(I,J) I O FOR I-J .GE. NBANDS . ‘
H.....HORKARRAY OF SIZE (NBANDS,NROH)‘ CONTAINING THE NBANDS DIAGO-

NALS IN ITS ROHS, HITH THE MAIN DIAGONAL IN ROW 1 . PRECISELY,
H(I,J) CONTAINS C(I+J-1,J), I=1,...,NBANDS, J=1,...,NROW.

FOR EXAMPLE, THE INTERESTING ENTRIES OF A SEVEN DIAGONAL SYM-
HETRIC MATRIX C OF ORDER 9 WOULD BE STORED IN W AS

11 22 as 44 55 SS 7? as as
21 32 43 54 65 T6 B7 es
31 42 53 64 75 B 97
41 52 63 T4 B5 9

ALL OTHER ENTRIES OF H NOT IDENTIFIED IN THIS WAY WITH AN EN-
TRY OF C ARE NEVER REFERENCED .

DIAG.....IS A WORK ARRAY OF LENGTH NROH .

(‘JOI’***#* O U T P U T ######

£20000

H.....CONTAINS THE CHOLESKY FACTORIZATION C = L*D*L—TRANSP, WITHH(1,I) CONTAINING 1/D(I,I)
AND H(I,J) CONTAINING L(I-1+J,J), I=2,...,NBANDS.

##### H E T H U D ######

nonoonnonononnoonnnnnoonon

GAUSS ELIMINATION, ADAPTED TO THE SYMMETRY AND BANDEDNESS OF C , Is
USED . -

NEAR ZERO FIVOTS ARE HANDLED IN A SPECIAL WAY. THE DIAGONAL ELE-
MENT c(N,N) - W(1,N) IS SAVED INITIALLV IN DIAG(N), ALL N. AT THE N-
TH ELIMINATION STEP, THE GURRENT PIVOT ELEHENT, VIz. W(1,N), IS COM-
PARED HITH ITS ORIGINAL VALUE, OIAG(N). IF, As THE RESULT OF PRIOR
ELIMINATION STEPS, THIS ELEMENT HAS BEEN REDUCED BY ABOUT A WORD
LENGTH, (I.E., IF W(1,N)+DIAG(N) .LEA'DIAG(N)). THEN THE PIVOT IS DE-
CLARED T0 BE ZERO, AND THE ENTIRE N-TH RON IS DECLARED TO BE LINEARLY
OEPENDENT ON THE PRECEDING ROWS. THIS HAS THE EFFECT OF PRODUCING

x(N) - O WHEN SOLVING csx - B FOR I. REGARDLESS 0F B. JUsTIFIc-
ATION FOR THIS IS AS FOLLOHS. IN CONTEMPLATED APPLIGATIONS OF THIS
PROGRAM, THE GIVEN EQUATIONS ARE THE,§ORHAL EQUATIONS FOR SOME LEAST-
SOUARES APFROIIHATION PROELEH, DIAG(N = c(N,N) GIVES THE NORM—SQUARE
OF THE N-TH BASIS FUNGTION, AND, AT THIS POINT, W(1,N) CONTAINS THE
NORM—SQUARE OF THE ERROR IN THE LEAST-SQUARES APPROIIHATION TO THE N-
TH BASIS FUNGTION BY LINEAR GOHEINATIONS OF THE FIRST N—1 . HAVING
H(1,N)+DIAG(N) .LE. OIAG(N§ SIGNIFIES THAT THE N—TH FUNCTION IS LIN-
EARLY DEPENDEHT TO HAGHINE ACCURACY ON THE FIRST N—1 FUNCTIONS, THERE
FORE CAN SAFELY BE LEFT OUT FROM THETEASIS OF APFROIIHATING FUNCTIONS

THE SOLUTION OF A LINEAR SYSTEM S
Cox = B .

IS EFFEGTEO BY THE SUCCESSION OF THE FOLLOWING T W O CALLS:
GALL BCHFAC (IN, NBANOS, NROW, DIAG ) . T0 GET FACTORIZATION
CALL BGHSLV ( H, HBANDS, NROH, B ) , TO SGLVE FOR I.
INTEGER NBANDS,NROH, I,IMAI,J,JMAI,N
REAL H(NBANDS,NROH),DIAG(NROH), RATIO
IF (NROH .GT. 1) GO TO 9
IF (H(1,1) .GT. O.) H(1,1) = 1./H(1,1)

RETURN
' - STORE DIAGONAL_OF C IN DIAG.

ii--1-i
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9 DO
1O

DO

14

15

17

18
20

END

10'N=1,NROH
DIAG(N) = W(1,N)

20 N=1,NROH
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FACTORIZATION .

IF (W(1,N)+DIAG(N) -GT. DIAG(N)) GO TO 15
DO 14 J=1,NBANDS

- 0W(J,N)

H(1.N) = 1./W(1.N)
THAI = HINO(NBANDS—1.NROW - N)
IF (THAI .LT. 1) G0 T0 20
JHAK = IMAK
DO 18 I=1,IHAI

RATIO = H(I+1,N)*W(1,N)
DO 17 J=1,JHAI

W(J,N+I) I H(J,N+I) - W(J+I,N)*RATIO
JMAX = JMAI - 1
W(I+1,N) = RATIO

CONTINUE

- GO TO 20

RETURN

SUBROUTINE EGHSLV ( W, NBANDS, NROW, B >
FROM * A PRACTICAL GUIDE'TO SPLINES A BY c. DE BOOR
SOLVES THE LINEAR SYSTEM csx =-s 0F ORDER N R O W FOR I
PROVIDED W CONTAINS THE CHOLESKY FACTORIZATION FOR THE HANDED (SYM-
HETRIc> POSITIVE DEFINITE HATRII C AS CONSTRUCTED IN THE SUBROUTINE

E c H F A C (OUO VIDE)
###### I N P U T ######

NROH.....IS THE ORDER OF THE MATRIX C .
NBANDS. . . . .INDIcATES THE BANDWIDTH OF c .

GONTAINS THE CHOLESKY FACTORIZATION F0R c , As OUTPUT FROH
SUBROUTINE BCHFAC (OU0 VIDE).
THE VECTOR OF LENGTH N R O W CONTAINING THE RIGHT SIDE.

W.....

H.....

####*

oint:*

‘E RumHe
-4§-... cwc

-S ######

##### M E T H U_D ######
WITH THE FACTORIZATION C = L#D*L—TRANSPOSE AVAILABLE, WHERE L IS
UNIT LOWER TRIANGULAR AND D IS DIAGONAL, THE TRIANGULAR SYSTEM
L*Y = B IS SULVED FOR Y (FORHARD SUBSTITUTION), Y IS STORED IN E,
THE VECTOR Dm#(-1)#Y IS COMPUTED AND STORED IN B, THEN THE TRIANG-
ULAR SVETEH L—TRANSPOSE#I = p**(—1)*Y IS SULVED FOR I (BACKSUBSTIT—
UTION)

R OF LENGTH N R O W CONTAINING THE SOLUTION.

INTEGER NsANDS,NROH, J,JHAI,N,NsNDH1
REAL H(HsANDs,NROH),E(NR0H)
IF (NROW .GT. 1) G0 TO 21
B(1) = B(1)*H(1,1)

RETURN
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C
C FORWARD SUBSTITUTION. SOLVE L*Y = B FOR Y, STORE IN B.

21 NBNDM1 = NBANDS — 1
DO 30 N=1,NROW

JMAX = MINO(NBNDM1,NROW—N)
IF (JMAX .LT. 1) GO TO 30
DO 25 J=1,JMAX

25 E(J+N) = B(J+N) — H(J+1,N)*B(N)
30 CONTINUE '

C
c BACKSUBSTITUTION. SOLVE L-TRANSP.x = D**(-1)*Y FOR x, STORE IN B.

N - NROW
as B(N) - B(N)-H(1,N)

JHAI - HINO(NBNDH1,NROW—N)
IF (JMAX .LT. 1) GO T0 40
DO as J-1,JHAx V _

35 B(N)-= B(N) — W(J+1,N)*B(J+N)
40 N - N—1 _

IF (N .GT. 0) GO TO 39
RETURNEND

LQNAIN and i115 subroutines For the calculation of least-squares
Spline approximation, for example in the examples to follow, we need to
read in the data, construct the appropriate knot sequence from a given
break Sequence, evaluate the approximation, and calculate and print out
various measures of the error. We therefore need a program to coordinate
all these activities, including the calculation of a series of approximations
with varying number and location of knots. All this is carried out in subpro-
grams SETDAT, L2KNTS and L2ERR, and coordinated in the main program
LQMAIN, listed below.

C MAIN PROGRAM FOR LEAST-SQUARES APPROKIMATION BY SPLINES
CALLS SETDAT,L2KNTS,L2APPR(BSPLVB,BCHFAC,BCHSLV),BSPLPP(BSPLVB*)

,L2ERR(PPVALU(INTERV)),PPVALU*,NEWNOT

C'J('J(')C'!'OC')('J('J('J('J<'J('J(;JOO('JC'fJ('J('JCJO

THE PROGRAM, THOUGH OSTENSIBLY WRITTEN FOR L2—APPROXIMATION, IS TYP-
ICAL FOR PROGRAMS CONSTRUCTING A PP APPROKIMATION TO A FUNCTION GI-
VEN IN SOME SENSE. THE SUBPROGRAM L 2 A P P R , FOR INSTANCE, COULD
EASILY BE REPLACED BY ONE CARRYING OUT INTERPOLATION OR SOME OTHER
FORM OF APPROIIMATION.

##### I N P U T ######
IS EXPECTED-IN S E T D A T (QUO VIDE), SPECIFYING BOTH THE DATA TO
BE APPROXIMATED AND THE ORDER AND BREAKPOINT SEQUENCE OF THE PP AP-
PROXIMATING FUNCTION TO BE USED. FURTHER, S E T D A T IS EXPECTED
TO T E R M I N A T E THE RUN (FOR LACK OF FURTHER INPUT OR BECAUSE
I C O U N T HAS REACHED A CRITICAL VALUE).

THE NUMBER N T I M E S ‘IS READ IN IN THE MAIN PROGRAM. IT SPECI
FIES THE NUMBER OF PASSES THROUGH THE KNOT IMROVEMENT ALGORITHM IN

_ N E W N C T TO BE MADE. ALSO, A D D B R K IS READ IN TO SPECIFY
THAT, ON THE AVERAGE, ADDBRK KNOTS ARE TO BE ADDED PER PASS THROUGH
NEWNOT. FOR EXAMPLE, ADDBRK I .34 WOULD CAUSE A KNOT TO BE ADDED
EVERY THIRD PASS (AS LONG AS NTIMES .LT. BO).
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LZMAIN and its subroutines 9

*uw:w www wwmo

1"‘

:'.o0rfl'u zougw

gbd
*####
IS G

N T E D 0 U T P U T ******
BY THE THREE PRINT CONTROL HOLLERITH STRINGS

= ’ON’ GIVES PRINTOUT OF B-SPLINE COEFFS. OF APPROXIM.
= ’ON’ GIVES PRINTOUT OF PP REPR. OF APPROXIMATIOH.
= ‘ON’ GIVES PRIHTOUT OF APPROXIMATION AND ERROR AT

EVERY DATA POINT.
K , THE NUMBER OF PIECES L, AND THE INTERIOR BREAKPOINTS

ARE ALWAYS PRINTED OUT AS ARE (IN L2ERR) THE MEAN, MEAN SQUARE, AND
MAXIMUM ERRORS IN THE APPROKIMATION.

||"
I

THE ORDER

INTEGER I,Ic0UNT,II,J,R,L,LBEcIN,LNEH,LL,LPRMAX,LTKMAx,N,NT,NTAU
A ,NTIMEs,NTMAx,ON,PREcO,PRPUN,PRPcD

PARAMETER (LPRMAx=1oo,NTMAx=2o0,LTRRAx=2ooo)
REAL ADDERR,Ec0EP(LPRNAx),EREAR,cOEF,cTAU,Q(LTRNAx),scRTCH(NTNAx)

* ,T(NTMAx),TAU,TDTALH,wEIcHT
COMMON / DATA / NTAU, TAU(NTMAX),GTAU(NTMAI).NEIGHT(NTMAX),TOTALH
COMMON /APPROX/ EREAK(LPRMAx),c0EP(LTRRAx),L,R
DATA OH /’ON’/
ICOUNT = 0

I C O U N T PROVIDES COMMUNICATION HITH THE DATA-INPUT-AND-
TERMINATION ROUTINE S E T D A T . IT IS INITIALIZED TO 0 TO
SIGNAL TO SETDAT WHEN IT IS BEING CALLED FOR THE FIRST TIME. AFTER
THAT, IT IS UP TO SETDAT TO USE ICOUNT FOR KEEPING TRACK OF THE
PASSES THROUGH SETDAT .

INFORMATION ABOUT THE FUNCTION TO BE APPROXIHATED AND ORDER AND
BREAKPOINT SEQUENCE OF THE APPROXIMATING PP FUNCTIONS IS GATHERED
HY A -A

1 CALL SETDAT(ICOUNT) *'
BREAKPOINTS ARE TRANSLATED INTO KNOTS, AND THE NUMBER N OF
B—SPLINES TO BE USED IS OBTAINED BY A
CALL LZKNTS C BREAK, L, K, T, N )

P

' ca wnu Run w:n cum c~
THE INTEGER N T I H E S AND THE REAL ARE REQUESTED
AS HELL AS THE PRINT CONTROLS P R B 0 0 AND

* P R P U N . HTIMES PASSES ARE MADE THROUGH THE SUBROUTINE NEH-
NOT, HITH AN INCREASE OF ADDBRR KNOTS FOR EVERY PASS .
PRINT soo -

soo FORMATC’ NTIMEs,ADDRRR , PRRc0,PRPc0,PRPuN -? (I3,F10.5/3A2)')
J READ 500,NTIHES,ADDBRK,PRBCO,PRPCO,PRFUN

500 FURMAT(I3,F10.5/3A2)
LBEGIN = L
NT = 0

THE E—SPLINE COEFFS. B c 0 E F OF THE L2—APPRnx. ARE OBTAIN-
ED HY A -
CALL L2APPR ( T, N, R, Q, scRTcR, BCOEF )
IF (PRECO .EQ. ON) PRINT 609, (BCOEF(I),I=1,N)
FORMAT(//’ R—sPLINE COEFFICIENTS’/(4E20.10))

10

609

c0NvERT THE B—REPR. OF THE APPRDIIRATIUN TO PP REPR.
CALL BSPLPP ( T, BCOEF, N, R, O, BREAK, COEF, L )
PRINT 610, K, L, (BREAK(LL),LL=2,L)

610 FORMAT(//’ APPRuxIMATI0N BY SPLINES OF ORDER’,I3,’ ON ',
# I3,’ INTERvALs. EREAKPOINTS -'/(4E20.10))

IF (PRPCO .NE. ON) co TO 15
PRINT 611

611 FORMAT(/' PP—REPRESENTATION FOR APPROxINATION')
DO 12 I=1,L

II ‘ vi

12 PRINT 613,BREAK(I).(COEF(II+J),J#1,K)
613 P0RMAT(P9.a,4E20.10/(11x,4E2o.1o))

-n.
I

l
I
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C

FJOOGOOOOO

C

GOOCEOOOOCEOOOODOO

C

COHPUTE AND PRINT OUT VARIOUS ERROR NORMS BY A
15 CALL L2ERR ( PRFUN, SCRTCH. Q )

IF NEHNOT HAS BEEN APPLIED LESS THAN N T I H E S TIMES, TRY
IT AGAIN TO OBTAIN, FROH THE CURRENT APPROX. A POSSIBLY IMPROV-
ED SEQUENCE OF BREAKPOINTS HITH' ADDHRH MORE HREARPOINTS (ON
THE AVERAGE) THAN THE CURRENT APPROXIMATION HAS.

IF ONLY AN INCREASE IN BREAKPOINTS IS HANTED. HITHOUT THE
ADJUSTMENT THAT NEHNOT PROVIDES, A FARE NEHNOT ROUTINE COULD BE
USED HERE HHICH HERELY RETURNS THE EREAKPOIHTS FOR L N E H
EQUAL INTERTALS .
IF (NT .GE. NTIHES) _ GO TO 1
LNEH - LBEGIN + FLOAT(NT)*ADDBRK
CALL NEHNOT (BREAK, COEF, L, K, SCRTCH, LNEH, T )
CALL L2KNTS ( SCRTCH. LNEH, K, T, N )
NT - NT + 1

END
GO TO 10

l"l" IO
SUBROUTINE LZKNTS ( BREAK K, T, N )

TO BE CALLED IN HAIN PROGRAM H A I N .
CONVERTS THE BREAKPOINT SEQUENCE B R E A K INTO A CORRESPONDING KNOT

SEQUENcE- T TO ALLOH THE REPR. OF A PP FUNCTION OF ORDER K HITH
K-2 CONTINUOUS DERIYATIYES AS A SPLINE OF ORDER K HITH RNOT
SEQUENCE T . THIS MEANS THAT "
T(I), ..., T(N+K) - BREAK(1) K TIMES; THEN EREAK(I), I=2,...,L, EACH

ONCE, THEN BREAK(L+1) K TIMES . .
THEREFORE, N I K-1 + L.

###‘-###R‘; ET!H3###-##

L THE NUMBER OF POLYNOHIAL PIECES.
BREAK(1), ...,BREAK(L+1) THE BREAKPOINT SEQUENCE

##### U U T P U T ###### .
T(1),...,T(N+K) THE KHOT SEQUENCE
N THE DIMENSION OF THE CORRESP. SPLINE SPACE OF ORDER K .

INTEGER K,L,N, I,KM1
REAL RREA1<(1).T(1)-
DIMENSION BREAK(L+1).T(N+K)
HH1 - H — 1
DO 5 I=1,KH1

5 T(I) - BREAK(1) :3
DO 6 I=1,L ~

6 T(KM1+I) - BREAK(I)
N - KM1 +
DO 7 I-1,R A

7 T(N+I) = BREAK(L+1) p- RETURN
END

L
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SUBROUTINE LZERR ( PRFUN , FTAU , ERROR )
C THIS ROUTINE IS TO BE CALLED IN THE MAIN PROGRAM L 2 M A I N .
CALLS SUEPROGRAM PPVALU(INTERV)

THIS SURROUTINE COMPUTES VARIOUS ERRORS OF THE CURRENT L2-APPROxI-
HATION , VHOSE PP-REPR. IS CONTAINED IN COMMON BLOCK APPROx ,

-TO THE GIVEN DATA CONTAINED IN COMMON BLOCK DATA . IT PRINTS OUT
THE AVERAGE ERROR E R R L 1 . THE L2—ERROR E R R L 2, AND THE
MAXIMUM ERROR E R R M A I .

OCUFMOITfiflfifiiiipflifiFJCMQIUCMDIDFIO

##### I N P U T ######
PRFUN A HOLLERITH STRING. IF PRFUN = ’ON’, THE ROUTINE PRINTS OUT

THE VALUE CF THE APPROXIMATION AS HELL AS ITS ERROR AT
EVERY DATA POINT.

###** Q U T P U T ######
FTAU(1), ..., FTAU(NTAU), HITH FTAU(I) THE APPROIIMATION F AT

TAU(I), ALL I.
ERRUR(1), ..., ERROR(NTAU), NITH ERROR(I) = SCALE#(G — F)

AT TAU(I), ALL I. HERE, S C A L E EQUALS 1. IN CASE
PRFUN .NE. ’ON’ , OR THE AES.ERRDR IS GREATER THAN 100 SOME-
NHERE. OTHERHISE, S C A L E IS SUCH THAT THE MAXIMUM OF
AES(ERROR)) OUER ALL I LIES BETWEEN 1O AND 100. THIS
MAKES THE PRINTED OUTPUT MORE ILLUSTRATIVE.

INTEGER PRFUN, IE,H,L,LL,LPHMAx,LTRMAx,NTAU,NTMAx,ON
REAL FTAU(1),ERROR(1), EREAH,COEF,ERR,ERRMAx,ERRL1,ERRL2

# ,GTAU,SCALE,TAU,TOTALH,HEIGHT
DIMENSION FTAU(NTAU).ERROR(NTAU)
PARAMETER (LPKMAx=100,NTMAx=200,LTHMAx=200o)
COMMON / DATA / NTAU, TAU(NTMAx),GTAU(NTMAx),HEIGHT(NTMAx).TOTALH
COMMON /APPROx/ DREAH(LPHMAx),COEF(LTHMAx),L,H
DATA ON /’ON’/ »
ERRL1 = O.
ERRL2 = O.
ERRMAX = O.
DO 10 LL=1,NTAU

FTAU(LL) - PPVALU (SHEAR, COEF, L, K, TAU(LL), O )
ERROR(LL) - GTAU(LL) - FTAU(LL)
ERR = AES(ERROR(LL))
IF (ERRMAX .LT. ERR) ERRMAX = ERR

' ERRL1 = ERRL1 + ERR*HEIGHT(LL)
10 ERRL2 = ERRL2 + ERR#*2*NEIGHT(LL)

ERRL1 = ERRL1/TOTALH
ERRL2 = SQRT§ERRL2/TOTALU)
PRINT s15,ERRL2,ERRL1,ERRMAx

S15 FORMAT(///’ LEAST SQUARE ERROR =’,E20.0/
I AVERAGE ERROR =* E2O.S/1 .

H 2 ’ MAXIMUM ERROR =’,E20.6//)
_ IF (PRFUN .NE. ON) RETURN

C F: SCALE ERROR CURVE AND PRINT ##
IE = O
SCALE = 1.
IF (ERRMAX .GE. 10.) GO TO IS
DO 17 IE=1,9

SCALE = SCALE*10.
IF (ERRMAX#SCALE .GE. IO.) GO TO IS

17 CONTINUE
IS DO IS LL=1,NTAU
19 ERROR(LL) = ERROR(LL)*SCALE

PRINT S20,IE,(LL,TAU(LL),FTAU(LL).ERROR(LL),LL=1,NTAU)
S20 FORMAT(///14x,=APPROxIMATION AND SCALED ERROR CURVE’/71,

1’DATA POINT’,7X,’APPROXIMATION’,3X,’DEVIATION x 10*#’,I1/
2(I4,F16.8,F16.8,F17.6))

RETURN
END 3
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The use Of LQHAPPR We begin with a discussion of an important
diagnostic aid, namely the number of sign Changes in the error

E:=_igi___J¢-1|:

of the least-squares approximation f* from $;,,t. We first prove that, as in
continuous least-squares approximation (see the end of preceding chapter)
from an n-dimensional spline space, the error must have at least n Sign
changes.

By Lemma (16), we know that the error e must be orthogonal to $;,,t,
that is, we must have

(_f,e) == O for all f G $k,1,.

This implies that the (rectangular) matrix

A A 1: (Bi-(”'§))?=1§§;1

maps the N-vector e :--= (e('r_.,- )w_.,-){" to zero. The matrix A is totally positive
by Theorem XIII(7), hence, by a strengthening of Proposition XIII(6),

(24) If-:l.I1lCA g S+e, '

unless e is identically zero. Here, S+e denoted the number of week sign
changes in the sequence e, that is, the maximal number of sign changes
achievable by an appropriate assignment of signs to the zero entries of e.
For a proof of (24), see, for example, Harlin [1968:Theorem V2.2]. I

By taking account of the bandedness of the matrix A, one proves

(25) Lemma. Assume that |] -‘H2 is a norm on $,,_t (that is, ran.kA = n),
and that the error e =- ‘g’-— _f* in the least squares approxiniation to g fi'om

nticall zero on 1' Then the sequence (e('r,)){v has at least$1,’, is not ide ' y . , -
n (weak) sign changes, with the ith of these n sign changes occurring “in
the support” ofB.,, i = 1, . . . ,n. '

(26) Example: An approximation with fewer sign changes in the
error than perhaps expected We calculate the discrete least-squares
approximation in the specific case g(E) = I2 + 1 and $1,; = lI.;2__5 f‘1C[0. .1]

Ii-.r-—-___-

with
£=(('£—1)/6:*£=1,...,7) 1

1' = (0,1/2,3/4,7/8, . . .,1 - 2"B,1),
w, = 1, all i.

- An appropriate subroutine SETDAT, to be used in LQMAIN, is then
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SUBROUTINE SETDAT(ICOUNT)
TO BE CALLED IN MAIN PROGRAM L 2 M A I N .

THIS ROUTINE IS SET UP TO PROVIDE THE SPECIFIC DATA FOR EXAMPLE 2
IN CHAPTER XIV. FOR A GENERAL PURPOSE L2—APPROXIMATION PROGRAM, IT
HOULD HAVE TO BE REPLACED HY A SUBROUTINE READING IN

NTAU, TAU(I), GTAU(I), I=1,...,NTAU
AND READING IN OR SETTING

K, L, RREAH(I),I=1,...,L+1, AND HEIGHT(I),I-1,...,NTAU,
As HELL AS TOTALN = sUM( HEIGHT(I) , I-1,...,NTAU).

I C O U N T IS EQUAL TO ZERO HHEN SETDAT IS CALLED IN L 2 M A I N
FOR THE FIRST TIME. AFTER THAT, IT IS UP TO SETDAT TO USE ICOUNT
FOR KEEPING TRACK OF THE PASSES THROUGH SETDAT . THIS IS IMPORTANT
SINCE L2MAIN RELIES ON SETDAT FOR T E R M I N A T I O N .

- INTEGER ICOUNT, I,H,L,LPKMAx,LP1,LTKMAx,NTAU,NTAUM1,NTMAI
REAL HREAH,CORF,GTAU,sTEP,TAU,TOTALH,HEIGHT
PARAMETER (LPRMAx=1OO,NTMAx=2Oo,LTHMAx=2OOo)
COMMON / DATA / NTAU, TAU(NTMAK),GTAU(NTMAI),HEIGHT(NTMAX},TOTALH
COMMON /APPROI/ BREAKCLPHMAK),COEF(LTKMAI),L,K
IF (ICOUNT .GT. 0) STOP
ICOUNT = ICOUNT + 1
NTAU = 1O
NTAUM1 = NTAU-1
DO S I=1,NTAUM1

a TAU(I) = 1. - .5**(I—1)
TAU(NTAU) = 1.
DO 9 I=1,NTAU

S GTAU(I) = TAU(I)**2 + 1.
DO 10 I=1,NTAU

10 NEIGHT(I) = 1.
TOTALN = NTAU
L = 6
LP1 = L+1
sTEP = 1./FLOAT(L)

OOOCJOOOQOOOO

K = 2
DO 11 I=1,LP1

11 BREAK(I) = (I—1)#STEP
RETURN

END

Here is (input and) output from LQMAIN and its subroutines for this
particular choice of SETDAT.

NTIMES,ADDBRK , PRBCO,PRPCO,PRFUN =? (I3,F10.5/3A2)
0 O.

- ONONON

B—SPLINE COEFFICIENTS .
O.1000OOO000+01 0.0000000000+OO 0.0000000000+OO O.125000OOOO+O1
O.143915S797+01 0.1635S41441+O1 0.199S644S29+O1

gt APPROXIMATION BY SPLINES OF ORDER '2 ON 6 INTERVALS. BREAKPOINTS -
O.1666G66716+OO 0.3333333433+OO O.50000OOO0O+O0 O.6666666BB5+OO
O.S333333731+0O ‘
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PP—REPRE8ENTATION FOR APPROXIHATION
0.000 0.1000000000+01 -0.8000000000+01
0.167 0.0000000000+00
0.333 0.0000000000+00
0.500 0.125000000O+01
O.567 0.1439158T97+O1
0.833 O.1685841441+O1

0.0000000000+00
0.75000004T7+01
0.1134952684+01
0.1480095744+01
0.18T6820803+01

LEAST SQUARE ERROR - 0.116994-O2
AVERAGE ERROR - o.sss149-03
MAIIMUM ERROR - O.24aT2a—O2

APPROXIHATION AND SCALED ERROR CURVE
ROKIMATIONDATA POINT APP

I-5 Oi.0UJ"~l0'i01||P'0JlQl-A

0.00000000 1.
O.50000O0O 1.
O.T500000O. 1.

10.875000OO
O.93T50000 1
0.988T5000 1
O.9843T500 1
O.99218750 1
O.99609375 1
1.00000000 1

0O000000
25000000
56250012
76404226
88134348
93999422
98931958
98398221
99131346
99864483

DEVIATI

1 13.

ON X 10**4
000000
000000
001192
82741?
372339
178535
254414
538298
893013
551712

Til
Our spline space in this example is of ‘dimension n == 7 (= Z + k — 1). We

would therefore expect at least seven Sign changes in the error. In fact, we
get only five, even if we take the first two entries in the error vector to be
zero (as they would be in exact arithmetic) and so obtain three weak sign
changes in the first four entries of the error vector. A closer look at breaks
and data sites shows that B2 and B3 in the B-spline Sequence for t vanish
on 1', that-is, a.re linearly dependent on the others in a trivial way. Thus,
$;,,___1, is only of dimension 5 when restricted to 1', and ('24) only promises
five sign changes under these circumstances. El

This example also illustrates that the subprogram BCHFAC/BCHSLV is
equipped to deal with such singularity oi the normal system, but also Shows
that you may not like the result (whic.i, in this case, is identical with the
So-called “best” least-squares approximation). '

Lemma (25) provides a simple check that a program for least squares
spline approximation works correctly.1;It also points out that the least-
squares spline approximant could have been gotten, in principle, by
interpolation, though not usually at some of the given data sites. This shows
that least-squares approximation is perhaps not the method of choice for
the approximation to a smooth and exactly known function, since the con-
struction of an interpolant, as described in Chapter XIII, is considerably
cheaper and just as effective provided one has a reasonable way for choosing
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appropriate interpolation sites.
Least-squares approximation is very suitable for the recovery of a smooth

function from noisy information. In this case, one thinks of the data g, as
being of the form _

9i = g(Ti) + 51.

with g some “smooth”, or “slowly varying”, function to be recovered and
the sequence (6,) quite “rough”, or “fast varying”, distributed around 0, but
of smaller magnitude than g. The trick is to approximate from a function
class $ that is flexible enough to approximate the underlying information
g while still orthogonal to the noise, that is, unable to follow oscillations in
the sequence (6,).

In this situation, one would expect the error vector of a successful fit
to look like “noise”, that is, to have many more sign changes than the
approximating class has degrees of freedom. One would also expect the error
not to change much in size when increasing the available degrees of freedom
slightly. In fact, one would expect the error to decrease in size initially as
one approximates from subspaces with an ever increasing dimension until
one reaches a point at which the error consists essentially of noise. Of course,
going much beyond this point will eventually lead to zero error since, with
sufficiently many degrees of freedom, one can simply interpolate. These
considerations are illustrated in the next example.

L.

(27) Example: The noise plateau in the error We construct the
least-squares approximation to rounded values of the function g(:r:) = ei” at
65 sites in [O. .3] from parabolic splines with uniformly spaced simple knots.
We start with no interior -knots and then increase the number of knots by
1 each time, using a fake subroutine NEWNOT which merely outputs the new
breaks uniformly spaced. Here is an appropriate subroutine SETDAT.

SUBROUTINE sETDAT(ICOUNT)
TO BE CALLED IN MAIN PROGRAM L 2 M A I N . '

THIS ROUTINE IS SET UP TO PROVIDE THE sFEcIFIC DATA FOR EXAMPLE 3
IN CHAPTER XIV. "

GOOD
INTEGER ICOUNT, I,R,L,LPRHAx,LTNMAx,NTAU,NTMAx
REAL BREAK,COEF,GTAU,STEP,TAU,TOTALH,NEIGHT
PARAMETER (LPHMAR-100,NTMAx=2oO,LTRMAx=2Ooo)
COMMON / DATA / NTAU, TAU(NTMAx),GTAU(NTMAx),HEIGHT(NTMAx),TOTALH
COMMON /APPROx/ BREAR(LPRMAx),COEF(LTRMAx),L,R
ROUND(x) = FLOAT(IFIX(X#100-))/100.
IF (ICOUNT .GT. 0) STOP
ICOUNT = ICOUNT + 1
NTAU = as
STEP = 3./FLOAT(NTAU—1)
DO 10 I=1,NTAU

TAU(I) = (I-1)#STEP
GTAU(I) = ROUND(ExP(TAU(I)))

10 HEIGHT(I) = 1.
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(28) FIGURE. As the number of intervals (or polynomial pieces) increases,
the least-square error decreases until it reaches a plateau
whose height is determined by the noise level in the data.

TOTALN I NTAU
L - 1
BREAK(1) - TAU(1)
SREA1<(2) - TAU(NTAU) '
K - 3

RETURN
END

4-

The output for this example is Summarized in Figure (28) where the
logarithm of the least-square error is plotted versus the logarithm of the
number D. of intervals. According to Theorem XII(6),

ear (g,$3,1,) ~ 0 (ma) .

We would therefore expect the error to decay initially like O (TF3). .We
have drawn in, therefore, for comparison, a straight line with slope -3. Note
that the error reaches a plateau around n =- 10, of height ~ .0025. This
corresponds nicely to the fact that we rounded the exact values to 2 digits
after the decimal point. Note also that we eventually have enough degrees of
freedom to approximate the noise as well; there is real improvement again
around D. = 50 while, for n. Z 65, the error is 2 =1-= 10"’, that is, roundoff. El
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(29) Example: Once more the Titanium Heat data In this
example, we use the “optimal” knotsderived in Example XIII(29) for in-
terpolation to some of the data points of the Titanium Heat Data. But this
time, we construct a least-Squares approximation to all the data. We also
increase the number of knots repeatedly, each time by 2, using NEWNOT to
obtain a good distribution for them.

Here is an appropriate version of SETDAT.

SURROUTINE SETDAT<ICOUNT)
TO BE CALLED IN MAIN PROGRAM L 2 M A I N .

CALLS TITAND
THIS ROUTINE IS SET UP TO PROVIDE THE SPECIFIC DATA FOR EXAMPLE 4
IN CHAPTER xIV.
INTEGER ICOUNT, I,R,L,LPRMAx,LTHMAx,N,NTAU,NTMAI
REAL sREAH,RRHFIC(S),COEF,GTAU,TAU,TOTALV,HEIGHT
PARAMETER (LPKMAX=100,NTMAX=23C,LTKMAK=2000)
COMON / DATA / NTAU, TAU(NTMAR),CTAU(NTMAx),HEIGHT(NTMAx),TOTALH
COMMON /APPROx/ RREAH(LPHMAI).COEF(LTHMAx),L,R
DATA BRKPIC/595.,730.9B5,794.414,S44.476,880.06,907.814,

A 938.001,9?6.752,1075./, N/9/ _
IF (ICOUNT .GT. O) STOP
ICOUNT = ICOUNT + 1
CALL TITAND ( TAU, GTAU, NTAU )
DO 1O I=1,NTAU

10 VEIGHT(I) = 1.
TOTALH = NTAU
L = N-1
H = S
DO 11 I=1,N

11 EREAH(I) = BRKPIC(I)

GOOD

RETURN _
END

Instead of a printout, we show data and approximation in a picture, with
an enlarged plot of the error (dashed) superimposed. The error is plotted
in the scale indicated on the right. The breaks used are also indicated, as
diamonds on the zero line for the error. The approximation (see Figure (30))
is considerably better than that achieved in Chapter XIII by interpolation
(See Figure XIII(30)). But, the error curve still has quite regular behavior
and the plot of the approximation itself also indicates that it does not as
yet contain_ all the information in the data. In particular, the error has
12 sign changes, just equal to the dimension of the approximating spline
space. _

After four passes through NEWNOT, we have twice as many intervals, and
approximation and error now look quite satisfactory; see Figure (31). In
particular, the error now has 28 Sign changes while the dimension of the ap-
proximating spline Space is only 20. It seems reasonable that a less smooth
approximation, for example, a spliiie of order 3 or 4 or a spline of order 5
but only C(1) or Cm), would havebeen more effective for these data (see
Problem 7).

We alert the reader to Chapter 5_ of Hayes [I970], written by M.J .D. Pow-
ell, for a different approach to least-squares (cubic) spline approximation
(see Problem 8).
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fifteen interior knots, chosen by NEWNOT.
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Least-squares approximation by splines with variable knots We
bring up once more the topic of best approximation by splines with variable
knots, this time in the specific context of least-squares approximation. This
means that we consider least-squares approximation from the function class

(BB) $».,.. 7=U{f€$k,t3t1="'=tk=(1=tn.+1 =*~=»r..+i.=b}.
There are many difiiculties in constructing best approximations from this
class, all stemming from the fact that this class is nonlinear, that is, the
sum of two functions in $;,_-H, is, in general, not in $;._-,1. This makes it es-
sentially impossible to characterize a best approximation, that is, to give
computationally useful criteria by which a best approximation can be rec-
ognized and distinguished from other approximations. For the linear case,
we did this earlier by showing that a best approximation must satisfy the
normal equations and vice versa. It is also possible to give the equivalent
of “normal equations” in the nonlinear case. But, while every best approx-
imation must satisfy these, not every solution of these equations is a best
approximation. Connected with this is the fact that there may be many best
approximations to a given function from $a,-.-.. (If aball merely touches a
plane, it does so at exactly one point. But a ball may touch a carved surface
at many points.) y

The upshot of all this is that it is possible only to check whether a
proposed approximation is best locally. This means that one can try, nu-
merically, to improve a proposed approximation by “small” changes in the
parameters describing it.

A program for calculating such locally best approximations by cubic
splines with variable knots can be found in de Boor 8: Rice [I968]. A version
of the program is available as code ICSVKU in the IMSL library [I977].
Jupp [1978] has discussed a peculiar difliculty that arises in the numerical
construction of least-squares approximations from $;,_,, and has proposed
an effective remedy}.

Already Chapter XII contains a discussion of the merit of finding best
knots. To reiterate, use of a code for finding a (locally) best approximation
from $;,,-H is expensive. It is warranted only when precise placement of some
knots is essential for the quality of the approximation (for example, when
the data exhibit some discontinuity) and an approximation with as few
parameters as possible is wanted. Otherwise, an approximation with two
or three times Fa many well chosen knots is much cheaper to obtain and,
usually, just as effective.

(34) Example: Least-square approximation to the Titanium Heat
data from $419 In de Boor 8; Rice [l968], a (locally) best approximation
was obtained for the data in Examples XII(40) and (29) by splines of order
4 with five simple (interior) knots. Subsequent investigations by Jupp [1 978]
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showed this to be very nearly a best approximation.
Figure (32) shows the approximation and the error. The approximation

is about as good as the one we obtained in Example (29) with quartic
splines with 15 interior knots. Note, though, the regular behavior of the
error in the first knot interval. Two or three more knots would take care of
it. El

. i Problems

1. Modify the proof of Theorem XIII(34) in order to establish the
following facts about existence and optimality of the “natural” spline
interpolant:
(i) Using the definition of $§‘,i',','.,f,._,,, given in the text, show that f G $§‘,i'§,§_x if and
only if Dmf G $m,x but orthogonal to 1'l<_,.,.., that is, Ii” D”‘f(:t)q(:r) da: =
0 TOT all q G Hqm.

(ii) If N Z m, then there exists, for given g, exactly one f G $§‘,i';'.I",, that
agrees with g at x = (::c,;)i1V . (Hint: Show that the homogeneous system
fB,,.,,,,,(:c)cp(x) dzt = 0, i = 1,...,N — ra, has only the trivial solution
(,0 = 0 in $m_x, for example, by Lemma XIIl(38) and its corollary and the
Schoenberg-Vllhitney theorem, or, by the linear independence of (Bi,m,x)
and Lemma (16). Conclude that the linear system

- 1 _
/B,,,,,,,,(:t)cp(:r) da:/ml = E (_.'\:,;+,.,.,,-—..'1:,)[:1:i,. . . , :c,;.|.,.,.,]g, t = 1, . . . , N—m,

has ‘a solution cp G $m,,.;, and then construct f $§‘,i',',:,x as f = p + I —
s)'l_‘_1go(s) ds/(rn. — 1)! for an appropriate p G l'l._»__-,.,.,._; etc.)
(iii-) Conclude from (ii) that f (f(”‘)(s))2 ds $ f (h(”"*))2 ds for any smooth
function h that agrees with g at x, with equality if and only if hlml = fl“).
(iv) From (ii), develop a computational scheme for the construction of the
“natural” interpolant f.

2. Prove that S( _f,,) (with S given by (2)) strictly decreases as p goes from
0+ to 1"‘, in case S(fg') 56 O. (Hint: Set F,-,(_f) := qS'(f) + (1 -- q)T(f), with
T(f) := f(f(”‘)(:c))” d:t'. Then F : p |-+ F,_,(_f,,) is the pointwise minimum of
the straight lines q I-+ F,,(f), hence strictly concave. This makes S'(_f,,), as
the value at q = 1 of the tangent, q 1-1» Fq(f,,), to F at p, strictly decrease
as p increases (and its value at q == O, i.e., T(_fp)1 strictly increase).

3. Study the rounding error effects in the smoothing spline calculations
b rerunning the calculations, but using PPVLLC instead of PPVALU andY
comparing the first derivative values obtained with those of Example (11).

4. Prove the Cauchy-Schwarz-Inequality (15). (Hint: If = = O,
then U 5 ||g:l: h"2 implies (g, h) = U. Otherwise, without loss, 75 O, and
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then O 5 ||g — %%‘%% h||2 does the job.)

5. One way to enforce interpolation to some of the data during least-
squares approximation is to make the weights corresponding to those data
points very large compared to the rest. Investigate the effects of a few
large weights on the accuracy of least-squares construction as carried out
in LQAPPB. and its subroutines.

6. For x G IR", let x* := ((—)i:r;)'f. Prove that S")! + S"“(x"‘) = n -—- 1..

7. Approximate the Titanium data by (i) parabolic and cubic splines
with simple knots (perhaps using the optimal knots for that order and for
the 12 data points used in Example XlII(29)) and (ii) by C(1)-quartics
(that is, all interior knots are triple; this would require some editing of
L2KNTS), and compare with Example (29) and Example XIlI(29).

8. (A test for noise). According to M.J.D. Powell (see Hayes [1970:
Chapter 5]), one expects the inequality

t Ti-1?"-i. S iT?'-'-g-:'£-
1-.=p-+-l. li=p q — P + 1

to hold in case the error r, := y-_.; — f(:z:,;), i = p, . . . , q, in the approximation
_f to the given data points (:r:,;, yr) is essentially ‘noise.

Modify LQMAIN to include a termination criterion based on this test.
Then try it, for example, on the data in Example (27) or (11).

9. W1'ite a program that realizes the following variable knot least squares
cubic spline approximation algorithm.

1 The interval [a. .51] containing all the abscissae of the given data points
is subdivided initially into one or more subintervals; call their collection
M. Also, there is a collection M"‘, initially empty.

2 While M is not empty, carry out the following two steps:
2.1 Pick some I E M, and calculate a discrete least-squares approxima-

tion pf E 11.-_;4 to the data given in I. '
2.2If

Z Ti-:.~'I"i S Z
In-1.:-;€I MEI

(with ri := yr -—- p; (.'1‘.'I,;), and n; := number of an in I), then remove I from
M and put it into M "‘. Otherwise,a;cut I in two and put both pieces. back
into M. '

3 At this point (is it certain that this point will always be reached?),
M "‘ contains a partition of the original interval. If .5 is the break se-
quence giving this partition, then we are now certain that the data can
be approximated well from 1'I< 41¢-. But, since we want a smooth approxi-
mated, we now “pull apart knots”, that is, we approximate the data from
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$4,? with 15 I= (£1, £1, £1, <1. £1.15. $1.15, §2.2is'1 $2.251’-52.75.52.751 - - -1 £1-.2515:-.251
€l+.251€l+.251b1 5,5,5), 3J1d§i+a 1= (1 "' alt-i + 0f§i+1. all '1 E [0 - - ll-

For “one-pass algorithms” that g establish appropriate breaks by go-
ing through the data from left to right, see, for example, K. Ichida, F.
Yoshimoto, and T. Kiyoni [1977].

10. The standard treatment of the smoothing spline concerns the mini-
mization, over _f, of the expression G,,(f) := S(f) + pT(_f), with T(f) :=
f(_f("”)(:c))” dsc, and with the smoothing parameter p chosen in [0"' . . oo].
Establish the map p |—-> p(p) for which fp is the minimum for GP9,).

11.. A useful extension of the smoothing spline construct can be obtained
by considering the weighted roughness measure

TAU’) == [In >\('?)(D"“f(*))2 dt.

with A some nonnegative function. It can be shown that, for T =- Ti,
AD’”fp (rather than Dmfp) is in $§,‘?,‘.],‘I,,.

(a) Show that such fp is piecewise polynomial in case A is the reciprocal
of a pp function.

(b) Work out the changes needed in SMOOTH in order to handle the special
case when A is piecewise constant, with breaks only at the sci.

(See Kulkarni and Laurent [1991] and Bos and Salkauskas [1992] for good
discussions of such weighted splines.)

l-

l

Ir.[.
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The Numerical Solution of an
Ordinary Differential Equation by
Collocation;
BSPLVD , COLLOC

The entire chapter is, in effect, just one example. We show how to use
B-splines in the numerical solution of an ordinary differential equation by
collocation. In the process, we construct one more basic routine, this one
for the efficient simultaneous evaluation of all the B-splines and some of
their ‘derivatives at a site.

Until the late 1960‘s, the area called “numerical solutions of differen-
tial equations” was thought to be completely disjoint from the area called
“approximation theory”. But an outburst of mathematical and computa-
tional work on Galerkin’s method and other projection methods changed
all that. This outburst was caused by the realization that old standby tech-
niques like the Rayleigh-Ritz method or Galerkin’s method could be made
quite effective if one were to give up on using polynomials or other ana-
lytic functions as trial functions and used piecewise polynomials instead. In
a way, finite difference methods had derived their earlier superiority from
the same source,_that is, by being based on piecewise, or local, polynomial
approximation. g

There is no hope, in a book such as this, to give a fair description of the
computational aspects of the finite element method, as this conjunction
of projection methods and piecewise polynomial trial functions has come
to be called. Instead, I want to discuss the numerical solution of an ODE
from an approximation theoretic point of view, that is, as an interpolation
process, not unlike the interpolation processes described in the preceding
three chapters.

Mathematical background The mathematical background for this
chapter, as found in de Boor & Swartz [1973], is as follows.

. We intend to approximate a function g on [a . . b] that is given to us only
implicitly, as a solution of the differential equation

(1) (Dmg) (at) = F(:c;g(.1:),_. . . , (D”“'1g)(s:)), for at E [a . . b]

43
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with side conditions (for example, bou11dary conditions)

,6-|jg=C._._j, 'f'=1,...,'TTI.

Here, F = F(:c; zo, . . . , z.m_1) is a real-valued function on IRm"'1, and we
will assume it to be “sufficiently smooth”. Further, the side conditions are
of the form

(3) Zwij(Dj'1g)(:1::,) =: flig = ci, i= 1, . . . ,m,
.'i=1

for some constants 1U-|‘__-f and some sites o 5 :01 5 - - - §_ arm 3 b.
These side conditions are linear. Since we are eventually going to linearize

(1) in the computations, we could have made these conditions nonlinear as
well (see Wittenbrink [1973] and Problem 3).

Since (1) is nonlinear, in general, it may happen that (1)—(2) has many
solutions. All we require in that case is that there be a neighborhood around
the specific solution g we have in mind that contains no other solution. Our
hope is to start our iterative scheme (necessary since (1) is nonlinear) within
this neighborhood and then have it converge to this particular solution.

We attempt to approximate g by pp functions, using collocation. This
means that we determine a pp function f so that it exactly satisfies the
differential equation at certain sites, the collocation sites. In a way, these
are sites of interpolation, but, in contrast to interpolation as discussed
earlier, we do not match function values or derivative values at such sites
but, rather, certain combinations of function and derivative values.

Specifically, withf --= (§¢)i+1 given breaks (with E1 = a, {H1 = b, say),
we look for f E II<;k+m,£ O C("‘_1) for which

= F(Ti; _f(T-5),... , (Dm_1f)(Ti)), fOI' =1,. . . ._,f€Z

,6-§__f=C-5, '£=].,....,1'Tl». I

Here, we choose the collocation sites (T,)?! It per subinterval, and
distributed the same in each subinterval; that is, -with _

""'1§.Q1<Q2<"‘<Qk§1

picked somehow, we set

7-(i——1)k+'U :1: lg‘!-+1_l'£'l1 +QU(€5-+1 U = 11"".lk‘.l =11"‘!!-

The program below leaves the choice of p = (9,)? to a subprogram
CULPNT. The particular specimen of COLPNT given below picks p as the
zeros of the kth Legendre polynomial, that is, as the Bites that are used win
the standard Gauss quadrature rule. The reason for this can be found in
the following theorem. '
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(5) Theorem. Assume that the function F in (1) is sufficiently smooth
in a neighborhood of the curve

[o . . b] —> lRm+1 :11: r--+ (:r:,g(:c), . . . , D'm'1g(:c)).

Assume further that the collocatipn pattern p = (pi)? in the standard
interval [-—-1 .. 1] has been so chosen that

k

All q(I) H(='*= ~ Q-=1)d$ == 0

for every q E l_i.,;_,. Then the solution f (if it exists) near g of the
approximate problem (4) satisfies

(6) “Dig - D‘f|| is const |:;|’°+'“i"<*“**"-">, i = 0, . . . ,m.
At the breaks, the approximation is of even higher order, namely

(7) |Di(9'"' § const |§|k+“, j = 1, . . . ,'l+ 1; i= O, . . . ,m— 1.

Here, const depends on F, g, it, but does not depend on 5.

Since Dif is pp of order Tn + k — i, the bound (6) shows that Dif
approximates Dig to optimal order, according to Chapter XII, provided
s Z m—i. But the bound (7) shows that the approximation is of better than
optimal order at the specific sites £1, . . . , {H1 (if s > m). This phenomenon
is somewhat dramatically called superconvergence. To talk of better than
optimal convergence may sound pariadoxical, but isn’t. Our statement that
the order O (|§|"""""'°) is best possible for dist (g,H.<m+k_£) refers to the
overall size or norm of the error. This does not deny the possibility that
we obtain a much better approximation at certain sites. After all, we can
obtain zero error at certain sites simply by interpolating at these sites.

Note that the choice of p as the Zeros of the kth degree Legendre poly-
nomial allows us to take s = k in the theorem. Thus at the breaks, we
obtain

1'8) |D*<g~o<a>| =<»(|=s|“’=) for j=1.....z+1.
Since the overall approximation is then only of order O (|£_f|""+"°), one might
as well forget about the computed approximation and construct instead a
new overall approximation by some local interpolation to f from II.;2;,
matching f m-fold at nearby £,’s. _

The approximate problem (4) is nonlinear (in general) and therefore
requires some iterative scheme for its solution. It is shown in de Boor 8.:
Swartz [1973] that (4) can be solved by Newton’s method starting with a

F5
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sufficiently close initial guess fg (provided F is sufficiently smooth and |§|
is sufficiently small). This means that (4) has a. solution

f- = lim 2;-_f,_,
‘I"'—l'C.'IJI‘1

with f,.-.|.1 the solution y G 1'I<k.|.m_£ H C("""1) of the linear problem

( (D'"'y)(1',-) + Z v_,(11;,)(D-lg) (Ti) = h('r,), 1;: 1, . . . ,1<t-z,
9) 3'-cm

- iaiyzcii ’zl':.]-1"".r'n'i’:

where 1.

(10) '0,-(:1:):=(g-€)(:1:;f,.(:1:),...,(D""_'1f-,_)(m)), j = 0,...,m — 1,
Z5

and

(11) h(a:) == Fa; f,.(:1:), . . . , (ow-1f.)(a)) + Z‘ 1.1,-(s;‘)(Djf,.)(:1:).
_‘i<I1T1

The almost block diagonal character of the system of collocation
equations; EQBLUK, PUTIT We express the unknown function -y in
(9) as a linear combination of appropriate B-splines. Explicitly, let t :=
(t,;)'£"+"°+"‘ be the nondecreasing sequence -(generated in the subprogram
KNOTS below from .5, m, and it) that contains each of £1 and £;.|.1 is + m
times, and each interior break £2, . . . , if; it times. Then, n = kl + m, and

H<k+m=€ n Cunfil) = $k+m.1= (On l§1 - - §£+1l)- ‘

The solution y of (9) can therefore be written in the form
11 -J

Z] = C-!jB'§l,k+m,t:_,=, 1:

that is, we can determine y by determining its B-coefficient vector o1. This
gives the linear system

E?=1 (LBj)(Ti)(Ij -"= h.»(T-3), =1., . . . ., kt,

(12) H _
E3-=1()6-;Bj)(Ij ‘= C-5 , ’Z-"=l,...,’l'TL,

with the abbreviation

Ly := Dmy + Z: '03- Djy
3<m

L
it-I
-

l



The almost block diagonal character 24'?’

and '0, given explicitly by (10), h by (11), and fir by
If the side conditions are appropriately distributed among the collocation

equations, then (12) is an almost block diagonal system. For instance, if we
are dealing with a second-order two-point boundary-value problem and
approximate by pp functions of order 6 with 4 pieces, then, indicating only
the possibly nonzero entries, the (matrix of the) linear system (12) has the
form given in the left half of Figure (13).

xxx:-cx xxx:-cx xx:-cxx xxx:-cx

xxx:-cxxxxx xxx:-cxxxxx xxx:-c xxx:-c

xxx:-cxxxx xxx:-cxxxx xxx:-c xxx:-1:

xxx:-cxxxxx xxx:-cxxxxx xxx:-cx xxx:-cx xxx:-cx xxx:-cx

xxx:-c® xx:-c®x xx®xx x®:-txx

xxx:-c®xx:-cx >-:xx®xx:-cxxixx®x x®xx

xxx:-c®xxx xxx®x:-cxx xx®x x®:-cx

xxx:-cx®x:-cx xxx:-c@xxxx xx:-c@x xi-c®xx x®xxx ®:-(xxx

(13) FIGURE. Matrix for collocation equations for (m,l,k) = (2,4,4)
(left), and in its almost block diagonal form (right).

The ith block corresponds to the ith polynomial piece, that is, to the in-
terval (£1 .. §.,_|_1). The columns of the ith block correspond to the It + m
B-splines that have this interval in their support, and the rows of the ith
block are made up of the lc collocation equations at sites in the interval
(5, .. !;',;+1), together with the (properly interspersed) side conditions (if
any) at sites in thisinterval.

Consider now Gauss elimination with partial pivoting applied to the lin-
ear system (12). After it elimination steps in the first block, an interchange
might bring in an equation from the next block. We therefore take all equa-
tions not yet used as pivot equation (in our example above, there will be
just one such equation) and adjoin them to the second block. This makes
sense since these equations now have nonzero entries only in the columns
that belong to the second block.

We then continue the elimination process. The next k steps will take
place entirely within the second block. After that, an interchange might
bring in an equation from the next block. So we take all equations in the
second block not yet used as pivot equation (in our example above, there
will be again just one such equation) and adjoin them to the third block,
etc.

We see that the total space required for each block is found by taking



 » ._. , ,_,-. _._._.., -_ ---- ... .._.-___..._._ -- _
-_- 4-. -— - -----_- . 1-+Hr_.-Z'L.-.11.£§ __-in-?

248 XV. Collocation

the block formed by the it + m columns and the rows associated with an
interval and extending this block toward the top until its left corner element
is an element of the (main) diagonal of the whole matrix. This is shown in
the right half of Figure (13) for the above example. The additional rows
at the top of each block need not be set initially, they are filled during the
elimination process.
- In an Appendix, we give a listing of a package of programs, called SOLVE-
BLDK, for the efiicient solution of such almost block diagonal linear systems.
Here, we now give the subprogram EQBLOK and its subroutine PUTIT, for
putting together blocks and right sides for the linear system (12). The de-
tails about the specific differential equation to be solved are left here to: a
subroutine DIFEQU, an example of which is given below in Example (15).

SUBROUTINE EQBLOK ( T, N, KPH, HORK1, HORK2,
* BLOKS, LENBLK, INTEGS, NBLOKS, B )

CALLS PUTIT(DIFEQU,BSPLVD(BSPLVB))
C TO BE CALLED IN C O L L O C
C -
Caaaaaa I H P U T a#aa##
C T THE KNOT SEQUENCE, OF LENGTH N+KPM

N THE DIMENSION OF THE APPROXIMATING SPLINE SPACE, I.E., THE ORDER
OF THE LINEAR SYSTEM TO BE CONSTRUCTED.

KPH = K+H, THE ORDER OF THE APPROKIMATING SPLINE
LENBLK THE MAXIMUM LENGTH OF THE ARRAY BLOKS AS ALLOWED BY THE

DIMENSION STATEMENT IN COLLOC .

onoonnoonnonn

onooooooonnnoii

cacao H O R K A R E A S amass:
uoax1 ussp IN PUTIT, or srzs (KPM,KPM)
uoaxa ussp IN PUTIT, or srzs (KPM,M+1)

mamas O U T P U T sesame . _
BLOKS THE COEFFICIENT MATRIX OF THE LINEAR SYSTEM, STORED IN AL-

MOST BLOCK DIAGONAL FORH, OF SIZE
KPM*SUH(INTEGS(1,I) , I=1,...,NBLOKS)

INTEGS AN INTEGER ARRAY, OF SIZE (3,NBLOKS), DESCRIBING THE BLOCK
STRUCTURE.
INTEGS(1,I) = NUMBER OF RUNS IN BLOCK I
INTEGS(2,I) = NUMBER OF COLUMNS IN BLOCK I
INTEGS(3,I) = NUMBER OF ELIMINATION STEPS HHICH CAN BE

CARRIED OUT IN BLOCK I BEFORE PIVOTING MIGHT
BRING IN AN EQUATION FROM THE NEXT BLOCK.

NBLOKS NUMBER OF BLOCKS, EQUALS NUHBER_OF POLYNOMIAL PIECES
B THE RIGHT SIDE OF THE LINEAR SYSTEM, STORED CORRESPONDING TO THE -

ALMOST BLOCK DIAGONAL FORM, OF SIZE SUH(INTEGS(1,I) , I=1,...,
NBLOKS). -

mm

-1-?rm.‘-
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Caameaa H E T H O D aaaaaa ,

Ofiflfififififlfififififl

EACH BREAKPOINT INTERVAL GIVES RISE TO A BLOCK IN THE LINEAR SYSTEM.
THIS BLOCK IS DETERMINED BY THE K“ COLLOC.EQUATIONS IN THE INTERVAL
HITH THE SIDE CONDITIONS (IF ANY) IN THE INTERVAL INTERSPERSED AP-
PROPRIATELY, AND INVOLVES THE KPM B—SPLINES HAVING THE INTERVAL IN
THEIR SUPPORT. CORRESPONDINGLY, SUCH A BLOCK HAS NROH I K + ISIDEL
ROHS, NITH ISIDEL = NUMBER OF SIDE CONDITIONS IN THIS AND THE PREV-
IOUS INTERVALS, AND NCOL = KPM COLUMNS.

FURTHER, BECAUSE THE INTERIOR KNOTS HAVE HULTIPLICITY K, HE CAN
CARRY OUT (IN SLVBLK) K ELIMINATION STEPS IN A BLOCK BEFORE PIVOT-
ING MIGHT INVOLVE AN EQUATION FROM THE NEXT BLOCK. IN THE LAST BLOCK,
OF COURSE, ALL KPM ELIMINATION STEPS HILL BE CARRIED OUT (IN SLUBLK).

SEE THE DETAILED COMMENTS IN THE SOLVEBLOK PACKAGE FOR FURTHER IN-
FORMATION ABOUT THE ALMOST BLOCK DIAGONAL FORM USED HERE.

INTEGER INTEGS(3,1),KPM,LENBLK,N,NBLOKS, I,INDEX,INDE1B,ISIDE
1 q ,IsIDEL,ITERMI,K,LEFT,M,NROH

REAL B(1),BLOKS(1),T(N+K),HORK1(1),HORK2(1), RHO,XSIDE
COMMON /SIDE/ M, ISIDE, XSIDE(10)
COMMON /OTHER/ ITERMX,K,RHO(1e)
INDEX = 1 '
INDEXB = 1
I = 0
ISIDE = 1
DO 20 LEFT=KPM.N,K

I = I+1
DETERMINE INTEGS(.,I)
INTEGS(2,I) = KPH
1F (LEFT .LT. N) GO TO 14
INTEGS(3,I) = KPM
ISIDEL = M

GO TO 16
14 INTEGS(3,I) = K

AT THIS POINT, ISIDE—1 GIVES THE NUMBER OF SIDE CONDITIONS
INCORPORATED SO FAR. ADDING TO THIS THE SIDE CONDITIONS IN THE
CURRENT INTERVAL GIVES THE NUMBER ISIDEL .
ISIDEL = ISIDE—1

15 IF (ISIDEL .EQ. M) GO TO 16
IF (XSIDE(ISIDEL+1) .GE. T(LEFT+1))

# GO TO 16
ISIDEL = ISIDEL+1 1

; GO TO 15
16 NRON = K + ISIDEL

INTEGS(1,I) = NROH
THE DETAILED EQUATIONS FOR THIS BLOCK ARE GENERATED AND PUT
TOGETHER IN P U T I T . A
IF (LENBLK .LT. INDEX+NROH*KPM—1)GO TO 999
CALL PUTIT(T,KPM,LEFT,HORK1,HORK2,BLOKS(INDEX),NROH,B(INDEIB))
INDEX = INDEX + NROu*KPM

20 INDEKB = INDEKB + NROH
NBLOKS = I

RETURN
999 PRINT 699,LENBLK
699 FORNAT(11H etaaoeetat/23H THE ASSIGNED DIMENSION,I5

A ,38H FOR BLOKS IN COLLOC IS TOO SMALL.)
STOP

END
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SUBROUTINE PUTIT ( T, KPH, LEFT, SCRTCH, DBIATX. Q. Nsov, s )
CALLS BSPLVD(BSPLVB),DIFEQU(*)
c TO BE CALLED BY E Q B L 0 K .
c
C PUTS TOGETHER ONE BLOCK OF THE COLLOCATION EQUATION SYSTEM
C
Coamaec I H P U T mecca:

T KNOT ssnusncs, or SIZE LEFT+KPM (AT LEAST)
KPM onnsn or SPLINE - ,
LEFT INTEGER INDICATING INTERVAL or INTEREST, vrz THE INTERVAL

(T(LEFT)..T(LEFT+1)) '
snow NUMBER or Rows IN BLOCK TO BE PUT TOGETHER

OOOOOOOOOOOCEOOOQOOOOOQOOOOQO

mecca H U R K A R E A assume 1
SCRTCH USED IN BSPLVD, OF SIZE (KPMTKPM)
DBIATX USED TO CONTAIN DERIVATIVES OF B—SPLINES, OF SIZE (KPM,M+1)

NITH DBIATX(J,I+1) CONTAINING THE I—TH DERIVATIVE OF THE
J—TH B-SPLINE OF INTEREST

mecca 0 U T P U T mttttt
Q THE BLOCK, OF SIZE (NRON,KPM) ,-
B THE CORRESPONDING PIECE OF THE RIGHT SIDE, OF SIZE (NROH)

cameo M E T H U D- ceases
THE K COLLOCATION EQUATIONS FOR THE INTERVAL (T(LEFT)-.T(LEFT+1))
ARE CONSTRUCTED HITH THE AID OF THE SUBROUTINE D I F E O U ( 2, .,
. ) AND INTERSPERSED (IN ORDER) HITH THE SIDE CONDITIONS (IF ANY) IN
rurs INTERVAL, usrnc p I F E q u < a, ., . > FOR THE INFORMATION.

THE BLOCK Q HAS KPH COLUMNS, CORRESPONDING TO THE KPH B-
SPLINES OF ORDER KPH HHICH HAVE THE INTERVAL (T(LEFT)..T(LEFT+1))
IN THEIR SUPPORT. THE BLOCK’S DIAGONAL IS PART OF THE DIAGONAL OF THE
TOTAL SYSTEM. THE FIRST EQUATION IN THIS BLOCK NOT OVERLAPPED BY THE
PRECEDING BLOCK IS THEREFORELEOUATION L O H R O H , HITH LOHROH = 1+
NUMBER OF SIDE CONDITIONS IN PRECEDING INTERVALS (OR BLOCKS).

INTEGER KPM,LEFT,NROH, I,IROH,ISIDE,ITERMX,J,K,LL,LOHROH,M,MODE
# ,MP1

REAL B(1),DBIATX(KPM,1).Q(NROH,KPM).SCRTCH(1),T(1), DX,RHO,SUM
A ,v(2o>,xM,xsInE,xx
cannon /SIDE/ M, ISIDE, XSIDE(10)
cannon /OTHER/ ITERMK,K,RHO(19)
MP1 - M+1
no 10 J=1,KPM

no 1o I=1,NROH
10 O(I.J) - 0.

KM - (T(LEFT+1)+T(LEFT))/2.
ox - (T(LEFr+1)—T(LEFT))/2.

c
LL - 1 -
Lownov - ISIDE
no so IROH=LOHROH,NROH

IF (LL .GT. K) co TO 22
MODE = 2

c NEXT COLLOCATION POINT IS ... .fl
XX I KM + DX#RHO(LL) ‘i
LL - LL + 1

c THE CORRESP.COLLOCATION EQUATION IS nsxr UNLESS THE NEXT SIDE
c CONDITION-OCGURS AT A POINT AT, on TO THE LEFT OF, THE NEXT
c COLLOCATION POINT.

IF (ISIDE .GT. M) GO TO 24
IF (XSIDE(ISIDE) .GT. xx) co TO 24
LL - LL — 1

22 MODE - 3 -
II - 1SIDE(ISIDE)

24 CALL DIFEQU ( MODE, xx, v )
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I THE NEXT EQUATION, A CDLLUCATIUN EQUATION (HDDE I" 2) DR A SIDE
CONDITION (MODE = 3), READS

(*) (v(H+1)*D**H + V(H)*D**(H-1) +...+ v(1)*s~*0)P(xx) - v<H+2>
IN TERMS OF THE INFO SUPPLIED BY DIFEQU . THE CORRESPONDING
EQUATION FUR THE B—CDEFFS BF F THEREFORE HAS THE LEFT SIDE OF
(w). EVALUATED AT EACH OF THE KPH B—SPLINES HAVING xx IN
THEIR SUPPORT, AS Irs KPH POSSIBLY NUNZERO COEFFICIENTS.
CALL BSPLVD ( T, KPH, xx, LEFT, SCRTCH, DBIATX, HP1 )
so 26 J=1,KPH

sun = 0.
DU 25 I=1,HP1 -

25 sun = V(I)*DBIATX(J,I} + sun
26 Q(IRUH,J) = sum
so B(IHOH) = v(M+2)

OOOOOFJO

RETURN
END

The subroutine BSPLVD Construction of the linear system (12) for
the B-coefficients of a Newton iterate requires knowledge of the values
and the first m derivatives of all the B-splines on t of order k + m at ail
the collocation sites as well as at all side condition sites. The subroutine
PUTIT above relies for this information on a subroutine BSPLVD that we
now discuss.

We already know how to generate the values of the k B-splines of order
is at a given site in the (closed) support of these B-splines. There are two
possible ways (at least) for generating their derivatives as well. One way
is to work with the recurrence relation for the derivatives of a B-spline,
as has been advocated by Cox (see ref. 2 of Butterfield [1976]). One can
obtain these recurrence relations by substituting a j for the Fr: in each of
the exponents in IX(17), that is, by applying Leibniz’ formula I(iv) for the
kth divided difference of a product to the particular product -

|.
-u

I.

» (1: - 1;)-3;‘ = (1: -_ em - e)-3;“ I
(see Problem X.5). Since

= (k -" ll - - ' (k - .7')(-)jl'3i1- - - =‘3i+k](' — IF)li_'l_1=
we then obtain that

k — ‘— 1 -

(14 ) :17--1? - fi- k ——.1‘I.' -
-"--'—";"D‘lBi,1=-1(~T')+ ;+""'"—"'D'lB£+1,k-1($l-
73-I+1:-1 "' ti ti+k - 73i+1

Another way is to consider a B-spline to be a spline with a particularly
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simple B-coefficient sequence and use X(15) to express the jth derivative
of the spline as a linear combination of B-splines of order k —— j. We have
chosen this latter approach in the following subroutine BSPLVD. Support
for this choice can be found in a rounding error analysis of these two (and
other) alternatives as carried out by Butterfield [I976].

SUBROUTINE BSPLVD ( T, K, X, LEFT, A, DBIATX, NDERIV )
CALLS BSPLVB
CALCULATES VALUE AND DERIV.S OF ALL B—SPLINES WHICH DO NOT VANISH AT X

THE KNOT ARRAY OF LENGTH LEFT+K (AT LEAST)
K THE ORDER OF THE B—SPLINES TO BE EVALUATED
X THE POINT AT HHICH THESE VALUES ARE SOUGHT
LEFT AN INTEGER INDICATING THE LEFT ENDPOINT OF THE INTERVAL OF

INTEREST. THE. K B"SPLINES WHOSE SUPPORT CONTAINS THE INTERVAL
(T(LEFT)..T(LEFT+1))

ARE TO BE CONSIDERED.
A S S U H P T I O N — * - IT IS ASSUMED THAT

T(LEFT) .LT. T(LEFT+1)
DIVISION BY ZERO HILL RESULT OTHERWISE (IN B S P L V B ).
ALSO, THE OUTPUT IS AS ADVERTISED ONLY IF

T(LEFT) .LE. x .LE. T(LEFT+1) .
v AN INTEGER INDICATING THAT VALUES OF B—SPLINES AND THEIRNDERI

DERIVATIVES UP TO BUT NOT INCLUDING THE NDERIV—TH ARE ASKED
FOR. ( NDERIV IS REPLACED INTERNALLY BY THE INTEGER H H I G H
IN (1,K) CLOSEST TO IT.)

C
Cmmmmmc I N P U T messes
C T ,

fifififififififgfiOflfiifififififgflfififififififififififififififi

IH-
cccmm H O R K A R E A access

Y OF ORDER (K K) TU CONTAIN B—COEFF S OF THE DERIVAT-' AN ARRA , , .
IVES OF A CERTAIN ORDER OF THE K B-SPLINES OF INTEREST.

mecca Q U T P U T_ mecca:
DBIATX AN ARRAY OF ORDER (K,NDERIV). ITS ENTRY (I,H) CONTAINS

VALUE OF (H—1)ST DERIVATIVE OF (LEFT—K+I)—TH B—SPLINE OF
ORDER K FOR KNOT SEQUENCE T , I=1,...,K, H*1,...,NDERIV.

mecca H E T H O D access
VALUES AT X OF ALL THE RELEVANT B—SPLIHES OF ORDER K,K—1,...,
K+1—NDERIV ARE GENERATED VIA BSPLVB AND STORED TEMPORARILY IN
_DBIATX . THEN, THE B—COEFFS OF THE REQUIRED DERIVATIVES OF THE B-
SPLINES OF INTEREST ARE GENERATED BY DIFFERENCING, EACH FROH THE PRE-'
CEDING ONE OF LOHER ORDER, AND COMBINED HITH THE VALUES OF B-SPLINES
OF CORRESPONDING ORDER IN DBIATX TO PRODUCE THE DESIRED VALUES .

INTEGER K,LEFT,NDERIV, I,IDERIV,IL,J,JLON,JP1HID,KP1,KP1MH _ -
H - ,LDUHHY,H,HHIGH

REAL A(K,K),DBIATX(K,NDERIV),T(1),X, FACTOR,FKP1HH,SUH
HHIGH = MAXU(HINO(NDERIV,K),1)

c HHIGH IS USUALLY EQUAL TO NDERIV.
KP1 = K+1
CALL BSPLVB(T,KP1—HHIGH,1,X,LEFT,DBIATX)cc TO esIF (HHIGH .EQ. 1)
THE FIRST COLUMN OF DBIATX ALHAYS CONTAINS THE B—SPLINE VALUES
FOR THE CURRENT ORDER. THESE ARE STORED IN COLUMN K+1-CURRENT
ORDER BEFORE BSPLVB IS CALLED TO PUT VALUES FOR THE NEXT
HIGHER ORDER ON TOP OF IT.
IDERIV = HHIGH

GOOD

an-1|-IH._-atLam"_£.l:._r-__'-.1-5-,_____-,-FL

_|
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DO 15 M=2,HHIGH
JPIHID = 1
DO 11 J=IDERIV,K

DBIATX(J,IDERIV) = DBIAT1(JP1HID,1)
11 JP1MID = JPIHID + 1

IDERIV = IDERIV — 1
CALL BSPLVB(T,KP1-IDERIV,2,X,LEFT,DBIATX)

15 CONTINUE

C'JC'J€"J("JC'JC'l("J

AT THIS POINT, B(LEFT—K+I, K+1—J)(X) IS IN DBIATX(I,J) FOR
I=J,...,K AND J=1,...,HHIGH (’=’ NDERIV)- IN PARTICULAR, THE
FIRST COLUMN OF DBIATX IS ALREADY IN FINAL FORH. TO OBTAIN COR-
RESPONDING DERIVATIVES OF B—SPLINES IN SUBSEOUENT COLUMNS, GENE"
RATE THEIR B—REPR. BY DIFFERENCING, THEN EVALUATE AT X.

JLOW = 1
DO 20 I=1,K

DO 19 J=JLOW,K
19 A(J,I) = O.

JLOW = I .
20 A(I,I) = 1.

C AT THIS POINT, A(.,J) CONTAINS THE B—COEFFS FOR THE J—TH OF THE
C K B—SPLINES OF INTEREST HERE.
C

DO 40 H=2,HHIGH
KP1HH = KP1 — M
FKP1MH = FLOAT(KP1MH)
IL = LEFT
I=K r,

00000

FUR J=1,...,K, consrnucr B—COEFFS OF (H—1)ST DERIVATIVE or
B—SPLINES FROM THOSE FOR PRECEDING DERIVATIVE BY DIFFERENCING
AND sruns AGAIN IN A(.,J) . THE FACT THAT A(I,J) = 0 FOR
I .LT. J Is ussn.
no 25 LDUHMY=1,KP1MM

FACTOR = PxP1HH/(T(IL+HPiHH) — T(IL))
c THE ASSUMPTION THAT T<LEPT).LT.T(LEPT+1) MAKES DENOHINATOR
c IN FACTOR NONZERO.

no 24 J=1,I
24 A(I,J) = (A(I,J) - A(I—1,J))*FACTUR

IL = IL - 1 ~
25 I = I - 1 '?

OGCJCJOOOO

FOR I=1,...,K, COMBINE B—COEFFS A(.,I) WITH B-SPLINE VALUES
STORED IN DBIATX(.,H) TO GET VALUE OF (H—1)ST DERIVATIVE OF
ITTH B-SPLINE (OF INTEREST HERE) AT X , AND STORE IN
DBIATX(I,M). STORAGE OF THIS VALUE OVER THE VALUE OF A B—SPLINE

' OF ORDER M THERE IS SAFE SINCE THE REMAINING B-SPLINE DERIVAT-
IVES OF THE SAME ORDER DO NOT USE THIS VALUE DUE TO THE FACT
THAT A(J,I) = O FOR J .LT. I .
DO 40 I=1,K

SUM = O.
JLOW = MAXO(I,H)
DO 35 J=JLOW,K

35 SUM = A(J,I)*DBIATX(J,H) + SUM
40 DBIATX(I,M) = SUM
99 RETURN

END

.15

COLLOC and its subroutines The following subroutine COLLOC over-
’ sees the iterative solution of (4) by Newton’s method, that is, via (9). It
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relies on KNOTS to convert break sequences to knot sequences and uses
COLPNT to supply the Gauss-Legendre sites as collocation sites p for the
standard interval. It uses EQBLOK with PUTIT to put together the linear
system (12), and uses the package SOLVELOK, listed in an Appendix, to
solve (12). It also calls on NEWNOT (of Chapter XII) for possible improve-
ment of the chosen break sequence. A subroutine DIFEQU must be supplied
for each specific ODE to be solved.

SUBROUTINE COLLOC(ALEFT,ARIGHT,LBEGIN,IORDER,NTIMES,ADDBRK,RELERR)
CHAPTER XV, EXAMPLE. SOLUTION OF AN ODE BY COLLOCATION-
CALLS COLPNT, DIFEQU(PPVALU(INTERV)), KNOTS, EQBLOK(PUTIT(DIFEQU*,
C BSPLVD(BSPLVB)))), SLVBLK(VARIOUS SUBPROGRAMS), BSPLPP(BSPLVB*),
C NEWNOT V
C
Ctcummm I H P U T ######
C ALEFT,

LBEGIN

OOOOOOOOOflfififififlilflfifiilfififlflflfiflflODD

IORDER
NTIMES
ADDBRK

RELERR

AND

ARIGHT ENDPOINTS or INTERVAL OF APPROXIMATION
INITIAL NUMBER OF POLYNOMIAL PIECES IN THE APPROXIMATION.
A UNIFORM BREAKPOINT SEQUENCE;IS CHOSEN.
ORDER OF POLYNOMIAL PIECES In*THE APPROXIMATION
NUMBER OF PASSES THROUGH n E W n 0 T TO BE MADE
THE NUMBER (POSSIBLY FRACTIONAL) OF BREAKS TO BE ADDED PER
PASS THROUGH NEWNOT. E.G., IF ADDBRK = .assa4, THEN A BREAK-
POINT WILL BE ADDED AT EVERY THIRD PASS THROUGH NEWNOT.
A TOLERANCE. NEWTON ITERATIOg IS STOPPED IF THE DIFFERENCE
BETVEEN THE B—COEFFS OF TWO UCCESSIVE ITERATES IS no MORE
THAN RELERR*(ABSOL.LARGEST B—COEFFICIENT).

****# P R I N T E D O U T P U T ******
CONSISTS OF THE PP—REPRESENTATION OF THE APPROXIMATE SOLUTION,

OF THE ERROR AT SELECTED POINTS.

##### M E T H U D ######
THE M-TH ORDER ORDINARY DIFFERENTIAL EQUATION HITH M SIDE CONDIT-
IONS, TO BE SPECIFIED IN SUBROUTINE D I F E.Q U , 1S SOLVED APPROX-
IMATELY BY COLLOCATION.
THE APPROXIMATION F TO THE SOLUTION G IS PP OF ORDER K+M WITH
L PIECES AND M-1 CONTINUOUS DERIVATIVES. F IS DETERMINED BY THE
REQUIREMENT THAT IT SATISFY THE D.E. AT K POINTS PER INTERVAL (TO
BE SPECIFIED IN C O L P N T ) AND THE M SIDE CONDITIONS.

THIS USUALLY NONLINEAR SYSTEM OF EQUATIONS FOR F IS SOLVED BY
NEWTON’S METHOD. THE RESULTING LINEAR SYSTEM FOR THE B—COEFFS OF AN
ITERATE'IS CONSTRUCTED APPROPRIATELY IN E Q B L O H AND THEN SOLVED
IN S L V B L K , A PROGRAM DESIGNED TO SOLVE A L M U S T B L O C K
D I A G O N A L LINEAR SYSTEMS EFFICIENTLY.

THERE IS AN OPPORTUNITY TO ATTEMPT IMPROVEMENT OF THE BREAKPOINT
SEQUENCE (BOTH IN NUMBER AND LOCATION) THROUGH USE OF N E W N O T .

INTEGER NPIECE
PARAMETER (NPIECE=100)
INTEGER IORDER,LBEGIN,NTIMES, I,IFLAG,II,INTEGS(3,NPIECE),ISIDE

T r# ,NDIM,NCOEF,NNCOEF,NPIECE,NT
PARAMETER (NDIM=200,KMAX=20,NCOEF=NPIECE#KMAX,LENBLK=NCOEF)
REAL ADDBRK,ALEFT,ARIGHT,RELERR, _A(NDIM),AMAX,ASAVE(NDIM)

c ,E(NDIH),ELOHs(LEnELK),EREAH,cOEF,Dx,ERR,RHD,T(NDIH)
TEHPL(LEnELH) TEMPS(NDIM) xsIDE* I I I "-EQUIVALENCE (BLORS,TEMPL) ~1

COMMON /APPROX/ BREAK(NPIECE), COHF(NCOEF), L,KPM
COMMON /SIDE/ M, ISIDE, XSIDE(10)
COMMON /OTHER/ ITERMI,K,RHO(KMAX—1)

C

ITER,ITERMX,K,KMAX,KPM,L,LENBLK,LNEW,M,N,NBLOKS
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KPM = IORDER
IF (LBEGIN#KPM .GT. NCOEF) GO TO 999

AAA SET THE VARIOUS PARAMETERS CONCERNING THE PARTICULAR DIF.EQU.
INCLUDING A FIRST APPROx. IN CASE THE DE Is TO BE SOLVED BY
ITERATION ( ITERHx .GT. O) .
cALL DIFEQU <1, TEHPs(1). TEHPs >

AAA OBTAIN THE K COLLOCATION POINTS FOR THE STANDARD INTERVAL.
H = KPM - M
cALL COLPNT ( K, RHO )

AAA THE FOLLOWING FIVE STATEMENTS COULD BE REPLACED BY A READ IN OR-
DER TO OBTAIN A SPECIFIC (NONUNIFORM) SPACING OF THE BREAKPNTS.
Dx = (ARIGHT - ALEFT)/FLOAT(LBEGIN)
TEHPs(1> = ALEFT
DO 4 I=2,LBEGIN

4 TEMPS(I) A TEMPS(I-1) + Dx
TEHPs(LsEOIn+1) = ARIGHT

AAA GENERATE, IN KNOTS, THE REQUIRED KNOTS T(1),...,T(N+KPM).
CALL KNOTS < TEHPs, LBEGIN, HPH, T, n >
NT = 1

### GENERATE THE ALMOST BLOCK DIAGONAL COEFFICIENT MATRIX BLOKS AND
RIGHT SIDE B FROM COLLOCATION EQUATIONS AND SIDE CONDITIONS.
THEN SOLVE VIA SLVBLK , OBTAINING THE B-REPRESENTATION OF THE AP-
PROXIMATION IN T , A , N , KPM .

1O CALL EQBLOK(T,N,KPM,TEMPS,A,BLOKS,LENBLK,INTEGS,NBLOKS,B)
CALL SLVBLK(BLOKS,INTEGS,NBLOKS,B,TEMPS,A,IFLAG)
ITER = 1
IF (ITERMX .LE. 1) GO TO 3O

### SAVE B-SPLINE COEFF. OF CURRENT APPROX. IN ASAVE , THEN GET NEH
APPROX. AND COMPARE WITH OLD. IF COEFF. ARE MORE THAN RELERR
APART (RELATIVELY} OR IF NO. OF ITERATIONS IS LESS THAN ITERMX ,
CONTINUE ITERATINGA . -

20 CALL BSPLPP(T,A,N,KPM,TEMPL,BREAK,COEF,L)
DO 25 I=1,N

25 ASAVE(I) = A(I)
CALL EQBLOK(T,N,KPM,TEMPS,A,BLOKS,LENBLK,INTEGS,NBLOKS,B)
CALL SLVBLK(BLOKS,INTEGS,NBLOKS,B,TEMPS,A,IFLAG)
ERR = O.
AMAX = O.
DO 26 I=1,N

AMAX = AMAX1(AMAX,ABS(A(I)))
26 ERR = AMAX1(ERR,ABS(A(I)-ASAVE(I)))

IF (ERR .LE. RELERRAAMAX) GO TO 30
ITER = ITER*1
IF (ITER .LT. ITERMX) GO TO 20

c AAA ITERATION (IFAANY) COMPLETED. PRINT OUT APPROX. BASED On CURRENT
c EREAHPOINT SEQUENCE, THEN TRY TO IMPROVE THE SEQUENCE.

so PRINT 630,KPM,L,N,(BREAK(I),I=2,L)
630 FORMAT(47H APPROXIMATION FROM A SPACE OF SPLINES OF ORDER,I3

A ,4H On ,I3,11H INTERVALS,/13H OF DIMENSION,I4
A ,1sH. BREAKPOINTS -/(5E2O.1O))

IF (ITERHx .GT. O) PRINT 635,ITER,ITERMX
ess FORMAT(6H AFTER,I3,3H OF,I3,2OH ALLOWED ITERATIONs,>

CALL BSPLPP(T,A,N,KPM,TEMPL,BREAK,COEF,L)
PRINT es?

es? FORMAT(46H THE PP REPRESENTATION OF THE APPROxIHATION Is)
DO as I=1,L

II = (I-1)*KPM
as PRINT ess, BREAK(I),(COEF(II+J),J=1,KPM)

ess FORMAT(F9.3,E13.6,1OE11.3)
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### THE FOLLOWING CALL IS PROVIDED HERE FOR POSSIBLE FURTHER ANALYSIS
OF THE APPROXIMATION SPECIFIC TO THE PROBLEM BEING SOLVED
IT IS OF COURSE EASILY OMITTED

CALL DIFEQU ( 4 TEMPS(1) TEMPS )

IF (NT GT NTIMES) RETURN
### FROM THE PP-REP OF THE CURRENT APPROX OBTAIN IN NEWNOT A NEW

(AND POSSIBLY BETTER) SEQUENCE OF BREAKPOINTS ADDING (ON THE AVE-
RAGE) A D D B R K BREAKPOINTS PER PASS THROUGH NEWNOT

LNEW LBEGIN + IFIX(FLOAT(NT)*ADDBRK)
IF (LNEW*KPM GT NCOEF) GO TO 999
CALL NEHNOT(BREAK COEF L KPM TEMPS LNEW TEMPL)
CALL KNOTS(TEMPS LNEW KPM T N)
NT = NT + 1

999 NNCOEF NCOEF
PRINT 699 NNCOEF

599 FgRflAT(11H AAAAAAAAAA/23H THE ASSIONED DIMENSION I5
25H FOR COEF IS TOO SMALL )

RETURN
T I

SUBROUTINE KNOTS ( BREAK L KPM T N )
TO BE CALLED IN C O L L O
CONSTRUCTS FROM THE GIVEN BREAKPOINT SEQUENCE B R E A K THE KNOT
SEQUENCE T SO THAT
SPLINE(K+M T) PP(K+M BREAK) WITH M-1 CONTINUOUS DERIVATIVES
THIS MEANS THAT
T(1), . ,T(N+KPM) BREAK(1) KPM TIMES THEN BREAK(2)

BREAK(L) EACH K TIMES THEN FINALLY BREAK(L+1) KPM TIMES

iittt I N P U T ##1##:
BREAK(1) BREAK(L+1) BREAKPOINT SEQUENCE
L NUMBER OF INTERVALS OR PIECES

K + M ORDER OF THE PP FUNCTION OR SPLINE

O

INTEGER L KPM N ISIDE J JJ JJJ K LL M
REAL BREAK(1) T(1) XSIDE
COMMON /SIDE/ M ISIDE XSIDE(10)

KPM -
N = L*K + M
JJ = N + M
JJJ = L + 1
DO 11 LL 1 KPM

I-1.-—|-—.-—-u-n.

GO TO 1O

U T P U T tctcms
T(N+KPM) THE KNOT SEQUENCE

L#K + M DIMENSION OF SPLINE(K+M T)

T(JJ) BREAK(JJJ)
11 JJ = JJ

DO 12 =1
JJJ = -

DO

12 JJ = JJ 1
DO 13 LL 1 KPM

12 LL=1 K
T(JJ) BREAK(JJJ)

T(LL) BREAK(1)

D
RETURN

-1-n.-.



SUBROUTINE cOLPnT(H,RHO)

IF (K

RHO(1)

RHO(2)
RHO(1)
RHO(3)
RHO(1)
RHO(2)

RHO(3)
RHO(2)
RHO(4)
RHO(1)
RHO(4)
RHO(2)
RHO(5)
RHO(1)
RHO{s)
RHO(4)
RHO(3)
RHO(5)
RHO(2)
RHO(6)
RHO(1)

RHO(5)
RHO(3)
RHO(6)
RHO(2)
RHO(7)
RHO(1)
RHO(4)

RHO(5)
RHO(4)
RHO(6)
RHO(3)
RHO(7)
RHO(2)
RHO(8)
RHO(1)

C F K .GT.

GT. 8)
= O.
= .57?35 02691
= — RHO(2)

= .?7459 66692
= - RHO(3)
= 0.

= .33998 10435
= — RHO(3)
= .86113 63115
= - RHO(4)

= .53846 93101
= - RHO(4)
= .9061? 98459
= — RHO{5)
= 0.

= .23861 91860
= — RHO(4)
= .66120 93864
= — RHO(5)
= .93246 95142
= - RHO(6)

= .405s4 51513
= - RHO(5)
= .?415s 11555
= - RHO(5)
= .9491O 79123"
= - RHO(7)
= 0.

= .1ss4s 45424
= — RHO{5)
= .5255s 24099
= - RHO(5)
= .?ss55 54774,
= - RHO(7)
= .9602B 93554
= — RHO(8)
8, USE EQUISPACED POINTS, BUT PRINT WARNING

PRINT 699,K

DO 100

END

699 FORMAT(11H ccmcsmmmmmf
49H EQUISPACED COLLOCATION POINTS ARE USED SINCE K =,I2,
19H IS GREATER THAN 8.)

FKM102 = FLOAT(K-1)/2.
J=1,K

89626

41483

84856

94053

05683

38664

83197

66265

03152

77397

99394

42759

95650

16329

1362?

97536

100 RHO(J) = FLOAT(J-1)/FKM102 - 1

COLLOC and its subroutines 257

THE K COLLOCATION POINTS FOR THE STANDARD INTERVAL (-1. 1) ARE sUP~
PLIED HERE AS THE zEROs OF THE LEGENDRE POLYNOMIAL OF DEGREE K ,
PROVIDED K .LE. 5 . OTHERNIEE, UNIFORMLY sPAcED POINTS ARE GIVEN.

INTEGER K, J
REAL RHO(K), FKMIO2

GO TO es
GO TO (10,20,30,40,50,60,?0,BO),K
RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

I _--1. rh—-m
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(15) Example: A second order nonlinear two-point boundary-value
problem with a boundary layer '%his example is taken from Dodson
[1972] who took it from Carrier [1970]. -The function to be approximated is
specified by

Eg”(2r) + [g($)]2 = 1 on [0 .. ll

Q"(°) = 9(1) = 0-
For small E, the solution g is given approximately by

NA-> A 12[A+(=v)/(1 + AAA->>* + A-(A)/(1 +A_<A>>21 — 1
with _

E,|,(2r) := (\/2+ \/E’:-)2 exp ((1 :l: :II)\/5,/E)

which cannot be evaluated on a UNIVAC 1110 in single precision (roughly
8 decimal places) without underflow in (case E is much smaller than 10"2 /2.

The linear problem (9) for the determination of y = f,-+1 from the
preceding iterate j',- becomes

E?J”(T-i) + 'vO(T-£)?J('T-.a) = (HIT), '5 == 1. - - - 1k£1
y’(°) = 11(1) = 0.

with 2110(3) = 2;-.<A>. he-> = [r.(==>1 + 1,
The following subroutine DIFEQU incorporates this information in a form
expected in COLLOC and PUTIT. It also,contains the above formula for g.

SUBROUTINE DIFEQU ( MODE, XX, V )
CALLS PPVALU (INTER-V)
C TO BE CALLED BY C O L L O C , P U T I T
C INFORMATION ABOUT THE DIFFERENTIAL EQUATION IS DISPENSED FROM HERE
C
Cmmmqmm I-N P U T ##A###
C MODE AN INTEGER INDICATING THE TASK TO BE PERFORMED.

INITIALIZATION
EVALUATE DE AT XX -
SPECIFY THE NEXT.SIDE CONDITION
ANALYZE THE APPROXIMATION

XX A P AT WHICH INFORMATION IS HANTED

009000000 -Dlllll

Pl Eiih-OJIAJI-A

emcee U U ####A#O T P T
V DEPENDS ON THE MODE . SEE COMMENTS BELOW

INTEGER MODE, I,ISIDE,ITERMX,K,KMAX,KPM,L,M,NCOEF,NPIECE
PARAMETER (NPIECE=100, KMAX=20, NCOEF=NPIECE*KMAX)
REAL V(KMAX),XK, BREAK,COEF,EPS,EP1,EP2,ERROR,FACTUR,RHO,SOLUTN

* ,S2OVEP,UN,X,XSIDE
COMMON /APPROX/ BREAK(NPIECE),COEF(NCOEF),L,KPM
COMMON /SIDE/ M,ISIDE,XSIDE(10)
COMMON /OTHER/ ITERMX,K,RHO(KMAX¥1)
SAVE EPS,FACTOR,S2OVEP .

C

-'1: ’

 

-m-m-u—r——-1:-1-r



C
C
C

fiflflfl

C

C

C

OOOOO

OOOOO

C
C

THIS SAMPLE OF DIFEQU IS FOR THE EXAMPLE IN CHAPTER XV. IT IS A

Example: A boundary layer problem 259

NONLINEAR SECOND ORDER TWO POINT BOUNDARY VALUE PROBLEM.

INITIALIZE EVERYTHING
I.E. SET THE ORDER M OF THE DIF.EQU., THE NONDECREASING SEQUENCE
XSIDE(I),I=1,...,M, OF POINTS AT WHICH SIDE COND.S ARE GIVEN AND
ANYTHING ELSE NECESSARY.
10 M = 2

XSIDE(1) = 0.
XSIDE(2) = 1.

### PRINT OUT HEADING
PRINT 499

EPS = .5E-2.
PRINT 610 EPS

510 FORMAT(’ EPS ’,E20.10)

GO TO (10,20,30,40),MODE

499 FORMAT(’ CARRIER,S NONLINEAR PERTURB. PROBLEM’)

### SET CONSTANTS USED IN FORMULA FOR SOLUTION BELOW.
FACTOR
S2OVEP

*** INITIAL

(sORT(2.) + SQRT(3 ))AA2
= sORT(2 /EPS)

L = 1
Y BREAK(1)

DO 16 I=1,KPM
16 COEF(I) = O.

COEF(1) = -1.
COEF(3) = 2.
ITERMX = 10

= 0.

GUESS FOR NEWTON ITERATION. UN(X) = X*X - 1.

RETURN

PROVIDE VALUE OF LEFT SIDE COEFF.S AND RIGHT SIDE AT XX .
SPECIFICALLY, AT XX THE DIF.EQU. READS

V(M+1)D*#M + V(M)D*A(M—1) + ... + V(1)DAAO = V(M+2)
IN TERMS OF THE QUANTITIES V(I),I=1,...,M+2, TO BE COMPUTED HERE
2O CONTINUE

V(3)
" V(2)

UN:

V(1)
V(4)

PROVIDE THE M SIDE CONDITIONS. THESE CONDITIONS ARE OF THE FORM

EP
0.

S

PPVALU(BREAK,COEF,L,KPM,XX,O)
-III
_

m
—

2. *UN
UNAA2 + 1. '

RETURN

V(H+1)DAAH + v(H)DAA(H-1) + ... + V(1)DAAO A v(H+2)
IN TERMS OF THE QUANTITIES V(I),I=1,...,M+2, TO BE SPECIFIED HERE
NOTE THAT V(M+1) = 0 FOR CUSTOMARY SIDE CONDITIONS.
30 V(M+1)

31 V(2)
V(1)
V(4)

32 V(2)
V(1)
V(4)

1
0.
0.

0.
1.

0.

0
38 ISIDE = ISIDE + 1
39

GO TO (31,32,39),ISIDE

GO TO 38

RETURN

CALCULATE THE ERROR NEAR THE BOUNDARY LAYER AT 1.
40 CONTINUE

PRINT 640
640 FORMATL’ X, G(X) AND G(X)-F(X) AT SELECTED POINTS’)

X = .75
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DO 41 I=1,9
EP1 = ExP(s2OvEF*(1.—x))AFAcTOR
EP2 = EXP(S2OVEP*(1.+X))*FACTOR
SOLUTN = 12./(1.+EP1)AA2AEP1 + 12./(1.+EP2)AA2AEP2 -
ERROR - SOLUTN - PPVALU(BREAK,COEF,L,KPM,X,0)
PRINT s41,x,sOLUTn,ERROR

541 FORMAT(3E20.10)
41 x = x + .O3125 RETURN

END

The following driver sets the calculations into motion and produces the
output listed below.

MAIN PROGRAM FOR EXAMPLE IN CHAPTER XV.

GOOD

SOLUTION OF A SECOND ORDER NONLINEAR TWO POINT BOUNDARY VALUE
PROBLEM ON [0 .. 1] , BY COLLOCATION WITH PP FUNCTIONS HAVING
PIECES OF ORDER 6 . 2 PASSES THROUGH NEWNOT ARE TO BE MADE,
WITHOUT ANY KNOTS BEING ADDED. NEHTON ITERATION IS TO BE STOPPED
WHEN TWO ITERATES AGREE TO 6 DECIMAL PLACES.

CALL COLLOC(0.,1.,4,6,2,0.,1.E-6)
STOP

("IO

END

The error printout shows the improvement near the boundary layer
brought about by the repositioning of the breaks through NEWNOT. Not
only is the size of the error reduced, but the number of sign changes in
the error is increased from 2 to 5. Note also the decrease in the number
of Newton steps required. This is due to the fact that the program always
uses the most recent approximation to the solution as the current guess
f,. even when the next approximation is to have a different knot sequence.
Finally, note the detailed picture of the approximate solution provided by
the ppform: the sharp change of f near 1 is quite evident.

CARRIER,S NONLINEAR PERTURB. PROBLEM
EPS 0.4999999888-02
APPROXIMATION FROM A SPACE OF SPLINES OF ORDER 6 ON 4 INTERVALS,
OF DIMENSION 18. BREAKPOINTS -

0.2500000O00+00 0.5000000000+00 0.7500000000+00
AFTER 5 OF 10 ALLOHED ITERATIONS,
THE PP REPRESENTATION OF THE APPROXIMATION IS

0.000-0.100000+01 0.000+00 -0.381-04 0.252-02 -0.659-01
0.250-0.100000+O1 0.101-04 -0.486-03 0.477-01 -0.132+01
0.500-0.999944+00 0.112-02 -0.629-01 0.676+01 -0.188+03
0.750-0.991799+00 0.163+00 0.452+01 -O.139+02 0.2L5+O4

0.692+00
0.195+02
0.280+C4
0.609+05
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X, G(X) _AND G(X)-F(X) AT SELECTED POINTS
O.75000OO00O+OO -0.9918430448+0O -O.4374980927-O4
O.781250000O+OO -0.9847788215+00 -0.3274083138-03
0.8125000OOO+0O -0.9716256857+00 -0.1661181450-03
0.84375000OO+OO -O.9472073317+0O 0.6934404373-O3
O.875000000O+0O -O.9021227360+00 0.1047730446-O2
O.9062500000+0O -0.8197249174+00 -O.5564689636-O3
O.9375000O0O+O0 -O.6719498634+00 -0.3465056419-O2
0.968750000O+OO —0.4159959555+O0 -O.3410220146-02
O.1000O00O0O+O1 0.0000000000+00 0.0000000000+00

APPROXIMATION FROM A SPACE OF SPLINES OF ORDER 6 ON 4 INTERVALS,
OF DIMENSION 18. BREAKPOINTS -

0.4417714477+00 0.6529041529+00 0.8314099312+O0
AFTER 2 OF 10 ALLOWED ITERATIONS,
THE PP REPRESENTATION OF THE APPROXIMATION IS

0.000-O.1000OO+O1 0.000+0O -0.293-O3 0.130-01 -O.220+0O 0.149+O1
0.442-O.999983+O0 0.339-03 -0.198-O2 0.938+00 -O.274+02 O.550+03
0.653-0.998827+OO 0.234-01 O.261+OO O.315+O2 -O.820+03 0.242+05
0.831-0.958661+OO 0.821+00 0.199+O2 -0.969+02 0.235+O5 -0.156+O6

X, G(X) AND G(X)-F(X) AT SELECTED POINTS
O.75000O0OOO+OO -0.9918430448+0O -0.3850460052-04
O.781250000O+00 -O.9847788215+0O 0.1472234726-O4
O.8125000OOO+OO -0.9716256857+00 0.1883506775-04
O.8437500000+0O -O.9472073317+0O -0.1868605614-O3
O.875000OO00+0O -0.9021227360+00 -0.1836419IO6-03
O.9062500000+0O -0.8197249174fiOO 0.7538199425-03
O.9375000O0O+O0 -O.6719498634+O0 O.9310245514-04
O.968750000O+OO —0.4159959555+O0 -0.1260221004-02
O.1000OOO00O+O1 0.0000000000+00 0.0000000000+OO

APPROXIMATION FROM A SPACE OF SPLINES OF ORDER 6 ON 4 INTERVALS,
OF DIMENSION 18. BREAKPOINTS - -

O.4450708628+OO O.6789402366+00 0.8465198278+00
AFTER 1 OF 10 ALLOWED ITERATIONS, -
THE PP REPRESENTATION OF THE APPROXIMATION IS

0.000-0.100000+O1 0.670—O6 -0.331-O3 O.138-O1 -O.231+O0 O.155+01
O.445-O.999981+OO 0.365-03 -0.108-01 0.161+O1 -O.461+02 0.770+O3
0.679-O.998027+OO 0.394-01 0.555+OO 0.425+O2 -O.990+O3 0.351+O5
0.847-O.944220+OO 0.111+01 0.253+O2 -0.248+O2 O.291+05 -0.254+06

X, G(X) AND G(X)-F(H) AT SELECTED POINTS .
O.75000OO00O+OO -0.9918430448+0O -0.3337860107-O4
O.7812500000+OO -O.9847788215+00' -0.2211332321-04
O.8125000O00+OO -0.9716256857+00 0.3129243851-04
O.84375000O0+O0 -O.9472073317+0O —0.6973743439-O5
O.875000OOOO+OO -0.9021227360+00 -O.3032088280-O3
O.90625000OO+OO' -O.8197249174+O0 0.4141330719-O3
O.9375000O0O+O0 -O.6719498634+00 0.3328919411-O3
O.96875000OO+OO —0.4159959555+O0 -0.8399486542-03
O.10000OOO00+01 0.0000000000+00 0.0000000000+O0

El

Problems

1. Estimate the work involved in setting up the collocation equations
(that is, the labor done in EQBLOK and PUTIT) and compare to the work of
solving the resulting equations (in SLVBLK, that is, by Gauss elimination
with attention being paid to the special structure).

2. If E is uniform, then the generation of the collocation equations can
be made more efficient by calling BSPLVB only in the first interval.
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(ii) Even if E is not uniform, certain savings can be effected in EQBLOK and
PUTIT due to the fact that every B-spline involves at most two cf;-intervals,
and some have their support on only one Af-interval.

3. Discuss the proper treatment of nonlinear side conditions. Specifically,
if (2) is replaced by ,_,

N
C;-5(1I1'§;g($-1), . . . ,(Dm'_1g)(1I2'i)) =2 ,5,-,g = C-,;, ‘Ii: 1, . . . , TH,

what would be the appropriate explicit formulation of (9) (assuming that
G, is a smooth function of its arguments)? (Hint: How was (9) obtained
from (4)?)

4. Identify the_ above collocation method with implicit Runge-Kutta
methods, in case ,6,g = g(i"1)(O), *5 = 1, . . . ,m.

5. Let In = 2, it = 4. Prove that the polynomial p E l'l,_;-3 that agrees with
the ¢0110¢E\i3i0I1 flPPI‘0XiIT1fll3i0I1 f to 9 all (ii-11-€A~1=€iA€i=~‘;1+1.€A+1,€i+2.
§,;_|_2) is an C7 (If-|8)-approximation to g on [§,_1 .. EH2].

6. Set up the relevant equations fdilr solving the integral equation

bgo->+ f K<A.A>g(A>;dA=h<A> on la--bl
of the second kind for g by collocation from II,-;;,,,5. .

7. What would the relevant equations be for solving (1) by Galerkin’s
method using II,-;,,,.|.;,__5 H C("'“'1)? L;

8. Rework COLLOC and its subroutines to make -use instead of the sub-
routine CNIDTI-I given in the appendix which requires less storage than does
SLVBLK. "



XVI

Taut Splines, Periodic Splines,
Cardinal Splines and the
Approximation of Curves;
TAUTSP

In this chapter, we discuss various details concerning the approximation
of curves, leading us eventually to a side issue, namely the approximation
by periodic splines with a uniform knot sequence. But, with the exception
of taut splines, or, splines in tension, all is amplification of earlier material.

We will deal with planar curves, that is, with point sets in the (:1:, y)-plane
of the form

Cc := {(cI(s),cy(s)) : a ii s § b},

forsome interval [a.. .b] and some (usually continuous) function pair cm, cy.
The typical computational problem concerns the construction of a curve

Cc that contains a prescribed point sequence (Pi)? in the plane in that
order. Two aspects of this problem give difliculty. One is the proper choice
for the parametrization. The second problem is lack of data. We will discuss
each of these problems in turn, but begin with the second problem.

Lack of data This is'an intuitive and imprecise term that is meant to
describe the following situation. A curve or function has been approximated
by- some means, making use of the data provided. It fits the data, yet the
intended user of the approximation protests that it doesn’t look right, or,
that she would have drawn it differently. In effect, the data provided were
not suflicient to convey to the approximation scheme the user’s wishes.

Of course, such user complaints are at times as unreasonable as they
sound and can then be dealt with simply by requesting more data in the
area where the approximation was felt to be wrong. But, “in at least one
situation, there is justification for complaint, and this is in the case of
“extraneous” inflection points. This we discuss now in some detail for the
case of interpolation to a function rather than a curve.

263
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“Extraneous" inflection pOll‘|tS We are given data (T,,g(T,))"f' to be
interpolated. Let f be a smooth interpolant to these data. We know from
I(vii) that, for each '21, there is a site 17, in the open interval ("r,_1 . . "r,_|_1) so
that

[n-1, T-1. T-£+1]g = f”(m)/2-
Therefore, corresponding to each sign change in the sequence (6,)';_1, with-

5t I= [Ta 'Ti+1]9 — [Ta ‘Ti.-1]Q=

there must be a sign change in the second derivative of f, that is, an
inflection point of f. We call an inflection point of the interpolant f in the
open interval ('r.,-, . . 114.1) extraneous if 5i5.,-__|_1 > 0.

In effect, we insist-that the interpolant preserve convexity/concavity of
the data in the following sense: if the broken line interpolant to the data is
convex (concave) on the interval (1",.._1 ..'r_,,_|.1), then a “good” interpolant
should be convex (concave) on the interval [11,-. .'r_,,]. This prescription allows
only one interpolant on [1",_1 . . 'r,_|_1] in case 6, = O, namely a straight line.

Spline in tE.'I‘lSlOI‘l- Schweikert [1966] was the first to deal with the
problem of extraneous inflection points. He proposed the tensioned spline
as a remedy. In constructing this spline, he was guided by the physical
notion of the (graph of the) spline as an elastic-band that goes through
rings at the interpolation points in the plane and that is pulled until all
extraneous kinks have been straightened out. In the limit, that is, with a
very strong pull, one obtains the broken line interpolant.

In mathematical terms, Schweikert’s tensioned interpolant has two con-
tinuous derivatives and satisfies, between interpolation sites, the differential
equation

(D2 ___ p2)D2,y Z 0,

with p the tension parameter. For p = O, this means that the interpolant
is piecewise cubic, that is, just the customary cubic spline interpolant de~
scribed in Chapter IV= But, for p > 0,1 each piece of the interpolant‘ is a
linear combination of the four functions

1, 1:, eff, e"P*.

Algorithms for the construction of such a tensioned spline have been pub-
lished in Fortran by A. Cline [I974]. Spath (see, for example, his book Spath
(1974)) has generalized this to allow the tension parameter p to vary from
interval to interval, thus making the procedure more responsive to the local
behavior of the data. In fact, Spath deals with more general interpolants
that, on the interval [Ti .. 1'.,-+1], have the form

(1) f(:t) = Ara. + B-i'U + C-.-:<Pi('v-) + -D-tip-£('U)

1--1-I-|-1-1-:1-i—n—-|.|—-1u—1iii-r1.
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with
n := u(:1:):=(:1: — Ti)/Ari, v := 1 — u,

and cpi a function on [O .. 1] with c,oi(O) = goi(1) = O, and (,of(O)“ =,é (,oi’(1)2.
For (,oi(s) = .93 —- s, all s, one recovers the cubic spline. The piecewise
tensioned spline fits into this scheme with the choice

r,oi(s) = sinh(pis) —- s sinh(pi), l

with pi the tension parameter for the ith interval.
A different scheme has been proposed by R.V. Soanes, .lr., [I976], who

uses an interpolant that, on the interval [Ti . . r.i_|_1], has the form

f(.'.I.'Z) = Aifi + Bil) -i- Ciitmf -|— Diflnfi

with the possibly fractional exponents mi, ni to be chosen appropriately.
The choice mi = ni = 3 reduces this scheme to cubic spline interpolation.
Vi/'hile the Schweikert—Spath tensioned spline has its tension parameters
chosen interval for interval, Soanes chooses the ratio mi_1/ni data point
for data point.

The only real objection to these and other schemes is that they use expo-
nential functions instead of polynomials, thereby making evaluation of the
interpolant more expensive and, on some minicomputers, even impractical.
One wonders, therefore, whether the same effect, namely preservation of
convexity/concavity in the data, could not be had while sticking to cubic
splines as interpolants. As it turns out, this is indeed possible. The trick is
to use a cubic spline with additional knots placed so that the interpolant
can make sharp bends where required without breaking into oscillations as
a consequence. '

(2) Example: Coping with a large endslope We are given the
following data f(O) = O, f'(O) = --[Li-no, = = 1, f"(2) = -1/2, and
are to construct a concave interpolant.

If we really insist on an infinite slope at O, there is no way of solving this
problem with polynomial splines. But, if this is merely a design curve, then
a “very large” slope, say f’(O) = 20, will do just as well. But now complete
cubic spline interpolation to these (modified) data produces an interpolant
with two inflection points; see Figure

Quite simply, the cubic polynomial in the first interval cannot bend fast
enough. We help it along by adding just one knot, very close to the site
of difficulty. In effect, we supply “missing data". Specifically, we give the
additional data point (.04, .03). The new interpolant is also shown in Fig-
ure (3); it is concave. The transition from the large endslope to the mild
behavior in the rest of the interval could easily be made less abrupt by
supplying more data, for example by taking points from a spline cur-ve that
fits the original data.
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(3) FIGURE. Spline interpolation to -a large endslope without (thin) and
with an additional knot. U

[-1.

.A taut CUlJlC spline It took a lit-[tle experimentation in Example (2)
to find the appropriate additional data point. Typically, one chooses the
abscissa and then experiments with the function value until the curve is sat-
isfactory. In the following, we describe a more systematic way of introducing
additional knots where required. _

We begin with the following special‘ case. We are to interpolate to the
data f(0) = 0, f’(0) = sg, f(1) = 0, _f’(1) = s1, by a cubic polynomial.
From IV(3)-(4), we get at once that _

(4) f(I) = $01‘-'1 - (230 + $1)?-=2 + ($0 + $1)?-

We have [0,0, 1]f = -.—s0, [0, 1, 1]f = s1, hence an inflection point in (0 . .1)
would be extraneous in case S031 <1 0. On the other hand,

f”(9) = "'2(2$o + $1), f”(1)== 2($0 + 81)-

Thus, f has no (extraneous) inflection points in (0. . 1) if and only if (230 +
s1)(sg+2s1) *3 0. We can write this condition also as (2(s0 —s1)+3si)((si;——
s1)+3s1) <3 0, or, dividing through by (S0 --$1)“ and using the abbreviation
z := s1/(s1 -—- sq), as (2 — 3z)(1 — 3z) 5 0.
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It follows that the cubic interpolant in this case reproduces the
convex.ity/concavity of the data only if

s Z I= S1/(S1 — SQ) g

For values of z outside this range, we propose to change the interpolating
function as follows.

Consider first the case z > 2/3. Then the interpolant is required to bend
near 1 more sharply than a monotone cubic can. We therefore replace the
one basis function. for I'I.i;.i among the four: :12, 1 —:r, 3:3, (1 —:r)3, that bends
most sharply near 1, namely 2:3, by a cubic spline go with one knot that
bends more sharply near 1 than does :23. For the sake of uniformity, we also
insist that <,o(O) = <,0"(0) = qo”(0) '= 0, <,o(1) = 1, and go” Z 0 on [0..1]. This
ensures, among other things, that the interpolant has an inflection point in
[0 .j. 1]- if and only if the coefficients of <p and (1 — :12)“ are of opposite sign,
as we will see in a moment. The resulting function (,0 is given by

v>(I) == <P(I; Z) == M3 + (1 — Q1)

with Q = ((2) the additional knot and 0: = cz(z) a number in [0. .1]. We take
both Q and cu "to be continuous monotone functions of z, with o¢(2/3) = 1
in order to connect continuously with the usual cubic when z 3 2/3, and
with Q(1_) = 1.

In terms of this new basis, the interpolant now reads

f(:r) = As: + B(1 —- :12) + C<,o(;I:; z) + D(1 — 3:)“

where .
-‘A = C = (30 + 231)/(3(2P " 1))

' "B = D = "((3.29 — 1)8o + $1)/(3l.2P — 1))
and

P1: <P’(1;-Z)/3 = (1 + (1 -— <1»)/(1 - C)- ‘
It follows that _f”(:::) = 6(C(cz:r + (1 — o:)(:r —- ()4./(1 -—- ()3) + D(1 —-
This is of one sign in [0 .. 1] if and only if C and D are of the same sign.
The condition that f have no extraneous-inflection point in (0 . . 1) (in case
sosl <2 0) thus becomes

((319 -— l.)Sg —l— S1)(S(] —l— 231) 5 0.
J‘

Slightly rearranging, dividing through by (si, — s1)“, and using again z :==
s1/(s1 — sg) produces the equivalent condition that

((3p —— 1) -— 3pz)(1 —- 3.2:) 5; 0.
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The second factor is negative since we are considering the case z > 2/3.
Preservation of convexity/concavity of the modified interpolant therefore
demands (even under the weaker assumption z 2-_ 1/3) that .2: § (3p —
1)/(3p), that is,

3p Z 1/(1 — z).

In terms of cu, this condition reads 0: 5 [1 — (1 — Q)/(3(1 -— Thus,
choosing ct to be as large as possible, we get the formula

Note that o:(2/3) = 1 regardless of Q. This also shows that we need

l 3(1—z)Z1——Q

to make certain that or 2 0. This condition is satisfied for the choice 1 —
z ='7(1-z)aslongasq/$3C( ) ‘ -
The case 2: < 1/3 is handled analogously, with the basis function (1 —— rs)“

replaced by qo(1 — :13; 1 — 2:) and <,o determined as in the case .3 5- 2,i"3.
We can combine these various cases conveniently into one by considering

the approximation to be of the form _

(5) f($)=A:r—l—B(1—-:::)+C'q0(:r;z)+D<,o(1—$;1—z)

with
3

3 $'"'§w(I;Z) == Cw + (1 - @)(T-_7E)+

(6) l<I==(~*=) == (1 —'r/3)/C
((2) := 1 —-q/min{ 1 -—- 2,1/3} '

for some '7 E [0 . . 3]. As '7 increases, both oz and Q‘ decrease for fixed 2:. The
overall effect is one of increased “roundness” for increased '7.

The more general case of interpolation to data f(0) = fg, f'(0) = sq,
f (1) = fl, f’ (1) = s1 is reduced to the present one by subtracting first the
straight line fg + (f1 — fg)$. This subtraction does not affect questions of
convexity and concavity, and changes the quantities so and s1 used above
into so —— (f1 — fg) and s1 -— (fl — fi,). If, even more generally, interpolation
to data f(r_i) = fi, f"(r_i) = si, j = i,i + 1 isconsidered, then, instead of
'39 and s1, the relevant quantities are

-9-t '- [Ta-'1'i+1lf and 3-£+1 "‘ l'1'riT.i+1lf-

We make use of these considerations in the construction of a “taut” cubic
spline interpolant to given data ((ri, g('ri))){‘l by choosing the basis in each

 .

_i-j-i 

-—i-ml
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interval [Ti . . 'ri_|_1] in the above manner, with the role of si played by the
slope ['ri_1,'ri] f and the role of si_|_1 played by [Ti_|_1,T-i.|.2] f. This means
that the interpolant has the form '

(7) Ai + Bin + C'i<p('a; z) + Di<,0(1 — u; 1 — 2:)

OI]. [Ti . . 'i".ij_|_]_],

(8) := (zr -—- ri)/Ari

(9) z = z- -= '5i+1/(51 + 5r+1l if 6i6i+1 2 0, '51 —l— 5i+1 75 01 ' 1/2 otherwise

where
635 1: ll’-j1Tj+1l.f — l:Tj:Tj—1lf'.I an .7-1

asbefore.Wesetz=1/2incasei=1 ori=N—1.
The particular choice (9) of z makes the interpolant discontinuous as

a function of the data. This means that a small change in the data that
changes the sign of some dic‘.ii_|_1 may change the interpolant drastically. For
this reason, the program below also allows the modified choice

___ i .__ l5i+1l/(l'5il '1' l5i+1l) 11l'5-=1l+l5i+1l > 0
(10) Z ___ Z‘ ] 1/2 otherwise

which removes an obvious source of discontinuity.
In terms of the quantities fj, j = i, i + 1, and the number h := Ari,

the interpolant has the coefficientsll _

At = fr — Dr, Bi = h[Ti1Ti+1]f -" (Ci — Di.)
(11) r I ' ivC1: = h2f£'+1/<P’ (1; Z). D1: = h'2.fi /<P”(1; 1 — Z)-
Note that <,o”(1;z) = 6(a+(1 -—o:)/(1—(_')“), hence -

<12) 1/v"<1;z) = in - 02/(c»<1 - 02 + (1 -ea). 1
We determine the vector (ff’ so that the resulting interpolant has two

continuous derivatives. This gives, at each interior data site ri, the equation
f1(1'i#) = f1(Ti+)= 91'

I I

_[_ (A7-i__1 _[_
<P (1=1 — Z-s—1) <P (1I‘z‘1"'1) W (111 '" Ki)

A71? iv -
+ fi+1=6i, ‘Z-=2i...,.lV.-"1.
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Note that

§P'(1;-Z)-1 1—C (3@—1)(1-C)+3(1—@=i
(14) . s@”(1;z) =' 6 ~<»<1'-"<72‘+"<1'"-T)
Evaluation of the coefficients in (13) in the manner of (12) and (14) ensures
accuracy as Q —+ 1.

If no additional knots are introduced, that is, if oz --= 1 throughout, then
(12) and (14) show that (13) reduces to

(A’*"i—-1/5)fi11 + (A'1'¢-1/3 -l" Ati/3)f-if + (A11/filfiii = 5%

the equation for cubic spline interpc-llation familiar from Problem IV.6.
We need two more equations to obtain N equations in the N unknowns

(ff . Of the several choices of boundary conditions discussed in Chapter
IV, we consider here only the “not-a-knot” condition. This means that we
adjoin the two equations

jump-rif”’ = 0 =i'-11'I1P-r,i-,f”’-
More explicitly, by (7) and (11), the first of these reads

or + I1’)/N1 = ‘ A12‘
l

'1

and the second looks similar. Note that

"(la ) _ @=(1-02+ (1-01)
(15) $"’(1;i) _ (1 _ O,-}c(1 —- O3 + (1 — C-=)’
so that the equation is in computational difliculty if 22 = 0. For this reason,
we write the boundary equation in the form

(p”(1i1"_z) I ll‘(p,.,,(1;1 _ A?':2(f§ '- fill =
(16) ,, . 1 _ Hr , y In.(i=____-el H _ ,1;-]A.,.,,

<.@”’(1; 1 — -=12) s@”(1;-in .
with an analogous version for the equation jump,.,_,__, f”" = 0. Finally, a
detailed analysis shows that these equations should be the second, respec-
tively the second last, in the total system in order to avoid the necessity of
pivoting.
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SUBROUTINE TAUTSP ( TAU, GTAU, NTAU, GAFIHA, S,
* BREAK, CUEF, L, K, IFLAG )

coNsTRUcTs CUBIC sPLINE INTERPULANT TD GIVEN DATAc TAU(I), cTAU(I), I=1,...,NTAU.
, IF GAMMA .GT. 0., ADDITIDNAL KNOTS ARE INTRODUCED HMERE NEEDED TD

MAKE THE INTERPCLANT MDRE FLEXIBLE LOCALLY. THIS AvoIDs'ExTRANEDUs
INFLECTIUN PuINTs TYPICAL or CUBIC sPLINE INTERPDLATIDH AT KNOTS To
RAPIDLY CHANGING DATA.

CIOOOOCIOOOOOOOOOOOOOOOOOOOOOOOOOGOOCIOOOOOOOCIOOOOOOOOOOOOQOOOOOOO

PARAMETERE
INPUT

TAU EEQUENCE or DATA PCINTs. MUsT BE STRICTLY INCREASING.
CTAU CORRESPONDING sEqUENCE CF FUNCTIUN vALUEs.
NTAU NUMBER OF DATA POINTS. MUsT BE AT LEAsT 4 .
CAMMA INDICATES HHETHER ADDITIDNAL FLEXIBILITY Is DESIRED.

= 0., No ADDITIUNAL KNUTs
IN (0.,3.), UNDER CERTAIN CONDITIDNs UN THE CIvEN DATA AT

PUINTS I-1, I, I+1, AND I+2, A KNUT Is ADDED IN THE
I-TH INTERvAL, I=2,. .,NTAU-2. SEE DESCRIPTION OF METH-
CD BELDN. THE INTERPDLANT CETs RDUNDED UITM INCREASING
GAMMA. A vALUE DF 2.5 FDR CAMMA Is TYPICAL.

IN (s.,s.), sAME , ExcEPT THAT MNDTs MICHT ALsD BE ADDED IN
INTERVALS IN HHICH AN INFLECTIDN PUINT HDULD BE PERMIT-
TED. A vALUE DP 5.5 FDR CAMMA Is TYPICAL.

UUTPUT
BREAK, CDEF, L, K GIVE THE PP-REPRESENTATIUN OF THE INTERPULANT.

sPECIFICALLY, FDR BREAK(I) .LE. x .LE. BREAR(I+1). THE
INTERPDLANT HAs THE FURM

F(X) = COEF(1,I) +Dx(CUEF(2,I) +(Dx/2)(COEF(s,I) +(DI/3)CDEF(4,I)))
HITH Dx = x - BREAK(I) AND I-1, ..,L .

IFLAC = 1, UK
= 2, INPUT HAs INCDRRECT. A PRINTUUT SPECIFYING THE MIsTARE

HAs MADE.
HDRREPACE

s Is REQUIRED, UP SIZE (NTAU,s). THE INDIVIDUAL cDLUMNs DF THIS
ARRAY CUNTAIN THE FULLDNINC qUANTITIEs MENTIUNED IN THE HRITE-
UP AND BELUN. '

s(.,1) = DTAU = TAU( +1) - TAU
s(..2) = DIAG - DIACDNAL IN LINEAR SYSTEM
s(.,s) = U - UPPER DIACUNAL IN LINEAR SYSTEM
s(.,4) = R = RICHT sIDE FDR LINEAR SYSTEM (INITIALLY)

= FsECND = SDLUTIUN UF LINEAR SYSTEM , HAHELY THE SECDND
DERIvATIvEs DF INTERPULANT AT TAU

s(.,5) = Z = INDICATUR CF ADDITIDNAL RNOTs
s(.,e) = 1/HsECND(1,x) NITH I = Z DR = 1-2. SEE BELDN. _

----—— M E T H U D ------
DN THE I-TH INTERvAL. (TAU(I)..TAU(I+1>>, THE INTERPULANT Is UP THE
PURM
(*) F(U(X)) = A + B*U + C*H(U,Z) + D*H(1—U,1—Z) .
NITH U = U(x) = (A - TAU(I))/DTAU(I>. MERE,

z = z(I) = ADDc(I+1)/(ADDC(I> + ADDC(I+1))
(= .5, IN CAsE THE DENUMINATDR vANIsHEs>. NITH

ADDC(J) = ABs(DDs(J)), DDG(J) = DG(J+1) — DG(J),
DC(J> = DIvDIF(J) = (CTAU{I+1> - CTAU(J))/DTAU(J)

AND
H(U,Z) = ALPHA#U**3 + (1 - ALPHA)*(MAX(((U—ZETR)/(1—ZETA)).0)**3

NITH
ALPHA(z) = (1-CAMMA/3)/ZETA
zETA(z) = 1 - GAMHA*HIN((1 - z), 1/3)

THUS, FDR 1/3 .LE. z .LE. 2/s, F Is JUST A CUBIC PULYNDMIAL UN
THE INTERNAL I. UTHERNIsE, IT HAs DNE ADDITIUNAL KNUT, AT

TAU(I) + ZETA*DTAU(I) .
As z APPRoACHEs 1, H(.,z) HAs AN INcREAsINcLY EHARP BEND NEAR 1,
THUs ALLDNINC F To TURN RAPIDLT NEAR THE ADDITIUNAL RNDT.

IN TERMs or F(J) = CTAU(J) AND
PsECND(J) = 2.DERIvATIvE OF F AT TAUCJ).
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FJFJDFJFJQFJOFJFJQFJOQ

THE COEFFICIENTS FOR (*) ARE GIVEN As
A = F(I) - D
B = (F(I+1) - F(I)) — (C - D)
C = FSECND(I+1)*DTAU(I)**2/HSECND(1,Z)
D = FSECND(I)*DTAU(I)**2/HSECND(1,1—Z)

HENCE CAN BE COMPUTED ONCE FSECND(I),I=1,...,NTAU, IS FIXED.
s AUTOMATICALLY CONTINUOUS AND HAs A CONTINUOUS SECOND DERIVAT-F I

" O OR 1 FOR SOHE I) NE DETERMINE FSCND(.) FROMIVE (EXCEPT HHEN Z — .
THE REQUIREMENT THAT ALSO THE FIRST DERIVATIVE OF F BE CONTIN-
UOUS. IN ADDITION, HE REQUIRE THAT THE THIRD DERIVATIVE BE CONTINUOUSTLY
ACRUss TAU(2) AND ACROSS TAU(NTAU-1) . THIS LEADE To A STRIC
DIAGONALLY DDMINANT TRIDIACDNAL LINEAR SYSTEM FOR THE FsECND(I)
WHICH NE SOLVE BY GAUSS ELIMINATION WITHOUT PIVOTING.

INTEGER IFLAG,K,L,NTAU, I,HETHOD,NTAUH1
REAL BREAK(1),COEF(4,1),GAHHA,GTAU(NTAU),S(NTAU,6),TAU(NTAU)

ALPHA C D DEL DENOH DIVDIF,ENTRY,ENTRY3,FACTOR,FACTR2,CAH* I I I I I I

* ,ONEHG3,0NEHZT,RATIO,SIITH,TEHP,X,Z,ZETA,ZT2
ALPH(I) = AHIN1(1.,ONEMG3/I)

c
C THERE MUsT BE AT LEAsT 4 INTERPOLATION POINTS.

C
CONSTRUCT SYSTEM OF EQUATIONS FOR SECOND DERIVATIVES AT T

GOOD

IF (NTAU .GE. 4) GO TO 5
PRINT 600 NTAU

soc PDRMAT(aH'NTAU = ,I4,20H. SHOULD BE .GE. 4 .)GO TO 999

C
CONSTRUCT DELTA TAU AND FIRST AND SECOND (DIVIDED) DIFFERENCES OF DATA
C

5 NTAUM1 = NTAU - 1
DO s I=1,NTAUM1

s(I,1) = IAU(I+1) — TAU(I)
IF (s(I,1) .GT. O.) GO TO 6

‘PRINT 610,I,TAU(I),TAU(I+1)
610 FORHAT(7H POINT ,I3,13H AND THE NEIT,2E15.6,15H ARE DISORDERED)GO TO 999

6 s(I+1.4) = (GTAU(I+1)—GTAU(I))/S(I,1). _
DO 7 I=2,NTAUH1

7 S(I,4) = S(I+1,4) - S(I,4) -
AU. AT EACH

INTERIOR DATA POINT, THERE IS ONE CONTINUITY EQUATION, AT THE FIRST
T INTERIOR DATA POINT THERE IS AN ADDITIONAL ONE FOR AAND THE LAS

TOTAL OF NTAU EQUATIONS IN NTAU UNKNOUNS.

I = 2
s(2.2) = s(1.1)/s.
sIxTH = 1./6.
METMDD = 2 -
CAM = CAMMA
IF (CAM .LE. 0.) METHDD = 1
IF ( CAM .LE. 3.) GO TO s
HETHOD = 3
GAH = GAM - 3.

9 ONEHG3 = 1. — GAH/3.
C ----—- LOOP OVER I ———— —-

1O CONTINUE
c CONSTRUCT 2(1) AND zETA(I> _

Z = 5 I' GO TO (19,11,12),HETHOD
11 IF (S(I,4)#S(I+1,4) .LT. O.) GO TO 19
12 TEMP = ABS(S(I+1,4))

DENUM = ABs(S(I.4)) + TEMP
IF (DENOH .EQ. O.) GO TO 19
Z = TEMP/DENOH
IF (ABS(Z — .5) .LE. SIXTH) Z = .5

1e 's(I,5) == Z

Ii—u--—.‘-—-
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******SET UP PART OF THE I-TH EQUATION HHIcH DEPENDS ON
THE I—TH INTERVAL

IF (z — .5) A 21,22,2a
21 ZETA = CAH*Z

DNEMZT = 1. - zEIA
zT2 = ZETA#*2
ALPHA = ALPH(DNEMzT)
FACTOR = ZETA/(ALPHA*(ZT2—1-) + 1.)
S(I,6) = ZETA*FACTOR/6. -
s(I,2) = S(I,2) + s(I,1>*((1;-ALPHA#DNEMzT)*FACTDR/2. - s(I,s))
IF z = O AND THE PREVIOUS z - 1. THEN D(I) - 0. SINCE THEN
ALSO U(I—1) = L(I+1) = O, ITs VALUE DOES NUT MATTER. REsET
D(I) = 1 TO INsURE NONZERO PIvDT IN ELIMINATIDN.
IF (s(I,2) .LE. O.) s(I,2) = 1.
s(I,a) = S(I,1)/6.

GO TO 25
22 s(I,2) = s(I,2) + s(I,1)/3.

S(I.3) = S(I,1)/6.
GO TO 25

23 ONEMZT = GAH*(1. - Z)
zETA = 1. - ONEHZT
ALPHA = ALPH(zETA)
FACTOR = ONEMZT/(1. - RLPHA*ZETA*(1.+ONEHZT))
s(I,s) = DNEMZTAPACTDR/5.
s(I,2) = s(I,2) + s(I.1)/3.
S(I,3) = S(I,6)*S(I,1)

25 IF (I .GT. 2) GO TO so
s(1,5) = .5 .

******THE FIRST THU EQUATIONS ENFORCE CONTINUITY OF THE FIRsT AND OF
THE THIRD DERIvATIvE AcRDss TAU(2).

s(1.2) = s(1.1>/s. -
s(1,s) = s(2,2)
ENTRY3 = s(2.3) C
IF (z - .5) 1 26.27,2B

26 FACTR2 = ZETA*(ALPHA#(ZT2—1-J + 1.)/(ALPHA*(ZETA*ZT2-1-)+1.)
RATIU = FACTR2*S(2,1)/S(1,2)
s(2,2) = FACTR2#S(2,1) + s(1,1)
s(2,3) = —FACTR2*S(1,1)

GO TO 29
27 RATI0 = s(2,1)/s(1.2)

s(2,2) = s(2,1) + S(1.1)
s(2,3) = -s(1.1)

CD TO 29
2s RATID = s(2,1)/5(1,2)

s(2,2) = s(2,1) + s(1,1)
s(2.3> = -$(1,1)*6.*ALPHA*S(2.6)

AT THIs PDINT, THE FIRST THC EQUATIDNE READ
DIAG(1)*X1 + U(1)*I2 + ENTRY3*X3 = R(2)

—RATIO*DIAG(1)*X1 + DIAG(2)*I2 + U(2)*I3 = 0.
ELIMINATE FIRST UNRNDHN PRDM SECOND EQUATION

2s s(2,2) = RATIO*S(1,3) + s(2,2)
s(2,3> = RRTIO*ENTRY3 + s(2,3)
s(1,4) = s(2.4) i
s(2,4) = RATIO*S(1,4)

GO TO 35
so CONTINUE
##$#**THE I—TH EQUATION ENFORCES CONTINUITY OF THE FIRST DERIvATIvE

ACRDss TAU(I). IT HAs BEEN sET UP IN sTATEMENTs 35 UP TO 40
AND 21 UP TO 25 AND READS NON
—RATIO*DIAC(I~1)*XI-1 + DIAG(I)*II + U(I)*II+1 - R(I) .

ELIMINATE (I—1)ST UNMNDNN PRDM THIs EDUATIDN
3(I,2) = RATIO*S(I-1,3) + S(I,2)
s(I,4) = RATIO*S(I-1.4) + s(I.4)

i
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C *###*#SET UP THE PART OF THE NEXT EQUATION WHICH DEPENDS ON THE
C

C

OOOCI

OOOO

C
C
C

C
C
C

IITH INTERVAL.
35 IF (Z - .5)
as RATID - —S(I,6)*S(I,1)/S(I,2)

S(I+1,2) I S(I.1)/3.

37 RATIO = -($(I,1)/5-)/$(I,2)
s(I+1,2) I s(I.1)/3.

-—- 1 6 /s(I2)

------ END or I LOOP --—-—-
40 I I I+1

IF (I .LT. NTAUM1)
S(I,5) I .5

------ LAST THO EQUATIONS -
THE LAST THO EQUATIONS ENFORCE CONT

35,3T,ss

GO TO 40

GO TO 40

as RATIO (s(I, )/ .) ,
s(I+1,2) - S(I,1)*((1.-ZETA*ALPHA)*FACTOR/2. _ s<I.s))

GO TO 10

INUITY OF THIRD DERIVATIVE AND

OF FIRST DERIvATIvE AcRDss TAU(NTAU-1).
ENTRY - RATIO*S(I-1,3) + s(I.2) +’s(I.1)/3.
s(I+1,2) - S(I,1)/6.
s(I+1.4) I RATIO*S(I—1,4) + s(I,4]]

-41 42 43IF (Z -5) _ . .
41 RATIO I S(I,1)*6.*S(I-1,6)*ALPHA/S(I-1,2)

S(I,2) I RATIO*S(I—1,3) + S(I,1) + S(I-1,1)
S(Ii3) I -S(I-1,1)

42 RATIO I S(I,1)/S(I—1,2)
GO TO 45

S(I,2) I RATIO#S(I—1,3) + S(I,1) + S(I—1,1)
S(Ip3) — -S(I-1:1) GO TO 45

43 FACTR2 I OHEHZTI(ALPHA*(ONEHZT*I2-1.)+1.)/
I (ALPHA*(UNEMZT**3-1.)+1.)

RATIO I FACTR2*S(I,1)/S(I-1,2)
s(I,2) - RATIOIS(I—1,3) + FACTR2*S(I—1,1) + S(I,1)

I IFACTR2#S(I-1 1)I ' - .
AT THIS POINT, THE LAST THO EQUATIONS READ

DIAG(I)#XI + U(I)sII+1 I R(I)
—RATIO#DIAG(I)*II + DIAG(I+1)*II+1 = R(I+1)

ELIMINATE II FROM LAST EQUATION
45 s(I,4) - RATIO*S(I—1,4)

RATID = —ENTRY/S(I,2)

l|
I

£1

S(I+1,2) I RATIU*S(I,3) + s(I+1,2)
S(I+1,4) I RATIU*s(I,4) + S(I+1,4)

------ BACK SUBSTITUTION ----s-l
S(NTAU,4) I s(NTAU,4>/s(HTAU.2)

50 S(I,4) I (S(I,4) - S(I,3)#S(I+1,4))/S(I.2)I = I 1 GO TO 50IF (I .GT. 1)
S(1,4) - (S(1,4)-$(1,3)*S(2.4)-ENTRY3*S(3,4))/S(1,2)

--—--I CONSTRUCT POLYNOHIAL

BREAK(1) I TAU(I)
L I 1
DO TO II1,NTAUH1

COEF(1,L) I GTAU(I)
COEF(3.L) I S(I,4)
DIVDIF I (GTAU(I+1)-GTAU(I)
Z I S(I,5)
IF (Z .5)

61 IF (Z .EQ, O.)

PIECES ------

)/S(I.1)

61,62,63
GO TO 65

it-i-1-

-1-I-ur-n——_-.
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ZETA I GAHIZ
UNEMZT = 1. - ZETA
C = S(I+1,4)/6.
D = S(I,4)*S(I,6)
L = L + 1
DEL = ZETA*S(I,1)
BREAK(L) = TAU(I) + DEL
ZT2 = ZETAII2
ALPHA = ALPH(DNEMzT)
FACTOR = ONEMZTIIQIALPHA
CDEF(1,L) = GTAU(I) + DIVDIFIDEL

I + S(I,1)**2*(D*ONEMZT*(FACTOR-1.)+C#ZETA*(ZT2-
CDEF(2,L) = DIvDIF + S(I,1)*(D*(1.—3.*FACTOR)+C*(3.*ZT2—
CDEF(s,L) = 6.*(D#ALPHA*ONEMZT + CIZETA)
CDEF(4,L) = 6.I(C - DIALPHA)/S(I,1)
COEF(4,L—1) = COEF(4,L) - 6.*D*(1.—ALPHA)/(DELIZTQ)
COEF(2,L—1) = CCEF(2,L) - DEL*(COEF(3,L) —(DEL/2.)*COEF(4,L—1))

GO TO 55
52 COEF(2,L) = DIvDIF - s(I,1>*<2.*s(I.4) + S(I+1,4))/6.

CcEF<4.L) = (s(I+1,4)-s(I.4>)/s(I,1)
GO TO es

l--1|-1' \-...#\...# \.J"--I

53 DNEMZT = GAH*(1. — Z)
IF (DNEMZT .EQ. O.) GO TO 55
ZETA = 1. - DNEMZT
ALPHA = ALPH(zETA)
C = S(I+1,4)*S(I.6)
D = s(I.4)/C.
DEL = ZETA#S(I,1)
BREAH(L+1) = TAU(I) + DEL

Ill’
‘I

65

CDEF(2,L)
CCEF(4.L)
L = L + 1
CUEF(4,L)
CDEr(3,L)
CDEF(2,L)
CDEF(1,L)

CDEF(2,L)
CDEF(3,L)
CDEF(4,L) #

-

DIVDIF — S(I,1)*(2.*D + C)
6.*(C*ALPHA — D)/S(I.1)

COEF(4,L—1) + 6.*(1.—ALPHA)*C/(S(I,1)*ONEHZT**3)
COEF(3,L—1) + DEL#COEF(4,L-1)
COEF(2,L—1)+DEL*(COEF(3.L—1)+(DEL/2.)*COEF(4,L—1))
COEF(1,L—1)+DEL*(COEF(2,L—1)+(DEL/2.)#(COEF(3,L—1)

+(DEL/3.)mCOEF(4,L—1)))

DIVDIF
0..
0.

GO TO 63

as L = L + 1
TO BREAK(L) - TAU(I+1>

L = L - 1 = '\.
1K = 4

IFLAC = 1 ,
A RETURN
999 IFLAG = 2

RETURN
END

(17) Example: Taut cubic spline interpolation to Titanium Heat
data As an example, we picked the Titanium Heat Data which caused
the optimal quartic interpolant in Example XIII(29) to oscillate so wildly.
First, we interpolate by a cubic spline to the same data used in Example
XIII(29), using the “not-a-knot” end condition and obtain; once again,
some oscillations (see Figure (18)). Then, we also construct the taut spline
with '7 = 2.5.
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(18) FIGURE. The ordinary (dashed) and taut (solid) cubic spline
interpolant to some points of the Titanium Heat Data.

The program for this example differs little from that in Exampled with
XIII(29). We simply call on TAUTSPi once .with CAI-ll-1A = 0. an once
GAMMA = 2.5, instead of using SPLINT and BSPLPP. El

Further details about the taut spline can be found in de Boor [I980]. We
note that lVlCAllister & Roulier [1978] also use carefully placed additional
knots to interpolate correctly to data that are both monotone and convex.' h d' ssesWe also alert the reader to the paper by G. Nielson [1974] w o iscu
a surprising alternative to splines in tension. He develops a cubic spline

' ' ' ' ' d a c_u_rv_ein tension that has only one continuous derivative but pio uces
with continuous tangent and continuous curvature when applied to the
two components of a curve.

With this we are back to the discussion of curve approximation, and do
now take up the first problem mentioned in the beginning of the chapter.

|-1-It|----u-——-—-_,-_.-_-

Pro er choice of parametrization A curve may, of Course, beP
parametrized in many ways, that is, for a given curve Ci, there are infinitelyC’ W
many continuous function pairs (dii-,,di,) on [a . . b] for which Ci = ii. e
could enlarge the set of possible parametrizations further by allowing the
interval [a . . b] to change as well. Hence, we know of the interpolation pair
(cm, Cy) that it should take on certain values Pi = (zri, yi), i = 1, . . . , N, but
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we have to Choose somehow the sites (si){"' in the parameter interval (and,
indeed, the parameter interval [a . .b] itself) at which we would like to have

(c.<s.>.¢,<i.>> = (as).

(19) Example: Choice of palrametrization is important We treat
(the graph of) the function f(:r) = (2:-— .3)? as the Curve Ci, with ci(s) = s,
c,,(s) = f(s), and take from it the data points Pi = c(si), i = 1, . . . ,8, with

(3,)? = (0., .1, .2, .3, .301, .4, .5, .5).
We choose (i) the parametrization used in the definition of the Curve. But
we.also use a straightforward parametrization that might be, and -indeed is
frequently, used when one has no idea from what curve the data have Come
from, namely (ii) the “uniform” parametrization Pi = c(i), i = 1, . . . , N =
8. '

In the program below, note that only BANSLV is used and not the entire
SPLINT when it comes to interpolating the second Component.

L
I I

CHAPTER xvi, EIAMPLE 3. THU PARAMETRIZATIONS OF sDME DATA
cALLs SPLINT(BSPLVB,BANFAC/SLV),BSPLPP(BSPLVB*),BANSLV#,PPVALU(INTERV)
C PARAMETER K=4,KPKM1=7, N=B,NPKI12, NPIECEI6,NPOINTI21
C INTECER I,ICOUNT,IFLAG,KP1,L

REAL BCDEF(N),BREAH(NPIECE),Ds,D(N,HPRM1),s(N).sCRTCH(R,R)
* ,ss,T(NPR),x(N),xCDEF(K,NPIECE),Ix(NPDINT),Y(N)
* ,YCOEF(K,NPIECE),YY(NPOINT)

INTECER I,ICOUNT,IFLAG,K,KPKM1,KP1,L,N,NPOINT
DATA K,KPKH1,N,HPOINT /4,r,s,21/
REAL BCDEF(C),BREAR(5),Ds.Q(s,I),s(a),sCRTCH(4,4)

A ,ss,T(i2),x(a),xCDEF(4,5),Ix(2i),Y(s)
# ,YCOEF(4,6),YY(21)

DATA I /C.,.1,.2,.3,.3D1,.4,.5,.s/ '
C ### CDMPUTE Y—COMPONENT AND SET ’NATURAL’ PARAHETRIZATION

DO 1 I=1,N
YII) = (X(I)—.3)I=|-2

1 s(I) = X(I) _
PRINT 601

501 FDRMAT(25H ’NATURAL’ PARAMETRIZATIDN/5x,1Mx,11x,1HT)
ICOUNT = 1

C ### CONVERT DATA ABsCIssAE TO KNOTS. NOTE THAT sECDND AND sECDND
C LAsT DATA ABsCIssAE ARE NOT KNOTS.

5 DO 5 I=1,K
T(I) =

GOO

3(1)
6 T(N+I) = S(N)

KP1 = K+1
DO T I=KP1,N

T T(I) = S(I+2—K)
C was INTERPOLATE TO XICOHPONENT

CALL SPLINT(S,X,T,N,H.QiBCOEF,IFLAG)
CALL BSPLPP(T,BCOEF,N,K,SCRTCH,BREAK,XCOEF,L)

I.

1 l
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C III INTERPOLATE TO Y—COHPONENT. SINCE DATA ABsCIssAE AND KNOTS ARE
C THE SAME FOR BOTH COMPONENTS, HE ONLY NEED TU USE BACKSUBSTITUTION

DO 10 II1,N
1O BCOEF(I) I T(I)

CALL BANSLV(Q,KPKH1,N,K-1,K—1,BCOEF)
CALL BSPLPP(T,BCOEF,N,K,SCRTCH,BREAK,YCOEF,L)

C ### EvALUATE CURVE AT SOME POINTS NEAR THE POTENTIAL TROUBLE SPOT,
C THE FOURTH AND FIFTH DATA POINTS.

SS I s(3)
DS I (S(6) -S(3))/FLOAT(NPOINT—1)
DO 20 II1,NPOINT

11(1) I PPvALU(BREAR,ICOEF,L,H,SS,O)
YY(I) - PPvALU(BREAR,TCOEF,L,H,ss,o>

20 ss I SS + DS
PRINT s20,(II(I),YY(I),I=1,NPOINT)'

520 FORHAT(2F12.7)
IF (ICOUNT .CE. 2) STOP

C ### NON REPEAT THE HHOLE PROCESS HITH UNIFORM PARAMETRIZATION
ICOUNT I ICOUNT + 1
DO so II1,N

so S(I) I FLOAT(I)
PRINT 530

630 FORHAT(/26H ‘UNIFORM’ PARAHETRIZATION/611,1HX,11X,ll-IY)
_ GO TO 5

END

The data points are approximately unifrihmly spaced, (rri, yi) = (i/10, —
3) /10)“), except that an additional point (.301, 10'"6) is inserted. Instead of
the printed output, we Show in Figure (22) the piece of the resulting curves,
between the points (.2, .01) and (.4, .01). For the parametrization (i), we
expect and get the original curve since both components are polynomials
of order 4. For the “uniform” parametrization, we get a kink or loop in the
resulting interpolating Curve (solid). El

One can, of course, argue that we are only given the data points (Pi)?
and nothing else and therefore one way of filling in the curve is as good as
any other. True, but if you don’t like little kinks in the curve, then you’d
better pay attention to the parametrization.

Experience has shown that any parametrization that approximates the
arc length of the resulting Curve is suitable. Although considerable effort
and much iteration can be put into a program for making the parametriza-
tion exactly equal to the arc length of the resulting curve, it usually suffices
to Choose 1"

(20) s1 = 0, si_|_1 = si + 1,/(A111-i)2 + (Ayi)2, 1: 1, . . . , N -— 1.

If the resulting sequence S of parameter values is not very uniform, then it
is better to use Eugene Lee's [1989] centripetal scheme

1/4
(21) 81 =0, A,-_,, = A, + ((aa,)2 + (Ay.i)2) , 1: 1,...,N- 1,
as is done in cscvri of the SPLINE TOOLBOX (de Boor [1990]2).
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0.2 0.22 0.24 0.25 0.26 0.3 0.32 0.34 0.36 0.38 0.4

(22) FIGURE. Part of a Curve (thick) obtained by interpolation to data
taken from a parabola (thin) and approximately uniformly
spaced (with Azri = .1) except for the pair (.3,0) and
(.301,10_6), but nevertheless uniformly parametrized.

The approximation Of 3 curve In the Construction of an approxima-
tion to a curve, one is not limited to interpolation processes. Any process
of approximation to functions can be applied to the two components of a
curve.

This brings up the question of how the approximation might depend
on the particular coordinate system in which we chose to measure the
curve. Suppose we apply the approximation scheme A that produces the
approximation f = Ag from certain information about the function g. Our
approximation to the Curve Ci, = (C,-,_,,c,,) then becomes the curve CA, =
(Aci, Acy). What if we had used the (ii, D)-coordinate system instead, with
the transformation B : (:i:,y) |—> ('u.,v) afiine, that is,

'u.== no + biiizi: + hwy
1-1 = V0 ‘l' bu:-I + biryy 1 all (I1

for some fixed point (110, '00) and some invertible matrix [ 3”‘ 2"" ]? Ideally,
11:1: uy

we would like our approximation process for curves to be invariant under
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such changes of coordinates since the choice of a particular coordinate
system is often arbitrary and a Curve exists, in some sense, independently
from the coordinate system that we happen to use to draw it.

(23) Lemma. If the approximation process is linear, then the approxima-
tion curve C,.i,_, to Ci, is invariant under an affine change of coordinates B.
Explicitly, then C',.i(B,,) = BCAC.

PROOF. We are to prove that it does not matter whether we first go
over to the new coordinate system and then approximate the two com-
ponents or first approximate the two components of a curve and then go
over to the new coordinates. ‘In the former case, we look at Ci in the new
coordinates, as the curve Cii with d = Bc, that is,

d'u.-Z '1-10 ‘l’ buses ‘l’ bnycyi
do -= U0 'l‘ b'IJ..TCJ‘..' 'l‘ bvycyi

and then get the approximation C',.i,,i. But then,

' /11(d'u)= 110 ‘l' bu:-'rA(1-is) ‘l' buy/1(@y)i
A(d.,,)= no + b,,,$A(ci) + b,,,,A(a,,),

by the linearity of A which shows that CAd = B(C',.i,,). El

Spline interpolation and discrete Least-squares approximation, as dis-
cussed in Chapters XIII and XIV, are linear approximation processes, as
are the many local Schemes discussed in Chapter XII. But taut spline inter-
polation discussed above is no.t linear since the location of the additional
knots depends nonlinearly on the given data. Taut spline interpolation
is homogeneous, that is, A(o:g) = o:(Ag) for any scalar Ct. Therefore, a
curve approximation scheme based on taut interpolation is, at least, invari-
ant under scaling, that is, under coordinate transformations of the form
(:12, y) |-—> (biizil, buy). I

Nonlinear splines Any discussion of spline curves requires at least a
mention of nonlinear "spline interpolation in which one attempts to solve
the original problem of spline interpolation exactly, by the construction of
a curve with minimum curvature that contains the given points in the given
order. Such a discussion was initiated by Even Mehlum in Mehlum [I964],
and further elucidated in Mehlum [I974], and has also been taken up by
others, e.g., Malcolm [I977], Brunnett [I992], Linner [I996].

In the present context of planar curves and in the present notation, the
mathematical facts are as follows. Let Ci,-be a planar curve parametrized
by arclength. This means that C; = (c‘,T,,,c[,) has unit Euclidean length
everywhere, that is,

l(7L(8)l == i/(¢’a)(8)2 + (¢§,)(S)2 = 1, 8 E l9 - - Ll,
WI

-in-I-111.ri-r_I||:I.-_
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with L the total length of the curire. Then its (normal) curvature at the
curve point Ci_,(s) is given by

I-a:(s) := s E [0 . . L],

that is, equal to the reciprocal of the radius of the circle that has second-
order contact with the curve at that point.

Non-linear spline interpolation seeks to determine such a curve that is
smoothest in the sense that its strain energy, that is, the integral

(24) _ [UL 11(5)” ds,

is as small as possible among all curves that pass through the given Sequence
P1, . . . , PA; of points in IR2 in that given order, Starting at P1 and ending at
Pia, and satisfy an additional condition, like taking on a prescribed tangent,
at these two endpoints. i

A first difliculty with I1OH—l1I1t=38.Ji|T'[SpllI1E! interpolation concerns the length
of the curve, that is, the choice of L. If we leave L as one of the parameters
to be determined by minimization of (24), then, as already pointed out in
Birkhoif & de Boor [I965], it is possible to make (24) as small as one pleases,
by the simple device of allowing the curve to form huge near-circular loops
between successive points. This device works because the curve given by
the rule

C(s) := o + R(cos(s/R), sin(s/RD: s E [0 . . 27TR],

has constant curvature, 1/R, (evident from the fact that it is just a circle
of radius R), and length L = 27TR, hence (24) evaluates to 27TR(1/R)2 =
2rr/R, and this goes to zero as R —> Co. One therefore looks, more precisely,
for interpolating curves that minimize (24) either for a fixed length, L, or
with L bounded by some given constant. In the latter case, one then looks,
more precisely, for ‘critical’ values for L.

Between each pair Pi, Pi_|.1, a minimizing Ci, can be shown to have to
satisfy the differential equation '

—CQ” + AC; = a,

for some constant A and some constant vector a, and this leads to an explicit
description of that segment of Ci, in terms of elliptic integrals that depend
on /\ and a and on constants of integration, and requires the determination
of all these constants from the requirement that the curve Segment connect
R with Pi_|_1 in such a way that a smooth curve results when these various
segments are concatenated.

The above-cited literature details the resulting difficulties and how they
might be overcome in various waysil for example by approximating, as does
Mehlum, the exact solution by a Sequence of properly chosen circular arcs.
With this, we are back to the topic of approximating a given curve.

!1.
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Pel’lOdlC splines If the curve Ci, to be approximated is closed, then its
component functions Ci, Cy are periodic and it makes sense to approximate- 1 A I all |' . -

them by periodic Splines. Periodic sphnes of order it on some interv [a
differ from other Such splines only in that they satisfy the periodic boundary
conditions _ _f(3)((I.+) = f<@>(t"'), j = 0,...,k - 1.
In contrast to other boundary conditions discussed earlier (in Chapter IV. . ._ 1

d XIII) eriodic boundary conditions are not separated. The typicaan , p
linear System for the construction of periodic splines therefore fails to be

' ' t' s.banded‘ the first few unknowns will also appear in the last few equa ion
Still it, is possible to modify programs such as BANFAC/SLV in XII andfli ' tl . (See
BCHFAC/SLV in XIV appropriately to Cope with this fact e cien y
also the discussion of periodic splines with uniform knot sequences below.)

' ' ' ' ' If d a basisPeriodicity can be built directly into the B-spline basis. we nee
for

§2=={f€II..%ii‘£li,2l)jf(€il') =Djf(€;+1),j=0,...,V1 -1]

for some positive integer I/1, then we would modify the construction of the
' ' h .. nd Q to beknot sequence as given in IX(50), as follows. We c oose £1 a i_|_1

It nl and obtain the remaining end knots by aknots of multiplicity — I/1 o y
periodic extension of the interior knots.,.Precisely, we would setl

r..,,1=-~~=A.=a
and would then determine the remaining end knots by

it = tn—i11+i '- (€i+i -' £1), 3-11 '5-

I this wa we obtain a basis for II,-;ii,_¢_=,,, in which the (§i_|_1 -£1)-periodicityT1 Y1
is mirrored by the (n -— I/1)-periodicity in the B-spline coefhcients:

o 1' _

f‘-_='-EC!-i'_B-i,ES i‘ Cl!1',=OI-n__i,1+-5, ?.=‘=l.,...,I/1.

In many situations, though, periodicity can be handled to sufficient ac-
curacy merely by extending the data -periodically and approximating it on. . . . h. . bvi_

n interval somewhat larger than the interval of periodicity. T is 1S oa
ously true in Case the approximation process is local. See Chapter XII for

' ' ' ' o ess isme examples But this is also true in case the approximation pr cSO .

essentially local. This imprecise term is meant to describe the situation
' ' ' h f tionwhere the effect on the approximation Ag of a change in t e unc g

on Some “small” interval [oi . . B] becomes less and less noticeable as one
' ' ' d ' tance in Chaptermoves away from the interval -[Ct . . ,8]. We discusse an ins

VI and brought out the importance of this notion in connection with knot
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placement algorithins in Chapter XII. A typical example is Cubic spline
interpolation at knots to data at uniformly spaced Sites Ti = ‘T0 + ih, all i.
If one writes the interpolant in Lagrange form,

~49 = Z:9('*'i)Ci=- ~

then the function Ci is a cubic spline with Ci (*r_i) = c‘.ii_.,.-, all j , and it tells
us explicitly how a change in the datum g(Ti) affects the approximation
Ag. It can be shown (see Birkhoff -it de Boor [1964]) that, in this case,
lc-i(-T-')l E /\_j 101‘ I C [T1-3' '1'-i.+_;,r], with A = 2 + \/5 = 3.732... (see
Problem V1.6).

Cardinal splines It often happens that the approximation problem to
be solved can be handled well by splines with equally spaced knots. Such
splines have been called cardinal Splines by Schoenberg, and many facts
about them have been gathered in Schoenberg’s [I973] beautiful mono-
graph. Because of their simple knot structure, such splines can be studied
in much more precise detail and there are many computational advantages
Connected with their use.

The advantages of Cardinal splines over others are typified by the fact
that, for cardinal splines, there is essentially only one B-spline of a given
order. All others of the same order are (dilated) translates of this one.
Explicitly, let Qii denote the B-spline of order it with knots 0, I, . . . , k, that
is, '

(25) Qi,(:.r:) == t[0, . . .,k](- - A)’;-1.
Then, for the knot sequence t = (ti; + ih)§§_,,,,,, -

<26) B==.A.i<I> = one - A)/hi. all
Among the consequences of this fact are the following:

(i) ‘Conversion fi-om B-form to ppform is much cheaper than in the general
case. If f = Z:cciQii((- — ti)/h), then

D""r<r.> = ZeD"Qt(<i. - tr)/h)/hf,
hence 1 k:- 1

h"'D"'f(t_,) = Z o<,._iD"'Qi,(i), -.- = 0, . . . ,1 - 1.
i=0

The matrix (DfQii(i))f:?_;'_i_0 is constructed once, and then applied to the
appropriate section of the B-coefficient vector or to produce the polynomial
coefficients.
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(27) Example: Conversion to ppform is cheaper when knots are
uniform Computer aided design people are using Schoenberg S variation
diminishing spline approximation XI(33), typically with Cubic splines, and
with a uniformly spaced data sequence. If the resulting function

f ='-“ Z:9(1i)B-A4

is to be evaluated extensively (as it would if it were to be graphed), then
it pays to convert to ppform. If the spacing of the data sites is ti == to + ih,
all i, then

|-1O1_:DC1

f(t.) 1/6 2/3 1/6 g(1:._A)hm.)  2 -1/2 0 1/2 9(1A-2)
h2f”(t_,) 1 -2 1 g(1,...,) '
l13f”"(13A) -1- 3 ‘"3 9055)

_ El

For this and other values of lc, the matrix (D"'Qii can be obtained
directly from BSPLVD. If = i, i = I, . . . , 2k, then

' CALL BSPLVD (T, it , TUE) , ls, SCRTCH, DBIATX, ls)

produces the array DBIATX of order (lc, ls), with

DBIATx<r+1,A-»r).-=D"Q,,(r), £=r=0,...,k—1. ,
(ii) In typical approximation problems, the coeificient matrix is (almost)

Toeplitz. If not only the knots, but also the interpolation conditions are
uniform, then the linear system for the B-coeficients of the approximation
is a Toeplitz matrix, that is, is of the form

(C'1"_j)'1'ij

for some fixed sequence It is possible to give explicit formulm for the
inverse of such a matrix, but this has no practical application. The chief
benefit in computations lies in the fact that such matrices are easy to
generate. Also, the matrices are usually only almost Toeplitz since the end
conditions usually spoil things.

(28) Example: Complete cubic spline interpolation at uniformly
5P
of the interpolant the following:

-(I1 + (13 = 2hg’(t4)
£I'i—1 + 411i + C1111-|-1 Z 6g(ti-I-2)! 21' Z 21 ' ' ' 1 T1’ W 1-1

‘_C11ri.—2 "l‘ an = 2h'g’(t'r|.+1)

aced sites ti, . . . ,t,.,_|_1 has as its linear system for the B-coefficients



Periodic splines on uniform meshes 285

assuming that t, = tg +ih, all i (see Problem IV.5). The matrix is therefore
Toeplitz except for the first and last row.

In Schoenberg’s [1973] investigations of cardinal splines over a biinfinite
knot sequence, the various matrices that occur are biinfinite Toeplitz ma-
trices. The fact that their effect can be easily analyzed with the aid of
the Fourier transform is at the basis of Schoenberg’s successful and ele-
gant analysis. It is possible to recapture the spirit of such analysis in the
practically important case of

Periodic splines on uniform meshes We take a biinfinite uniform
knot sequence t = (ti) with t, = tg + ih, all 21, and

3_ ;,_,,.- =1,

and consider all 1-periodic splines of order is with knot sequence t. We
denote their collection by

S.

If f E $,t,_-,, then f E S if and only if its B-coefiicient sequence is"n-
periodic, that is,

f = ZCI1;B»g‘k1t CEi+-n_ -'= C1511, ‘Ii.

1

This shows S to be a linear space of dimension n. El

For a given 1-periodic function g, we construct an approximation Ag
D

from S by the requirement that '

(29) Mr/49 = H19, 3-11 ii

with

(30) my = #90 + ih), all @-
For instance, if we choose /lg = g(a) for some fixed site a, then pig =
g(a-+'£h,), and our approximation process is nothing more than interpolation
at the n equispaced sites a + h, a + 2h, . . . , a + nh. Again, least-squares

D

approximation to a 1-periodic function g from S fits into this pattern since
the approximation Ag is then characterized by the fact (see, e.g., Lemma
XIV(16)) that H

/B,(x) (Ag) (rr) da: = /_B,=_(a:)g(:':.:) Cl;'L', £= 1, . . . , n,
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and this is of the form (29) with ' ‘.1

_ pg = f.B@<=1=>g<w> cu.
because of the uniform knot sequence. 1- D

The corresponding linear system for the B-coefiicients or of Ag G S has
the form

2(mBr)fl§ = my, all @-
5

But, because of (30) and since B5 (:r:) = Bq(:r: — jh), we have

MB; =P»B§(' + ih) = HB0(' + (1 — .’llh..l=1bi—j-

The linear system for the coefiicients therefore reads

Z b-;_5'C.l!_.,' -—-" pig, all ‘ll.
3'

U

We now bring the fact into play that Ag G S, that is, tr, = o:,_,_.,,, all i.
Then (31) reduces to the nth order linear system

Tl-

(32) 20,5-4:1,: = pig, i= 1, . . .,r;.,
J'=1- in

with 11',»
C-53' I-= Zb,'___7'_,--R, 1' -'=' 1,...,T't.

1"‘

In the typical situation, p. has its support in the open interval (to . . tl,)
B _' B ( _' O 11I1l€SS (T9 t;,)fi (TY ll-_g+_r¢:l 75 Q, thatEllldl-l1E!I1l?-i-'=].L-5 0-11. 0- -- .,_..

is, unless \i| < lc. If then also 2k —— 1 $ n, then each of the sums in (33) has
at most one nonzero entry. _

The coefficient matrix C := (c,,=) in (32) is a circulant, that is,

c;;;=cr_., ifi-j=r-—s(modn).

This means that the entries of the ith row of C are obtained from the. . . . . 1 t
(i —— 1)st row by Shlflilllg all EtI113I‘16ShQI1B to the right and putting the as

d back as the first entry of row 1., henceentry of row '5 — 1, force out now,
the name “cirCulant". . . t .

The theory of circulant matrices parallels that of Toeplitz ma rices
(which is not too surprising in view of (33)). Conslder the vector

V0“) := (w”)':=1, with LU := e2"i/" (recall that i :=
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Then _
. - (c'v(1"))j = 2 cjswrs = p(wr)wr3 : p(wr)(V(r))j

3

with
_ ‘Tl-

I= 2 C]_jI.IIJ— 1

:i=1

the associated polynomial for C’. This shows the basis (y(")):.‘=1 for
C" (as a vector space over the complex scalars, C) to consist entirely of
eigenvectors for C’, with corresponding eigenvalue sequence (p(o:")),'?=1. In
other words, if we go over to the basis (v("))T' for C", then every circulant
goes over to a diagonal matrix, with its diagonal entries equal to the values
of its associated polynomial at the nth roots of unity.

In particular, if C’ is invertible, that is, if p(o:") yé O for r = 1, . . . , 11., then
(see Problem 5) its inverse is also a circulant, and if q is the associated
polynomial of its inverse, then q(o:") = 1/p(ufl"), r = 1, . . . , n.

This suggests the following way of solving (32):
(i) Express the right side B := (mg)? in terms of the basis (v("))'f, that

is, convert ,6 into VHB/rt, with V := (v§T))§'_,,.=1 and VH the conjugate
transpose of V.

(ii) “Divide” by DP :== [p(o:1), . . . ,p(o:"')], that is, construct the vector
D;1 VH/5’/n.

(iii) Convert back to standard coordinates, that is, premultiply by V =
(V3/-a)"1, to get the solution
(34) *1 = VD§1VH(1-Lia)/H
of (32).

Note that step corresponds to constructing a discrete Fourier trans-
form of the vector ,6, and step (iii) corresponds to constructing its inverse.
For appropriate ‘values of n, the Fast Fourier Transform (see for example,
Van Loan [1992]) is therefore applicable in this process.

(35) Example: Periodic spline interpolation to uniformly spaced
data and harmonic analysis We choose pg = g(a.), with a. := r0+kh/2.
Our approximation process then becomes periodic spline interpolation, ei-
ther at the knots if is is even, or halfway between the knots if is is odd. For
n Z21: -— 1, we can write p(o:") in the form

Pl‘-J) = Z Bola - jh’)(L"ir)ji
JFGQZ

making use of the fact that o.r““" = 1/of‘. But since B0(tg + gh) = Q;,,(y)
(see (26)) and Qi, is even around is/2, we get the formula

p(w‘") = Z Q;,,(k/2-j) cos(2'rrr'j/'n.), 'r= 1,...,n..
lil-Tl'=/2 _
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These cosine polynomials already play a basic role ‘in Schoenberg’s
fundamental paper Schoenberg [1946].

Since pig = g(a + jh), all j, we compute explicitly in step (i) the cus-f th 1 eriodic
tomary approximation to the discrete Fourier transform or e -p
function g. For, then

Tl ‘ TI-

v”,@/R = Z901 +jh)@”"“"’“) r
J:=1 1"=1

In this connection, it is interesting to note that the first substantial appli-
ti n of s line functions was carried out by Eagle [1928] in his work onca o p

numerical harmonic analysis. He recognized, as others had before him, that
the number _

-~ 1 n - - 1r'1r" 'n.M9) == 5 Zslihle 2 "f
j=1

is a poor approximation to the Fourier coefficient
1

c,-(g) :=‘/0 g(:i:)e"””"'“d:1:

for r 2 n. For instance, E:n+,-(g) = E:,.(g) for all r, while, for a 1-periodic
' ' ' ' ' ) 0( _”) s r becomesfunction g with it continuous Cl61‘1V3.i31V6S,_c.,-(Q = r a

I l I d

l e. Ea le roposed as a remedy to approximate e,(g) by o,(Ag) mstea ,31'El S P
with Ag the periodic spline interpolant of the present example. (Eagle called. . d
these functions “lath functions” .) He found that o,(Ag) could be obtaine
from Z;,(g) in the simple form i

(36) Cr(-49) : Trérlgli

with the so-called attenuation factor 1",. given by

W r T-i-'U'J'1. “ fort-**=,£O(I11od n),-_- *u=—oo / '-'

(37) Tr ‘T ll/E0 ( ( .)) 1 for r = Qlmod nil. .

The fact that the discrete Fourier transform of the interpolating spline' " ' d e to the
is obtainable so simply from the “cheap” approximation or is u _
symmetry of the situation. We can write the interpolant in Lagrange form,

‘H-

Ag =1 2 g(Ct "l" _

i=1

But the “Lagrange” splines Cj are translates of each other, therefore

' Tl-

A9 = 29011 + 2‘h)<3'(- —- 2'11)
i=1
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for the fixed function C’ G S with C(o + jh) = 503-, all 3'. Consequently,

' 1@.</-19> = Z go + 3+») f co - 2'h)@'°”“"“‘ do
J U

' 1

= 2 Q01 + jh)e-""Z1rirjh.f _ 3-h)e—21rir(:::—jh.) dx
3 O

1
=nii,-(g)/S C'(:t)e'“”'”'“ dzr.

o

This shows that 1‘l

».-,. = n f C(:i:)e'“””'“ d:i:.
U

Forfurther information about attenuation factors (and a proof of (36))
see the detailed paper by W. Gautschi [1972]1. For another substantial
early paper on splines, also on discrete harmonic analysis, see Quade 8.:
Collatz [1938].

A final word. To be sure, I do not advocate using the discrete Fourier
transform (fast or otherwise) merely to construct an approximant such as
the periodic spline interpolant of Example (35). Aside from the restrictions
on n placed by the FFT, the bandedness of the linear system to be solved
makes it cheaper to solve the‘ linear system directly. But, for theoretical
investigations, for the derivation of asymptotic error expansions and for
practical harmonic analysis, the connection between periodic splines on
a uniform knot sequence and circulants, hence with the discrete Fourier
transform, is of prime importance.

Problems

1. Use TAUTSP to interpolate the convex data .
_0 1 2 3 4 5

0 0 .001 -Y 10. 21. 33. .
Can you make the interpolant convex through proper choice of 7'?

2. Use TAUTSP to constructan interpolant f to the cubic polynomial
g(:i:) = :r(:r“ — 1) at -3, -2, -1, O, 1, 2, 3. How badly does TAUTSP fail to
reproduce g‘? Is f G Cl“)? Pay special attention to the interval [-1 . . 1].
Show numerically that, nevertheless, ||g - f = O (T1-4) if we interpolate
g on [-3 . . 3] at 'n. + 1 equally spaced sites using TAUTSP.

3. Use spline interpolation to gi_:i:) = sinzr over [-rr . . 311'] on 21 sites
(using, for example, the not-a-knot end condition). Then check to what an
extent the interpolant on [0 . . 21r] is 21r-periodic.
4. Supply numerical evidence for‘ the fact that least-squares approxima-
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tion by splines is essentially local.

5.. Prove that the nth order matrix A is a circulant if and only if AV“) =
a,.v("), -r = 1, . . . , n, for some vector or ? (cx,.)"f and with vi’) := (u2"5);?=1,
ca := e2“'i/". Conclude that the inverse a circulant is a circulant. (Hint:
Show that VDVH is a circulant in case'D is diagonal.)

6. Prove that fQ;,(:I: + §)e"'”“ dzr = )“. (Hint: Use IX(6).)

7. Prove that I Q,.(:i: — y)Q,(y) dy =‘Q.,.+,(:i:). Conclude that the equa-
tions for least-squares approximation by splines of order is and those for
interpolation at knots by splines of order 2k have the same coefficierit
matrix in case of uniform knots.

ll
\. ‘I
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XVII
Surface Approximation by Tensor
Products

In this chapter, we take a slightly more abstract view of linear approx-
imation methods in order to show how to generalize them to functions of
several variables by the tensor product construction.

Applicability of tensor product methods is limited, but when their use
can be justified, then these methods should be used since they are extremely
eflicient compared to other surface approximation techniques.

An abstract linear interpolation scheme Most of the linear approx-
imation schemes discussed in the preceding chapters (such as interpolation,
least-squares approximation, even collocation to a linear differential equa-
tion) fit into the following abstract framework. For the given function g,

‘H- O!weattempt to construct an approximation Pg in the form Zj=1 j fj, with
fl, . . . , f,, certain fixed functions, on the same domain X on which g is de-
fined. We construct the specific approximation by interpolation with respect
to linear functionals, that is, by_ the requirement that
(1) /\£Pg=/\,g, i= 1,...,n,

for certain fixed linear functionals A1, . . .,)l,,, the interpolation func-
tionals.

For instance, we might choose f, = Bight, i = 1, . . . ,n (to stick to the
spirit of this particular book) and choose Aig = g(Ti), i = 1, . . . , n for some
T1 < < Tn. This is ordinary interpolation. Or, we might take }\,g =
[T1, . . . ,r,]g, i = 1, . . . ,n, allowing for osculatory interpolation. Again, we
might use )l,;g = fJ“+‘ g(:i:) d:i:, as in the area matching approximation
scheme in Chapter VIII. The reader should be able to supply many more
examples (see Problems 2—4).

The approximation problem does not depend on the individual functions
f1,. . . , fr, nor on the individual interpolation functionals A1, . . . , An, but
only on the linear span

‘H-

F == spars)? == {Zea =-<1 e 111"}
:i=1

291
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of the fj’s and the linear span

A := span(Ai)T := {Za,A¢ : or G lR”}
i=1

of the interpolation functionals. This is quite clear for the fj-‘s since we
require the approximation quite explicitly to be of the form Z ct; f_,—, that
is, to be in F, a statement that makes no reference to the individual fj’s
any more. But, also

A.;g= Aih, i= 1,...,n if and only if

ZctiA¢g = Zn,-.,Aih for all or G IR”.

We can therefore phrase our linear interpolation problem or LIP as
follows: to find, for given g, an f G F so that '

Af=Ag forall AGA.

We say that the LIP given by F and A is correct if it has exactly one
solution for every g G U. Here, U is so_me nebulous linear space of functions,
all defined on the same domain X , and U contains F. Linearity, to recall,
requires that the sum of any two functions in U and any scalar multiple of
a function in U be also in U. In the preceding chapters, we have dealt with
the linear space U = G(X) of functions continuous on the set X = [a . . b].
We have also considered the linear space U = C("‘l(X) of all functions
on X = [a . . b] with it continuous derivatives on the interval [a . . b]. In a
moment, we will deal with the linear space

C(”"“)(X x Y)

of all functions f of two variables on some rectangle X >< Y = [a. .b] >< [c.
that have all partial derivatives 3*+jf/5:1:'i'5y5 with i, j jg it continuous.

Here is the basic lemma concerning correctness and numerical solution
of the LIP.

Lemma(2). Let (jg)? be a basis for F and let (Ag)? be a basis for A.
The-I1:

(i) The LIP given by F and A is correct if and only if the Gramian
matrix

(3) A 3: ()\-ifjli1=1§?=1

is invertible. In particular, n = m is a necessary (but not a suificient)
condition for the correctness of the LIP.
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(ii) If the LIP given by F and A is correct, then the interpolant Pg G F
can be constructed as

(4) Pg = Zcrjfj, with or = A"1(A,g).
.i=1

PROOF. Since (,\,)'f' is a basis for A, we have that f = Z5, ajfj is a
solution of the LIP for g if and only if

‘i
2:=1i'--in’:

J

that is, if and only if AC1: = (A1g)"f. Invertibility of the Gramian matrix
A therefore guarantees exactly one solution vector (I, hence exactly one
solution f G F, and also provides the formula (4).

Assume, for the converse, that A is not invertible. If in Z n, this means
the existence of a nonzero vector or so that Ao: = O. But then, since (
is a basis, it follows that the function f := Z5, crj fj in F is different from
the zero function, yet interpolates to the zero function, that is, the LIP
with g = O has more than one solution. If in 5 n, ‘then there exists a
nonzero vector or so that (IT/l = OT. But then, (A-5)? being a basis for A,
A :== Z, <1.-1..-\, vanishes at every fa,-, hence we have Af = 0 for every f G F.
On the other hand, A being nonzero, there must be some function g G U for
which Ag 75 O. The LIP for this function g then fails to have any solutions
since Ag =,é O = Af for all_choices f G F. El

Note that all the action takes place in the interplay between F and A,
that is, the correctness of the ‘LIP depends only on F and A and does not
depend on the particular function space U in which F lies and to whose
elements g we wish to interpolate. Once we have established the LIP to be
correct, then we only need to have a way of evaluating the interpolation
functionals A1, . . . , An on a function g in order to interpolate it from F.

Tensor product of two linear spaces of functions The tensor prod-
uct of two (or more) algebraic structures is a well understood construct in
abstract algebra. But since we only need a few notions concerning the ten-
sor product of two linear spaces of functions, we give now a short discussion
of this special case in order to spar-ii the reader an excursion into an abstract
algebra text.

Let U be a linear space of functions, all defined on some set X into the
reals, and let V be, similarly, a linear space of functions defined on some
set Y into IR. For each it G U and ‘U G V, the rule

w(:i':,y) := 'u.(:r:)'u('y), (:1:,y) G X >< Y,



294 XVII. Surface Approximation by Tensor Products

defines a function on X >< Y called the tensor product of ‘it with ‘U and
denoted by 1

‘Lt ®

Further, the set of all finite linear combinations of functions on X >< Y of the
form it ® '0 for some ‘U. e U and some v G V is called the tensor product
of U with V and is denoted by U ® V. Thus,

n -

U®V :={Zoa(u.,;®v1):o:-i,GlR.,u¢GU,'u-1GV, i=1,...,n; some n},
1 1

and U ® V is a linear space (of functions on X >< Y).
A simple and important example is furnished by polynomials in two

variables: Taking U = H4-h, the linear space of polynomials of order h, as
functions on X = lR, and similarly V 7: 11:1,, as functions on Y = IR, we
easily recognize U ® V as the linear space l'I<a,i= of all polynomials in two
variables of degree < h in the first variable and of degree < it in the second
variable, considered as functions on the plane X >< Y = IR”. A second simple
example arises with the choice U = lR.””', the linear space of real in-vectors
considered as functions on X := {1,2, . . . ,m}, and, similarly, V = IR”
considered as the linear space of functions on Y := {1, 2, . . . ,n }. In this
case, U ®V is the linear space of all in x n matrices, considered as functions
onX >< Y={(i,j) :i== 1,....,'m.;j=1,...,n}.

One verifies that the tensor productis bilinear, that is, the map
\-

U><V—iU®V:('u.,'v)+——>'u.®'o

is linear in each argument:

(aiui + C-¥2'U»2) ® ‘v = 0¢1('H»i ® v) + EI2('b‘-2 ® '11),
_ 'li®(i51'U1 +1521’-'2) =l61(u'®U1)'l'l62(u'®V2)'i

In particular,

U®V= {E'i'.t1®U-1; :'u.,- G__U,'v., GV,all
1'. -

which saves a little writing.
Let now A and p. be linear functionals on U and V, respectively. One

defines A ® p. by the rule 1

(5) (A a ]J.)(Z o, e ts) == Z(>m.,)(,io,), all Z o, ® t-,.
‘Ii i 1

Clearly, if A ® it is a map on U ® V satisfying (5), then A ® )1. is a linear
functional on U ®V. But, (5) requires some discussion before we can accept
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it as defining a map on U ® V. For, (5) makes use of the particular form
of Z, 'u.,; ® oi, that is, of the particular ufs and *uy’s, to define A-® p. on the
function Egan ® oi. On the other hand, an element w G U ® V may be
written in many different ways. If, for example, m = u®v, and it = n1 +'a2,
while ‘U = 31:1, then we can write m as

'u.®v or 11.1 ®*u+'u.2 ®o or even as (311.1) ®o1 -l-U2 ®o.

Correspondingly, the rule (5) would give

(>W»)(/Iv) O1‘ (>W1)(/Iv) + (/‘~'v»2)(/Iv) O1‘ (3A1¢1)(#v1)+(>W»2)(/-W)

(among others) for “the” value of (A ® p.)w. -
The doubts just raised can be dispelled as follows. If m is any function

on X x Y, and y is a particular point in Y, then

wy(:i:) := m(:i:,y), all :1": G X,

defines a function my on X , the jg-section of m. If, in particular,

'w'= E it-1 ®'LJ-11, for some (u1,v¢)’s in U x V,
t

then, by the definition of ii,-_ ® ‘U1-1, we can compute 'wy(:i:) as my(:i:) =
2, 'l.£.1;(I.l'I)'?)-1',{:l_,/); that is,

' my = Z’Uy(:!_,/)’1t-,.;.
_ i

This shows that my G U, hence allows us to compute the number Amy, and
to compute it as

(5) qt Awe = Evil!/)()\1*¢)=
-Z‘! .

using the linearity of A, Let now mg, be the A-section of m, that is, the
function on Y defined by

m;,(y) := Amy, all jg G Y.

The notation is correct, mi, depends only on m and A and not on the
particular 'u.£’s and 'u1’s used to represent m since my depends only on m.
On the other hand, ‘Lug, can be computed by (6) as

mi = ()\'1t-1j)'U-1; whenever m = E it-1 ® ‘U-5.
i t
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This shows that my is an element of V, hence allows us to compute the
number aw1,, and to compute it as "

Hwx = I-"(Z:()“-ii)'v-i) = Z:()l-'u*i)(/-"'l»'-£)-

This shows that the number Z:,(Au1)(;io.1) depends only on A, 1i and the
function w = Ei to ® or and not on the particular constituents (it-1), (oi)
of its representation. .

We conclude that, for every linear functional A on U and every linear
functional ii on V, (5) defines a linear functional on U ® V, and this linear
functional satisfies

(7) (A ® p.)'_w = Amy = p.w;.,_, for all m G U ® V.

Here, my is the ].L-SE!Cl§IlOI1 of m, that is, my(:r) is the result of applying p. to
m(:i:, jg) as a function of y for each fixed at G X .

In particular, with (A1) a sequence of linear functionals dual to a given
basis (it-1) for U (meaning that the Gramian, (Ayuj) is the identity matrix)
and also (ith) dual to a given basis (111,) for V, it follows that the Gramian
((A1 ® ;i1,)(ny- ® o1,)) is the identity matrix and, in particular, (11.1 jg’ 111,) is
a basis for U ® V.

To give a simple example, let U =- V = Cf“) (IR), and let

A = 6?-.. e = 5t” .
for some a and b, and some integers r, s 3 it. By this we mean that '

Au = o<"> (a), o e U, and to = *u(“)(b), all o e v.
Then U ® V is contained in C'("°"'°)(IR.2), the space of bivariate functions
with all derivatives of order §_ (ls, ls) continuous. Further, on U ® V, A ® ii
agrees with the linear functional

1» == a§f;;"> = m 1-1 (3"+“m/(3:I:“3y“))(a, t)
since, for every ii, 'u G C'(“)

yrs e 1») = <@*+*/(o='@r>>~<1=>»(s>: 1;; = s<*>(@>'»<*'><b> = (>w)(1w)-
With [1 changed to

pro := J *u(;i/) dy, all '0 G C'(“),
t

A ® ii agrees with the linear functional 1/ given by the rule

i/m =j (Ur/3:r")m(a,y) dy, all w E C(lc,l<:).
t
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(8) Example: Evaluation of a tensor product spline. We take U =
$1,,_.,, V = $1,“, and wish to evaluate the tensor product spline w G U ® V
at the point (a, b). Since m = 211,3‘ (J!1;_-j.B-£3; for some coefficient matrix ((1.,-y-)
and for

Bij (1131 U) 3= Bi,h.s($)Bj,k,t(3l)i

we can accomplish this by factoring out appropriately. Explicitly,
'\

wlfli 5) = ‘1-o5i.i=.t(b))Bt,t,s(@) =-"c Amp

or
wlfli ll’) = aij-Bi,h,s(a))-Bj,k,t(b)= I1/WA,

J '1

with A ;= [a], 1,. ;= [t]. '
The following program fragment carries out this evaluation with the aid

of the function subprogram BVALUE, using the second formula because of
the way arrays are stored in Fortran. We assume the B-coefficients oi; to
be inian array ALPHA, and use the same notation as in the one-—va.riable
case except that the letter X or Y.is added to indicate the variables. Thus,
the knot sequence on the :i:—variahle is TX(1), . . ., TX (NX+KX), that for the
y—variable is TY(1), . . ., TY(NY+KY).

CALL IHTEHV ( TY, NY, B, LEFTY, HFLAG )
‘ vntus = 0. “

IF ( MFLAG .ue. 0) so TU 11
no 10 J=1,KY

10 BCDEF(J) = BVALUE ( TX, ALPHA(1,LEFTY—KY+J), xx, KY, A, 0)
VALUE = BVALUE (TY(LEFTY—KY+1), scosr, KY, KY, B, 0)

11 ... -
E]

The tensor product of two linear interpolation schemes We are
new ready to consider the product of two univariate interpolation schemes.
The basic facts are contained in the following theorem.

(9) Theorem. Suppose that the Gramian matrix A := (A1 _f_.,-) for the
sequence f1, . . . , _f,.,, in U and the sequence A1, . . . , Am of linear functionals
on U is invertible, so that the LIP given by

F := span(_f.;)‘i”' and A := span(A¢)T“

is correct. Similarly, assume that B := (fl--1:93‘) is invertible, with g1, . . . , gr,
in V and 11.1, . . . , an linear functionals on V, and set

G == spw(g.->1‘ and M == $P@-H(#t)i‘-
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Finally, assume that (vij) is a matrix (or double sequence) of linear
functionals on some linear space W containing U ® V so that

I/y'_-;(1.t ® U) = (A-11.1.) (].L_-'51)) fO1‘ all and all (’Lt,’U) E U X

Then: 1,!
(1') (f,-_ ® gj) is a basis for F ® G, hence

dimF ® G = (dimF) (dimG) = mn;

(ii) the LIP on W given by F ® G and span(iey=) is correct;
(iii) for given w G W, the interpolant Rm can be computed as

(10) Rm = Ere, 1') 1', e Q,-
1,:

with

(11) I‘ := I‘,_,_, := A_1L.,_,,(BT)"1

and
(12) L.,,,(i,j) := i/iy,;m";,' all i,j.

Remark. Here and below, we write D(i, 3') rather than Dy, or d,y= for
the (i, j)th entry of the matrix D. __ El

Paoor or THE THEOREM. If m e F ® G, then

(13) w = Z1"e.i)n o 9,-,=
-is .

for some matrix I‘. But then

Lie. 5) = (Ar e now = Z re. 1) (xii) (its,-)
i,;i

= ZF(i,i)A(ni)B(5.i)
1'.,_-i

_ (AFBT) (r,s), all <r,s.

This shows that ‘t Ly, = AFBT.
Since both A and B are invertible by assumption, and since Ly, does not
depend on the particular representation (13) .for m but only on m, this
implies the uniqueness of the expansion (13) for w, therefore showing

It follows further that, for a given matrix L and a given m G F ® G, we
have L-,,_, = L if and only if the coefficient matrix I‘ for m with respect to
the basis (fr ® g,-) of F ® G satisfies

r = A"1L(BT)'1,
proving (ii) and "

I

El
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The calculation of a tensor product interpolant We come now to
the heart of the matter, the computational savings in the construction of
the interpolant Rm to be had by using (11) instead of solving the linear
system

(I-f'.sgj)F(ii = Lw(Ti 5): all T151
iii

directly for the coefficient matrix I‘. Equations (14) constitute a linear sys-
tem of mn equations for the mn unknowns. Its straightforward solution by
Gauss elimination therefore would require C9 ((mn)3) operations (see, for
example, Forsythe S-t Moler [1967] for the facts concerning the numerical
solution of a linear system). Equation (11) offers us the alternative of form-
ing the product of an 77?. x in, an m >< n, and an n >< n matrix, for a total
of 0 (mfn + mnf) operations.

Of course, we also have to produce the matrices A-1 and B“1. The
straightforward thing would be to construct these matrices explicitly, but
that would be wasteful and less accurate compared to the following pro-
cedure. We can obtain the jth column of the matrix product A"1L by
applying A"1 to the jth column L_,- of L, that is, by computing xm :=
A—1Lj- But such an operation corresponds to solving the linear system

AX(“) I Lj

for x(jl, which is precisely the operation we have to carry out when
constructing the interpolant Z, 11:2“ ) _f._.; to the data (A,g)‘f‘ = Ly. In the
preceding chapters, we have followed established procedure and solved
such a linear system All = b by constructing a triangular factorization
A£Au = A for A and then computing the solution x in two stages, by
forward substitution, getting y := Azlb, followed by back substitution,
getting x = A,'f-1y = A,f1(AE1b) = A'_1b. The computational cost for this
is C? (m3) operations for the factorization, and 0 (mfn) for- applying the
substitution process to the n right sides L1, . . . , Ln. This gives a total cost
of '

U (ma + mfn + ?'7't'l"t2 + n“)

for computing the coefficients I‘ via (11), compared to 0 ((mn)3) for the
direct attack.

The savings are even more significant if (as is typical for the interpolation
schemes in this book) A and B are band matrices, a fact difficult to exploit
in a direct attack on (14) whatever the actual ordering of I‘ into a vector
might be.

Schematically, the construction of I‘ in a program would proceed as
follows. Assume that

INTERA(A, b, m, Q, x)
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carries out the first univariate interpolation process (with INTERB con-
structed similarly for the second), using the data vector b of length in
and returning the coefficient vector x, together with the factorization for
A in Q. Assume further that

BSDLVE. ( Q, b, m, x, )

produces from the factorization for A in Q and from the right side b the so-
lution vector x = A"1b. The following program sketch then would produce
I‘ from Ly.

CALL INTERA ( A, L,,_,(-,1), m, Q,I‘(-,1) )
DU 10‘ j --= 2,n

10 CALL BSULVE ( Q, L.y(-,1‘), m, 1"(-,1‘) )
CALL INTERB ( B, I‘(1,-),nQ, I‘(1,-) )
DD 20 i = 2,'m.

20 CALL BSDLVE ( Q, I‘(i,-), n, I‘(i,-) )

Here, I‘(-, j) denotes the jth column of I‘ taken as a vector, and, similarly,
1"(i, denotes the ith row of I‘ taken as a vector. But, while the Fortran
specification GAMI-lA(1, J ), at a place in an argument list where a vector is
expected, does indeed refer to the jth column of the matrix GAMMA as a
vector, the specification GAI-ll-1A(I , 1) does not perform the same service for
the ith row of GAMMA. One can, of course, adjust to this by introducing an
additional argument ISTEP to deal with a vector whose entries are stored
ISTEP apart in memory. But, rather than play such games, which would
have further ramifications in subroutines called by INTERA, we propose here
the following alternative procedure:

ll/Iodiiy the interpolation routine INTERA slightly so that it works on all
the n right sides L-y_,(-,1), ..., L.,y(-,n) in the same call, but stores the
resulting n columns of A'“1L,,_, in the n rows of some work array WORK to
be output.

This would change our model-routine into something like
INTERA ( A, Ly, mm, Q, woax ).

The whole process of constructing I‘ could then be accomplished by just
two calls,

_ CALL INTERA ( A, Ly, m, n, Q, woax)
CALL INTERB ( B, woax, N, m, Q, 1" ).

In particular, INTERA and INTERB could be the same routine if interpolation
in :1: and in 1; involves the same interpolation scheme. Also, note that I‘ could
be stored over Ly, in practice. For a proof, see de Boor [1979].
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( 15) Example: Tensor product spline interpolation We consider
the following specific situation in Theorem We have

F = $h__., with s -= (s,)'i"'+h, and A, = [0,], i= 1, . . . ,m

with or; < < om. By the Schoenberg-Whitney Theorem XIII(2), this
problem is correct if and only if s, < 0, < s,+;,, all i, a condition we assume
now. Also, we take

X =[s1..s,,,_+;,], and U =C(X),

the linear space of continuous functions on the interval X.
Similarly, we take l

G = $,|¢'t ll = (t£)?+k, &I1d pi = [T5], = 1, . . . ,7'L,

with r strictly increasing and ti < '1", -Q t,_|_;,,, all i. Also,

Y = [t1..t,,+;,,], and V = C'(Y).

Then, U 12>-lb V is contained in Vl=F=. := C(X >< Y), the linear space of contin-
uous functions on the rectangle X >< Y, and A, ® pi coincides (on U ® V)
with the linear functional

I/53' I ‘LU I--+ 'LU(0'5, Ti)

of evaluation at the point (o,,'r,=) G X >< Y.
The theorem therefore gives us, for given w G C'(X >< Y), exactly one

spline function Rw G F ® G that agrees with w at the points (o,,Tj),
i = 1,...,m; j = 1,...,n of the given rectangular mesh. Further, this
interpolant can be written in the form

R11; = Z I‘u(’ll,j)B-|‘_‘h,,5 ® Bjlkrt,

with
F = (B.-th.s(¢'i))”1(w(<%'G)) (Br,1=.1=('c))_1-

Here, each of the three matrices on the right has row index i and column
index j. Once P is computed, the interpolant could be evaluated as in
Example

To carry out the calculation of 1", we follow the above discussion and
produce an expanded version of SPLINT of Chapter XIII. We call it SPLI2D.
It differs from SPLINT only in that it accepts and works on several data
vectors at the same time and, consequently, puts out several sets of B-
coefficients. We have marked the essential changes with stars in columns
73-76. Additional editorial changes (principally changes in comments and
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use of a work array instead of the temporary use of BCOEF) are marked by
dashes in columns 73-76, to keep the record straight.

€3CHDC1ChfiCUCMO(UCPOIUCMQCUFJCHD€UCPO(§CiOW3CPOC1CM?(§CP9ifififibfifififlfiflfifigififihfifififflfi

SUBROUTINE SPLI2D ( TAU, GTAU, T, N, K, H, WORK, Q, BCOEF, IFLAG )
CALLS BSPLVB, BANFAC/SLV
C THIS IS AN EXTENDED VERSION OF SPLINT , FOR THE USE IN TENSOR PROD-

UCT INTERPOLATION.

SPLI2D PRDDUCES THE B-SPLINE CDEFF.S' BCUEF(J,.) or THE SPLINE or
onnsn K wrrn KNOTS T (1), 1-1,..., N + K , wares TAKES on THE
vALuE cTAu (1,1) AT TAU (1), 1=1,..., N , J=1,..., M .

###** Pl 52 ‘U 1G T mamas:
TAU.....ARRAY OF LENGTH N , CONTAINING DATA POINT ABSCISSAE.

A S S U H P T I O N . . . TAU IS STRICTLY INCREASING
GTAU(.,J)..CORRESPONDING ARRAY OF LENGTH N CONTAINING DATA POINT

ISFFZPQ

HORK

O...

ORDINATES, J=1,...,H
KNOT SEQUENCE, OF LENGTH N+K
NUMBER OF DATA POINTS AND DIMENSION OF SPLINE SPACE S(K,T)
ORDER OF SPLINE
NUMBER OF DATA SETS

FHE FrflEv? CURF7
town: A R E A amass:

OF'LENGTH N

aammm U U T P U T momma:
ARRAY or sIzE (2*K—1)#H , CONTAINING THE TRIANGULAR FACTORIZ—
ATION or THE COEFFICIENT MATRIX DP THE LINEAR srsrsn FOR THE B-
COEFFICIENTS or THE SPLINE IurEEPoLAHT. _

THE B—COEFFS FOR THE IHTERPOLANT or AN ADDITIONAL DATA sET
(TAu(1),HTAu(I)). I=1,...,N HITH THE SAME DATA AsscIssAE CAN
BE OBTAINED WITHOUT corms THROUGH ALL THE CALCULATIONS IN THIS
ROUTINE, SIMPLY BY LOADING HTAU INTO scosr AND THEN EXECUT-
ING THE cALL BANSLV ( Q,_2*K=1, N, K-1, K-1, scosr >

BCOEF.....THE B—COEFFICIENTS OF THE INTERPOLANT, OF LENGTH N
IFLAG.....AN INTEGER INDICATING SUCCESS (= 1) OR FAILURE (= 2)

THE LINEAR SYSTEM TO BE SOLVED IS (THEORETICALLY) INVERTIBLE IF
AND ONLY IF

T(I) .LT. TAU(I) .LT. TAU(1+K). ALL I.
VIOLATION OF THIS connrrrou IS CERTAIN To LEAD To IFLAG = 2 .

momma M E T H U D commas
THE I-TH EQUATION OF THE LINEAR SYSTEM A*BCOEF = B FOR THE B—CO-

EFFS OF THE INTERPOLANT ENFORCES INTERPOLATION AT TAU(I), I=1,...,N.
HENCE, B(I) I GTAU(I), ALL I, AND A IS A BAND MATRIX WITH 2K—1

BANDS (IF IT IS INVERTIBLE).
THE HATRIX A IS GENERATED ROW BY RON AND STORED, DIAGONAL BY DI-

AGONAL, IN THE R O H S OF THE ARRAY Q , HITH THE MAIN DIAGONAL GO— *
ING INTO sow K . SEE connssrs IN THE PROGRAM sELow.

THE BANDED srsrsn IS THEN sotvsn sr A cALL TO BANFAC (wares cos-
srsucrs THE TRIANGULAR FACTORIZATION FOR A AND sroass IT AGAIN IN

Q ). FoLLouEn BY A cALL To BANSLV (wares THEN OBTAINS THE SOLUTIONBCOEF BY suasrrrurros). .
BANFAC noes so PIVOTING, srscs THE ToTAL POSITIVITY cs THE MATRIX

A MAKES THIS UNNECESSARY. .

*#*#

iii-III

*##*

#**#

####

INTEGER IFLAG,K,H,N, I,ILP1HX,J,JJ,KM1,KPKM2,LEFT,LENQ,NP1 ****
REAL BCOEF(H,N),GTAU(N,H),Q(2*K-1,N),T(N+K),TAU(N),HORK(N), TAUI****
NP1 1J N +

K -KM1 = 1
KPKH2 == 2-v-K141

. LEFT = K
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C ZERO OUT ALL ENTRIES OF Q
LENQ = N*(K+KH1)
no 5 I=1,LENq

s o(I> = o.
Q .
c ### LooF oYER I To CONSTRUCT THE N INTERFoLATIoN EQUATIONS

no so I=1,N
TAUI = TAU(I)
ILFIHA = HINO(I+K,NP1) _

c ### FIND LEFT IN THE CLOSED INTERVAL [I..I+K-1] SUCH THAT
c T(LEFT> .LE. TAU(I) .LT. T(LEFT+1)
c MATRIX Is sINoULAR IF THIs Is Nor FossIsLE

LEFT = HAxo(LEFT,I)
IF (TAUI .LT. T(LEFT)) co To ass

15 IF (TAUI .LT. T(LEFT+1)>- co To 16
LEFT = LEFT + 1
IF (LEFT .LT. ILPIMX) co TO 15

LEFT = LEFT - 1
IF (TAUI .GT. T(LEFT+1>) co To ass
### THE I-TH EouATIoN ENFoRcEs INTERPOLATION AT TAUI, HENcE
A(I,J) = B(J,K,T)(TAUI), ALL J. oNLY THE K ENTRIEE WITH J =
LEFT—K+1,...,LEFT ACTUALLY MIGHT BE NoNzERo. THEsE K NUHEERs

fififififi FOLLOWING

303

ARE RETURNED, IN WORK (USED FOR TEHP.STORAGE HERE), BY THE -—--

16 CALL BSPLVB ( T, K, 1, TAUI, LEFT, WORK ) -—--

OOOOQOOOOQQ

A(I,LEFT—K+J). I.E., INTO Q(I—(LEFT+J)+2#K,(LEFT+J)-K) SINCE
A(I+J,J> Is To co INTO Q(I+K,J), ALL I,J, IF WE coNsInER o
As A TWO—DIM. ARRAY , WITH 2*K-1 Rows (SEE coHHENTs IN
BANFAC). IN THE PRESENT PROGRAM, WE TREAT Q As AN EQUIVALENT
oNE-nIHENsIoNAL ARRAY (BECAUSE oF FoRTRAN REsTRIcTIoNs oN
ENTRY

I -(LEFT+J) + 2*K + ((LEFT+J) — K—1)*(2*K—1)
= I-LEFT+1 + (LEFT —K)*(2*K—1) + (2*K-2)*J

or Q .
JJ = I—LEFT+1 + (LEFT-K)*(K+KH1)
no so :=1,K

JJ = JJ+KPKH2-
so Q(JJ) = woRK(J>

c
C ###OBTAIN FAcToRIzATIoN oF A , sToREn AcAIN IN o.

cALL BANFAC ( Q, K+KM1, N, KM1, KM1, IFLAG )
- " co To (40,999). IFLAc

c wee SOLVE A*BCOEF = cTAu BY BACKSUBSTITUTION
40 no so J=1,M

no 41 I=1,N
41 WORK(I) = oTAU(I.J)

CALL sAHsLv ( Q, K+KH1, N, KM1, KM1, WORK )
no so I=1,N

so BCOEF(J,I) = WORK(I) RETURN
ess IFLAG = 2
ess PRINT ess
ess FoRNAT(41H LINEAR sYsTEH IN sPLINT Nor INYERTIELE)RETURN

END

We make use of SPLI2D in the following simple example of interpolation
to a tensor product spline by tensor product splines of order (3,4).

WE THEREFORE WANT WORK(J) = B(LEFT —K+J)(TAUI) TO GO INTO -—--

DIMENSION STATEMENTS) . WE THEREFORE WANT WORK(J) TO GO INTO -"—-

IkIiI'Ifi—lI1I

####

####

##**

####
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cHAFTER xvrr, ENAHPLE 2. BIVARIATE sPLINE INTERPoLATIoN
cALLs SPLI2D(BSPLVB,BANFAC/SLV),INTERV,BVALUE(BSPLVB*,INTERV*)

GOOD

C
C
C

C
C

C

C
C
C

C
C

INTEGER I,IFLAG,J,JJ,KX,KY,LEFTY,MFLAG,NX,NY
PARAHETER (NH-7,KN=s,NY=s,NY=4)
REAL EcoEF(NI,NY),TAU1(Nx),TADY(NY),Tx(Nx+Kx),TY(NY+HY)

A ,WORK1(NX,HY),WDRK2(NX),WORK3(NX*HY)
INTEGER I,IFLAG,J,JJ,KP1,KX,KY,LEFTY,HFLAG,NX,NY
DATA Nx,Kx,NY,KY /?,s,o,4/
REAL EcoEF(?,s),TAUx(?),TAUY(e),Tx(1o),TY(1o)

t ,WORK1(?,6),WORK2(7),WDRK3(42)
G(X,Y) = AHAX1(X-3.5,0.)**2 + AMAX1(Y—3.,O.)**3

### sET UP DATA POINTS AND KNUTE
IN x, INTERPoLATE BETWEEN KNOTS RY PARAEoLIc sPLINEs, USING
NoT—A-HNoT END coNDITIoN
Do 1o I=1,Nx

1o TAUx(I) = FLoAT(I)
Do 11 I=1,Kx

Tx(I) = TAUx(1)
11 Tx(Nx+I) - TAux(Nx)

KP1 = KX+1 .
no 12 I=NP1,Nx

12 Tx(I) =_(TAUx(I—Kx+1) + TAux(I—Kx+2))/2.
IN Y, INTERPDLATE AT KNOTS BY CUBIC sPLINEs, UsINc NOT—A—KNOT
END coNDITIoN-
Do 2o I=1,NY -

2o TAUY(I) = FLoAT(I)
DO 21 I=1,KY _

TY(I) = TAUY(1)
21 TY(NY+I) = TAUY(NY)

KP1 = KY+1
no 22 I=HP1,NY

22 TY(I) = TAUY(I—KY+2)
### cENERATE AND PRINT our FUNcTIoN YALUEs

-PRINT s2o,(TAUY(I),I=1,NY)
o2o FORHAT(’ GIYEN DATA’//6F12.1)

Do 32 I=1,Nx
Do 31 J=1,NY

31 BCOEF(I,J) = o(TAUx(I),TAUY(J))
32 PRINT sa2,TAUx(I),(EcoEF(I,J),J=1,NY)

s32 FoRHAT(F5.1,eE12.s)
### CONSTRUCT B—COEFFICIENTS OF INTERPOLANT

cALL sPLI2D(TAUx,scoEF,Tx,N
cALL SPLI2D(TAUY,WORK1,TY,N '-¢P'€ F15‘? --¢H

NY,WORK2,WORK3,WORK1,IFLAG)
,NK,WORK2,WORK3,BCOEF,IFLAG)

### EYALUATE INTERPoLATIoN ERRoR AT MESH PoINTs AND PRINT our
- PRINT s40,(TAUY(J),J=1,NY) A _ -

s4o FORHAT(//’ INTERPoLATIoN ERROR’//6F12.1)
Do 4s J=1.NY -

cALL INTERv(TY.NY+1,TADY(J),LEFTY,HFLAo)
Do 4s I=1,Nx

no 41 JJ=1,KY
41 NoRK2(JJ)=EvALUE(Tx,EcoEF(1,LEFrY-NY+JJ),Nx,xx,TAUY(I),o)
45 WORK1(I,J) = G(TAUX(I),TAUY(J)) —

A BVALUE(TY(LEFTY—KY+1),WORK2,KY,KY,TAUY(J),0)
no 4s I=1,Nx

4s PRINT ss2,TAUx(I).(NoRR1(I,J),J=1,NY)sToP
END -
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INTERPOLATION ERROR

“~lC1(.fi|-I5-IAJRJI-I

The output shows the error to be acceptably
floating-point arithmetic) except in the last row and the last column. I-Iere,
we are led into trouble once'again_ by our use of a right continuous BVALUE
where we should be using a left it continuous one when evaluating at the
right most knot. Else, we should take the last it knots greater than the last
Interpolation site, or we could first convert to ppform as is done later in

1 ClExample (16).

DDDDDDD DC-‘ICTCIDDD

1.0 2.0 3.0 4.0 5.0 6.0
O OOOOOO+OO O.

OOOO0+OO-O.
OOOOO+OO
OOOOO+OO
OOOOO+0O
OOOOO+OO O.
OOOOO+OO

OOOOO+OO—O.11S42—14-O.11921-O6
44409-15—O.473?O-14 0.00000+OO
44409—15—O.11842-14-O.11Q21—O6
29802-OT 0.00000+OO 0.00000+OO
OOOOO+OO 0.00000+OO 0.00000+OO
9536T—O6 0.47684-O6 O.14305-O5
19OT3—O5 O.95367—O6 0.00000+OO

, I.

1

OOOOO+OO
OOOOO+OO
OOOOO+OO
95367-O6
19073-O5
19073-O5
OOOOO+OO

OOOOO+OO
OOOOO+0O
OOOOO+OO
OOOOO+OO
OOOOO+OO
OOOOO+OO
OOOOO+OO

small (for 27 binary digit

The ppform of a tensor product spline is, not unexpectedly,
the tensor product of the ppform for univariate splines. Specifically, as-
sume that the subprogram BSPLPP produces the break sequence (Q-,;)€+1
for f G $;,,,_,_. It then also produces the numbers c.,,-(f) := _f("1) (§_;"),

= 1,...,h, as the polynomial coefficients of f on the jth interval
Q, .. Q,-+1), j = 1, . . . ,6. Correspondingly, if the subprogram BSLPP pro-

duces _the break sequence (§,)f+1 for g G $1“, then it also provides the
numbers c'i,,(g) := g("i"‘1) ({;,'JTl"), i = 1, . . . , k, j = 1, . . . ,6.

The tensor product of this information, for ‘LU G $A,A ® $1.74,, consists of
the integers E, h, and E, it, giving the number of pieces and the order

for each variable; _
(ii) the two sequences (§,)€"'1 and (§,¢)€+1 of breaks in each variable, thus

providing a rectangular grid;
(iii) the four-dimensional array

..._ '—1Dj~'1.w Q-+ =1H.h p=1H.£Ii __ f L__lD1 1 +_1 1 1 I 1 1 r A .
c1pIJIq\w) I ‘y (P S-q) jiljiiliik; qiliii-hie

This is, indeed, a tensor product, since c,_p;j,q(f ® g) = c-;_,,(f)E,;,,,(g) for
every f ® 9 € $A,e ® $k,t-

The evaluation of a tensor product spline from its ppform The
typical operations one might perform on a tensor product w are linear
and, since they usually lead to one more or more numbers, they then must
consist of evaluating one or more linear functionals on the tensor product w.
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If such a linear functional 1/ can be written as a tensor product, 1/ = A ® 11,
then We can evaluate I/(11)) by forming the tensor product of the codes for
the evaluation of A and 11.. More explicitly, in order to evaluate the linear
functional A on some function f, we must have available a representation
for f, say f = E ou,=_f,-,, and we must have a way of calculating Af, for all 1.
We then compute Af by Z:cr,;()\f,=_). Similarly, we calculate pg in the form
Efl_,(p.g_,). If now w E F ® G (with F :=-= span(f,) and G :== span(g,-)),
then it has a representation w = EC!-jJ'f-5 ® g,-. Therefore, if _v = A ® 11 on
F ® G, then we have 1

Aw = Z e.~._-,-(>~A) (#95) =4 ZQ: 0-'-ij>\f4)#Qj-
1-,] J ‘I-

In efl"ect, for each j, we apply our scheme for evaluating Af from the coeffi-
cients (ai) for f to the specific coefficient sequence cr1_,-, crgj, . . ., that is, to
the jth column of the coefiicient matrix (crij) for w, thus producing a num-
ber 465;. Then, we apply our scheme for producing pg from the coefiicients
(Q,-) for g to this particular coefificient sequence.

This procedure was illustrated in Example We now give the
evaluation from the ppform as _a second illustration.

We know that
A PPVALU ( BREAK, COELF, L, K, (1, j )

returns the number (D-I f) (rt) if the ppform for f is in BREAK, COEF, L,
K. Therefore, we can calculate the nuniiber D,.___"_ID;'w(o, b) ‘from the ppform
BREAKX, BREAKY, COEF, LX, KX , LY, KY for w as follows (assuming that

P:.7-I = ci,p;j,q(w)1 irpr .7-1 '
ll

cALL INTERv ( BREAKY, LY,o,LEFTY, MFLAG )
no 10 J=1,KY

10 CUEFY(J) = PPVALU(BREAKX,CDEF(1,1,J,LEFTY),LX,KXxnr)
VALUE = PPVALU(BREAKY(LEFTY),COEFY,1,KYJxs)

Note the similarity with the program sketch in Example It is clear that
it would be more efficient to work out -an expanded version of PPVALU to
combine the various calls to PPVALU in the DO loop into one. It is also clear
that the big calculation in the DO loop need not be repeated if we only
change b, as long as b remains in the same break interval, that is, as long
as LEFTY remains unchanged.

This brings up the point that evaluation of a tensor product at many
points is done most efiiciently whenthe sites lie in lines parallel to the
coordinate axes, and, because of Fortran, preferably on lines parallel to the
y—axis. To pursue this point a bit further, in such a circumstance, it does
not pay t0 produce the storage consuming ppform. Rather, one gets the
univariate B-form along that line, converts it to ppform via BSPLPP and
then uses PPVALU.
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COFIVCIFSIOFI from B-form 120 ppform is another example of eval-
uating tensor product linear functionals on a tensor product since it
involves the calculation of the numbers D5111) ((,',l' , E: ) from the B-form
for w. We generate the corresponding univariate information (Di f) (§,[,l'),
i= O,...,h— 1; p= 1,...,£, in one fell swoop, through a

CALL BSPLPP ( T, BCOEF, N, K, WORK, BREAK, COEF, L ),
much as we generate all the B-coefiicients of the interpolant from the data
vector by one call to SPLINT. We therefore take here the tack of enlarging
BSPLPP appropriately, to a routine

BSPPZD ( T, BCOEF, N, K, NJ, SCRTCH, BREAK, COEF, L ) 1'
which returns in COEF('£, . , . ) the pp—coefIicients for the function whose B-
coefficients are in BCOEF(. ,1), T = 1, . . . , ll/I. In this, we follow entirely the
suggestion made earlier concerning the formation of the tensor product of
two interpolation schemes. _

-With such a routine BSPPZD handy, the conversion from the B-form
in TX, TY, BCOEF, NX, NY, KX, KY to the ppform BREAKX, BREAKY,
COEF, LX, LY, KX, KY is accomplished by just two calls to this routine,
namely by

' (HHJ.BSPP2D (TX,BCOEF,NX,KX,NY,WORK1,BREAKX,WORK2,LX)
CMll.BSPP2D (TY,WORK2,NY,KY,NX*KX,WORK1,BREAKY,COEF,LY)

Here is such a routine BSPP2D. We have again addeclstars and dashed
in columns 73-76 of those statements modified in the original BSPLPP to
accommodate a whole matrix of B-spline coefficients as input rather than
just one vector. i

SUBROUTINE BsPP2D ('T, BCOEF, N, K, H, scRTcH, BREAK, coEF) ****
cALLs BsPLvB
c THIs Is AN ENTENDED vERsIoN OF BsPLPP FOR USE WITH TENSOR PRODUCTS -—--
C
CONVERTS THE B—REPRESENTATION T, BCOEF(.,J), N, K OF SOME SPLINE INTO -—--
C ITS PP-REPRESENTATION BREAK, COEF(J,.,.), L, K , J=1, ..., M . —*—*
C
Coocroo I N F U T **####
c T.....KNOT SEQUENCE, OF LENGTH N+K '

BCOEF(.,J) B—SPLINE COEFFICIENT SEQUENCE, OF LENGTH N ,J=1,...,M "—--
.LENCTH OF BCOEF AND DIMENSION OF SPLINE SPACE SPLINE(K,T)

K.....ORDER OF THE SPLINE

OOQGGGOOOOOGO

2'

W A R N I N G . . . THE RESTRICTION K .LE. KMAX (= 20) IS IMPO-
SED BY THE ARBITRARY DIMENSION STATEMENT FOR BIATK BELOW, BUT
IS N O W H E R E C H E C K E D FOR.

M NUMBER OF DATA SETS ****

#*o## W U R K A R E A mucosa
SCRTCH OF SIZE (K,K,M), NEEDED TO CONTAIN BCOEFFS OF A PIECE OF ****

THE SPLINE AND ITS K-1 DERIVATIYES FOR EACH OF THE M SETS ——~—
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C
Commons U U T P U T commas

BREAK.....BREAKPOINT SEQUENCE, OF LENGTH L+1, CONTAINS (IN INCREAS-
ING ORDER) THE DISTINCT POINTS IN THE SEQUENCE T(K),...,T(N+1)

COEF(MM,.,.) ARRAY OF SIZE (K,N), WITH COEF(MM,I,J) = (I—1)ST DERP ****
IVATIVE OF MM-TH SPLINE AT BREAK(J) FROM THE RIGHT, MM=1,.,M ###*

OOOOOOOCEOOOOO

cacao M E T H U D cocoon
FOR EACH BREAKPOINT INTERVAL, THE K. RELEVANT B"COEFFS OF THE

SPLINE ARE FOUND AND THEN DIFFERENCED REPEATEDLY TO GET THE B—COEFFS
OF ALL THE DERIVATIVES OF THE SPLINE ON THAT INTERVAL. THE SPLINE AND
ITS FIRST K-1 DERIVATIVES ARE THEN EVALUATED AT THE LEFT END POINT
OF THAT INTERVAL, USING BSPLVB REPEATEDLY TO OBTAIN THE VALUES OF
ALL B—SPLINES OF THE APPROPRIATE ORDER AT THAT POINT.

INTEGER K,H,H, I,J,JP1,KHAK,KMJ,LEFT,LSOFAR,HH ###*
PARAMETER (KHAK = 20)
REAL BCOEF(N,H),BREAK(N+2-K),COEF(M,K,N+1—K),T(N+K) #**a

# ,SCRTCH(K,K,H),BIATX(KHAX),DIFF,FKMJ,SUH
LSOFAR = O
BREAK(1) = T(K)
DO 5O LEFT=K,N

C FIND THE NEXT NONTRIVIAL KNOT INTERVAL.
IF (T(LEFT+1) .EQ. T(LEFT)) GO TO SO
LSOFAR = LSOFAR + 1
BREAK(LSOFAR+1) = T(LEFT+1)
IF (K .GT. 1) GO TO 9

' DO 5 HH=1,M ####
5 COEF(HH,1,LSOFAR) = BCOEF(LEFT,HH) *#*#

GO TO SO
C STORE THE K B-SPLINE COEFF.S RELEVANT TO CURRENT KHOT INTERVAL
c IN scRTcH(.,1) .

' 9 DO 1O I=1,K
DO 1O HH=1,H *##*

1O SCRTCH(I,1,HH) = BCOEF(LEFT—K+I,MH) ####

OOOO

FOR J=1, ..,K—1, COMPUTE THE K—J B—sPLINE cDEFF.s RELEVANT TO
CURRENT KNOT INTERVAL FOR THE J-TH DERIVATIVE BY DIFFERENcINc
THOSE FOR THE (J-1)ST DERIVATIVE, AND STORE IN SCRTCH(.,J+1) .
DO 2D JP1=2,K

- J = JP1 - 1 .
KHJ = K — J
FKMJ = FLDAT(HHJ) '
DO 2o I-1,HHJ

DIFF = (T(LEFT+I) - T(LEFT+I - KHJ))/FNHJ -—--
IF (DIFF .LE. D.) co TO 2o -—--

-DO 15 HH=1,M ****
1s scRTcH(I,JP1,HH) = “ _. - - ' ###:

A (scRTcH(I+1,J,HH) — SCRTCH(I,J,HH))/DIFF ###:
2D CONTINUE

fififififififi

FDR J = D, ..., H-1, FIND THE VALUES AT T(LEFT) OF THE J+1
B-sPLINEs DF ORDER J+1 WHOSE SUPPORT CONTAINS THE CURRENT
KNOT INTERVAL FRDH THOSE DF ORDER J (IN BIATX ), THEN cDHB—
INE NITH THE B—sPLINE COEFF.S (IN scRTcH(.,H—J) ) FOUND EARLIER
TO COMPUTE THE (H—J—1)sT DERIVATIVE AT T(LEFT) DF THE GIVEN
SPLINE.
CALL BSPLVB ( T, 1, 1, T(LEFT), LEFT, BIRTH )
DO 25 HH=1,M ****

25 coEF(HH,H,LsDFAR) = scRTcH(1,H,HH) ****



Example: Conversion to product ppform

C
DU 3U JP1=2,K

CALL BSPLVB ( T, JP1, 2, T(LEFT), LEFT, BIATX )
KHJ = K+1 — JP1
DD 30 HM=1.H

SUM = U.
DD 28 I=1,JP1

28 SUM = BIATX(I)*SCRTCH(I,KMJ,MH) + SUM
3U CDEF(HH,KMJ,LSDFAR) = SUM
50 CONTINUE

RETURN
END
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(16) Example: Tensor product spline interpolation (continued)
We add to our program for tensor product spline interpolation in Example
(15) a few additional lines to convert the B-form of the interpolant to its
ppform before evaluation. This requires

(1) additional storage, that is,

REAL BREAKK(LX+1),BREAKY(LY+1),CUEF(KX,LI,KY,LY)
* ,WDRK4(KX,KX,NY),WDRK5(NY,KK,LK),WDRK6(KY,KY,NX#KX)

with LX = 5 , LY = 3 for the parameter setting given in Example (15
(ii) insertion of the two calls

CALL BsPP2n(Tx,sc0sF,nx,Kx,Ni,w0nK4,BnsAKx,voaK5)
CALL BSPP2D(TY,HURK5,NY,KY,L%#KI,WDRK6,BREAKY,CUEF)

after the calls to SPLI2D, in order to convert to ppform;
(iii) replacement of the evaluation statements involving BVALUE

DU 45 J=1,NY
CALL INTERV(TY,NY+1,TAUY(J),LEFTY,MFLAG)
DD 45 I=1,NK

DD 41 JJ=1,KY '
41 NDRK2(JJ)=BVALUE(TX,BCDEF(1,LEFTY—KY+JJ),NX,KX,TAUX(I),0)
45 HDRK1(I,J) = G(TAUX(I),TAUY(J)) "

* BVALUE(TY(LEFTY—KY+1),HDRK2,KY,KY,TAUY(J),D)

by the corresponding statements using PPVALU:

D0 45 J=1,NY
CALL INTERV(BREAKY,LY,TAUY(J),LEFTY,MFLAG)
no 45 I=1,Nr

no 41 JJ=1,KY
41 HDRK2(JJ)=PPVALU(BREAKI,CUEF(1,1,JJ,LEFTY),LI,K1,TAUX(I),0)
45 wnaK1(I,J) = G(TAUX(I),TAUY(J)) -

- 4 PPVALU{BREAKY(LEFTY).HURK2,1,KY.TAUY(J),0)

);
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We do not list again the entire program here, but do list the matrix of
interpolation errors produced by it. This time, the error is suitably small
everywhere.

INTERPOLATION ERROR

1.0 2.0 3.0 4.0 5.0 6.0

wcnonocnxaw D€DCHDC)O€D OiDCJU4DC)O

00U00+00 0.71054-14
00000+U0 0.0U000+00
00000+00-0.71054-14
00000+00 0.14901-U7
0UO0U+00 0.23B42—06
00U00+00 U.476B4—06
00000+00 0.19073—05

00000+U0 0.00000+00
17764-14 0.59605-07
28866-14-0.23B42—06
UO0U0+00-0.11921-06
00000+00 0.23B42—06
UOU00+00 0.476B4—06
00000+00-U.95367—06

95367-06
95367-06
00000+00
00000*00
47684-05
19073-05
38147-05

38147-05
57220-05
00000+00
57220-05
22888-04
38147-05
15259-04

El

1“; _

Limitations of tensor product approximation and alternatives
Approximation by tensor products is limited to situations where it makes
sense (or, at least does no harm) to have preferred directions in the app1‘0}<1—-
imant. By this we mean that, for example, a function f from $14,, ®$;,,t is a
pp function of order h along lines parallel to the :1:-axis, and a pp function
of order ls along lines parallel to the y-—axis, while, along any other lines, it
is a pp function of order I1. + ls: — 1.

Again, if the function g to be approximated has a difficult feature, a peak
say, running along a line parallel to the :.r—axis, then,. by proper refinement
of the mesh in the y-—variable, we can adjust to it efiiciently. But should this
feature run along a diagonal line, then, in order to approximate well to it,
we must have a fine mesh everywhere :1: and y. This means that we end
up having a fine grid even in regions where the function to be approximated
is quite smooth. This is, at the very least, a waste in degrees of freedom
and therefore in storage and computing time.

Another severelimitation of tensor product methods is the requirement
that the information about the function g to be approximated be in tensor
product form, that is, in the form ()\.;®.;1_,)g, i = 1, . . . ,m, j = 1, . . . ,n, for
some univariate linear functionals (Xi) and (pi). Thus, there is no advantage
to be gained from using tensor products directly over other function classes
when this requirement is not satisfied. E.g., interpolation to data given at
some points in the plane cannot be handled directly by tensor product
methods unless these sites happen to form the set of mesh points of a
rectangular grid. Still, the computational advantage of using tensor product
methods is so large that it pays to bring a problem into this form. for
example, by local methods, if this is possible.

Alternatives to tensor product methods use the finite elements, that
is, approximating functions that are piecewise polynomials over triangu-
lar subdivisions, or quadrilateral subdivisions. There is no hope of giving
an adequate description of these techniques in a few pages. We refer the
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interested reader to the survey articles by L.L. Schumaker [I976], and
R.E.Barnhill [1977], and to two specific, useful examples, in the paper by
C. Lawson [1977] and the paper by M.J.D. Powell [1974].

Problems

1. Assume that the LIP on U given by F and A is correct. Show that
the resulting map P given on U by the rule

)\Pg=)\g, all AG A, and PgG F -

for g G U is a linear projector onto F, i.e., a linear idempotent map with
range ran P = F.
Show that, conversely, for any linear projector P on U with ranP = F ,
there exists a linear subspace A of linear fu11ctionals on U so that Pg is the
solution, for given g G U, of the LIP given by F and A. (Hint: If (f,)"f is
a basis for F, then every f G F can be written uniquely as f = E,-_ o:,f,.
Prove that then pi : f 1—> oi is a linear functional on F and consider
A-,1 I:

2'. Let Ir, denote interpolation at 1' = (T,)? by elements of $;¢',t, with
t = (t,)‘f'+i° strictly increasing, and ti <1: 1", <1 t,.|.),,, all i. Also, let O <1 j -< ls.
Prove that the map f(-ii) :—> (I;,f)(-ii) is a linear projector with range $;,,__,=,t
and give a description of the interpolation conditions for the corresponding
interpolation scheme (on U = C(IR), say). (Hint: Look at the proof of
Theorem XIII(34).)

3. Identify least-squares approximation as a linear interpolation scheme.

4. Take the difierential equation X)/(1)—(2) to be linear,

(Dmg) (:13) = T5j1p,(:..") (Dig) (:.r:) for :.r: G [a . . b]
i=0

,6-,-'__Q'=C-,;, 'Il=1,...,7T1. '

Then identify the collocation approximation f in $m+;,,t to the solution g
as an interpolant to f, and describe the interpolation conditions.

5. Write an expanded version
PPVAZD ( BREAKX, BREAKY, COEF, LX, LY, KX, KY, X, Y, JDX, JDY)
of PPVALU.

6. Construct an expanded version of L2APPR. This makes it necessary to
make the data arguments (rather than having them come into LQAPPR via
BLOCK COMMON), but then should allow the construction of a least-squares
bivariate spline approximant to data on a rectangular grid by just two calls
to this expanded routine. (Consider an expanded BCHSLV for this purpose.)
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7. Produce an expanded version of SMOOTH for the smoothing of data on
a rectangular grid.

8. Demonstrate that a spline interpolant in 1' variables can be constructed
to data on a hyperrectangular grid by just -r" calls to.the routine SPLI2D
given in the text and try it for 1' = 3. (See de Boor [1979] if you have
difficulties.)
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Postscript on Things Not Covered

This is a brief discussion of some items that a book about splines might
well have been expected to cover but that this one did not.

At least a third of the existing spline literature is concerned with the fact
that splines are solutions to interesting variational problems, yet, with the
exception of Theorem XIII(34) and a stab at optimal interpolation,.this
variational aspect of splines is not mentioned in this book. This reflects ‘my
judgement that most of this material is not practical (as yet). The same
holds for the related topic of best approximation of linear functionals, espe-
cially optimal quadrature, which, starting with Sard’s work as summarized
in Sard [1963], and the work of Golomb 31: Weinberger [1959], has produced
much elegant and, at times, hard mathematics. Again, the many gener-
alized splines that arise naturally if one pursues the variational aspect of
splines have found no place in this book. An exception should have been
made for piecewise exponentials and, perhaps, piecewise rationals. We refer
the reader to Spath [1974] and to Schaback [1976], and also to Lyche 3.5
Vllinther [1979] for a recurrence relation for trigonometric B-splines.

The decision to leave out the above mentioned material was made easy
by the fact that L.L. Schumaker is in the process of completing a thorough
monograph on splines in which the variational approach to. splines is fully
documented.

It seems somewhat harder to defend the omission of best approxima-
tion in norms other than those derived from an inner product. There is,
for example, a fully developed theory of best approximation by splines with
fixed and with free knots in the uniform norm := max{[f(a:)[ : a 3' tr: _~'§
b} on some interval [a . . b]; see Rice [1967], Schumaker [1958], Schumaker
[I969], and most recent developments concerning the calculation of best
uniform spline approximants can be found in Cromme [1976]. But, aside
from the fact that I have no practical experience with the construction of
best spline approximants (in norms other than L2), I have 11013 CllSC1lSSB(l
such matters in this book because l5 am convinced that, for most practical
purposes, spline approximants obtained by interpolation (in the general
sense described in Chapter XVII) are sufficient. In short, the additional
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accuracy gained in a best spline approximation over an available good one
is usually not worth the considerable effort required to construct it.

I have no defense but weariness for the failure to provide a fully detailed
discussion of nonlinear splines (see pp. 280f) that arise when one takes
the problem of modeling the draftman’s spline seriously. (Cubic spline in-
terpolation has gotten a lot of .publicity out of the claim that it models
the configuration of a thin elastic beam-constrained to go through certain
points in the plane.'In fact, it does model such a spline only for small
slopes.)

I also regret not having included a discussion of constrained approxima-
tion. This is an area filled with mathematical and computational difficulties.
Not only is it hard to give a mathematical description of what people con-
sider “nice” in a fit, but those properties easily recognized as "nice" such
as monotonicity or convexity are not all that easy to control.

The book covers only univariate spline approximation, although the
easy generalization to multivariate problems by tensor products is given
a chapter. This is to me the most painful omission since multivariate
approximation is, at present, an exiti]ng area of research, and practical
results, particularly from the finite element method _and from Computer
Aided Design, are already available. On the other hand, it is hard to find a
multivariate definition of “spline” that fully corresponds to the univariate
one adopted in this book. Tensor products of univariate splines, box splines,
and thin-plate or, more generally, Dr"-splines are three very successful, but
very different, multivariate spline concepts.

The book contains only one instance of the use of splines in the
solution of functional equations, namely the solution of an ODE by col-
location. It should be emphasized that splines have, by their presence,
contributed greatly to the resurrection of various variational methods for
the solution of ordinary and partial difierential equations, such as the
(RB-yleigh—Ritz—)Galerk.in method, the, least-squares method and other
residual reduction methods; see, for exalmple, Varga [1971].

I.

I



Fortran programs

Fortran programs All the Fortran programs in this book (see the list
below) are presently (1998) available via netlib as the package pppack
which also contains the example programs that are not explicitly listed here.
To get started, send email to netlib@research.be1l—1abs . com, with the
body of the letter just the two words send index. These Fortran programs
also served as the starting point for the SPLINE TOOLBOX (de Boor [1 990]g),
a supplement to MathWorks’ MATLAB, and version 3 of that toolbox contains
two GUIs that make experimentation with the basic spline approximation
algorithms very easy.

I do not claim, though, that these Fortran programs are production soft-
ware. In bringing them to their present stage, I have taken care to test them,
to provide them with comments (much more extensively than I had planned
originally) and to make them reasonably efficient. I have not made them
foolproof, though. Also, while their present versions do make use of various
FORTRAN 77 features, no advantage is taken of FORTRAN 90 features.

I have tried to keep the argument lists short and consistent. They follow
the pattern

input, work area(s), output

and, within each of these groups, arrays precede the integers (if any) spec-
ifying their dimensions. In addition, certain variables retain their meaning
from program to program. for example, K is_ always the order of some pp
function while L is always the number of polynomial pieces that make up
a particular pp function.

l_lSt Of FOFEFBH programs Here is a list of Fortran programs
connected with this book. The list is organized as follows:
name of program, page reference, list of programs calling it, followed by
the name of a corresponding command, if any, in the SPLINE TOOLBOX (de
Boor [.l.990]g), followed by a brief statement of the purpose of the program.
(Names in parentheses refer to programs not listed in this book.)
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316 Appendix: Fortran Programs

BANFAC/SLV,I77,SPLINT, SPLIZD, SPLUPT, XVIEX3
solution of a banded linear system without row interchanges

BCHFAC/SLV,226/7,L2APPR,
solution of a banded system with positive definite matrix

BSPLPP,1I8,CULLUC, LZMAIN, XEX3, XIIEX4, XIIIEX1, XIIIEX2,
XIVEX1, XVIEX3; fn2fm(f,’pp’)
conversion from B-form to ppform

BSPLVB,111,BSPLPP, BSPLVD, BSPPZD, LZAPPR, SPLINT, SPLIZD,
SPLOPT, xsxi, XEX2;spcol
generates value of all B-splines at a site common to their support

BSPLVD,252,PUTIT, (XVIEX4);spcol _
generates values and derivatives of all B-splines at a site common to
their support

BSPP2D,307,(XVIIEX3);fn2fm(f,’pp’)
extended version of BSPLPP for multivariate work

(BVALLC),128,
left continuous version of BVALUE

BVALUE,I2I,XEX4, XIIIEX3,(XVIIEX1), XVIIEX2, (XVIIEX3);fnval
generates value of spline or of one of its derivatives from B-form

(CHBINT),28, -
constructs the Chebyshev form of the polynomial interpolating at the
Chebyshev sites

(CHBVAL), 16,
evaluates a polynomial at a site from its Chebyshev form

CHOL1D,213,SMOOTH '
subroutine used in SMOOTH

coLLcc,254,xvExAMPLE
main routine for the solution of an ODE by collocation

COLPNT,257,COLLOC “
provides the collocation site pattern for COLLOC

CUBSPL, 46, (VIIIEX1) , XIIEX2 , (XIIEX3), (Problem XII.9); spline,
csapi,csape -
constructs cubic spline interpolant to given data and for various end
conditions

Cl-JIDTH, 326, (Problem XIII.8), (Problem XV.8)
solves an almost block diagonal linear system with constant block
width L l

DIFEQU,258,COLLOC, PUTIT
specifies difierential equation and side conditions for COLLOC

EQBLUK,248,CULLUC
sets up collocation equations for COLLOC

INTERV,74,BVALUE, PPVALU, xsxi, XVIIEX2;sorted
locates a site within an increasing sequence of sites

(INTRVL),77,
version of INTERV suitable for left-continuous pp functions

KNOTS,256,COLLOC
generates the knot sequence for the approximant in COLLOC

L2APPR,224,L2MAIN;spap2
constructs least-squares approximation to given data
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L2ERR, 231, L2MAIN
error evaluator for L2MAIN

L2KNTS,230,L2MAIN I
generates knot sequence for approximant in L2MAIN

L2MAIN,228,(XIVEX2), xrvsxs). (XIVEX4), (XIVEX5)
main program for least-squares spline approximation

NEWNOT,159,COLLOC. LZMAIN, xrrsxz, XIIIEX2;newknt
knot placement algorithm

(PCVALU),77,
evaluates pp function or! one of its derivatives from piecewise
Chebyshev form

PPVALU, 72, DIFEQU, LZERR, LZMAIN, XEX3, XIIIEX1, XIVEX1,
XVIEX3, (XVIIEX3);fnval
evaluates a pp function or one of its derivatives from its ppform

(PPVLLC),77, .
left-continuous version of PPVALU

PUTIT,250,EQBLOK
sets up one block of equations for EQBLOK

(PVALUE),77,
evaluates a polynomial or or.-jp of its derivatives from its shifted power
form if .

ROUND,184,XIIIEX1
adds noise to the data in that example

SETDAT,233,235,237,L2MAIN
provides the specific data for L2MAIN

SETUPQ,213,SMOOTH
sets up a certain matrix Q

SLVBLK,319,COLLOC;slvblk
solves an almost block diagonal linear system

SMOOTH,211,XIVEX1;csaps,spaps
calculates the cubic smoothing spline

SPLI2D,302,XVIIEX2;spapi
extended version of SPLINT suitable for multivariate work

SPLINT,176,XIIIEX1, XIIIEX2, xrrrsxs, XVIEX3;spapi
constructs a spline interpolant of arbitrary order

SPLOPT,194,XIIIEX3;optknt .
generates the knots for optimal spline interpolation

TAUTSP,271,(XVIEX2)
constructs a taut cubic spline interpolant to given data

TITAND,197,XIIIEX3, (xrvEx4), (XIVEX5);titanium
provides the Titanium Heat data used in various examples

IIEXAMPLE,18,
Runge example

IVEXAMPLE,41, .
Runge example with cubic Hermite interpolation

(VIIIEX1),79,
the smoothing of a histogram by parabolic splines

IXEXAMPLE,104,
The B-form of a cubic

'4

|'-‘i
1
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XEX1,113,bspline
to plot B-splines

XEX2,115p -
plotting the polynomials that make up a B-spline

XEX3, 121,
plotting a B-spline via its ppform

XEX4,127, - l
plotting a B-spline via BVALUE

XIIEX2,161,
a failure for NEWNOT

(XIIEX3),165,
a failure for CUBSPL

XIIEX4,168, - '
qua.si—interpolant with good knots

XIIIEX1,183,
a large norm amplifies noise in interpolant

xIIrEx2,1s5, '
cubic spline interpolation at knot averages

XIIIEX3,197, '
optimal spline interpolation to Titanium Heat data

xrvsx1,215, ii
cubic smoothing spline

XVEXAMPLE,260,difeqdem
solution of a second order ODE with a boundary layer

(XVIEX2),275,
taut cubic spline interpolation to Titanium Heat data

XVIEX3, 277,
two parametrizations of some data

XVIIEX2,304,
bivariate spline interpolation

(XVIIEX3), 309, ,_
bivariate spline interpolation continued.1,

Listing of SULVEBLUK package ‘Listed below is an extensively com-
mented version of the SOLVEBLOK package which appeared in C. de Boor 35
R. Weiss, “SOLVEBLOK: a package for solving almost block diagonal lin-
ear systems, with applications to spline approximation and the numerical
solution of ordinary difierential equations”, ACM Trans. Math. Software 6,
(1980), 80-87.

This package is needed in Chapter XV.
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SLVBLK

SUBROUTINE SLVBLK ( BLOKS, INTEGS, NBLOKS, B, IPIVOT, X, IFLAG )
THIS PROGRAM SOLVES THE LINEAR SYSTEM A*X = B WHERE A IS AN

ALMOST BLOCK DIAGONAL MATRIX. SUCH ALMOST BLOCK DIAGONAL MATRICES
ARISE NATURALLY IN PIECEHISE POLYNOMIAL INTERPOLATION OR APPROX-
IMATION AND IN FINITE ELEMENT METHODS FOR TWO-POINT BOUNDARY VALUE
PROBLEMS. THE PLU FACTORIZATION METHOD IS IMPLEMENTED HERE TO TAKE
ADVANTAGE OF THE SPECIAL STRUCTURE OF SUCH SYSTEMS FOR SAVINGS IN
COMPUTING TIME AND STORAGE REQUIREMENTS.

PARAMETERS
A 0NE—DIMENSIONAL ARRAY, or LENGTH

SUM( INTEGS(1,I)*INTEGs(2,I) ; I = 1,NBLOKS )
ON INPUT, GoNTAINs THE BLOCKS or THE ALMOST BLOCK DIAGONAL
MATRIX A . THE ARRAY INTEGs (sEE BELOH AND THE ENANPLEJ
DESCRIBES THE BLOCK STRUCTURE.
ON OUTPUT, CONTAINS CORRESPONDINGLY THE PLU FACTORIZATION
or A (IF IFLAG .NE. 0). CERTAIN or THE ENTRIEs INTo BLOKS
ARE ARBITRARY (WHERE THE BLOCKS ovERLAP).
INTEGER ARRAY DESCRIPTION or THE BLOCK STRUCTURE or A .

INTEGs(1,I) = N0. or Revs or BLOCK I - NRoH
INTEGs(2,I) = N0. or COLUMNS or srocx I = NCOL
INTEGS(3,I) = NO. or ELIM. STEPS IN BLOCK I = LAsT

I = 1,2,...,NsLcxs
THE LINEAR SYSTEM Is or ORDER

N = sun ( INTEGS(3,I) =
BUT THE TOTAL NUMBER or Revs IN

Nsaovs - suH( INTEGS(1,I) =
NUMBER or BLOCKS
RIGHT SIDE or THE LINEAR SYSTEM, ARRAY or LENGTH NBRoHs.
cERTAIN or THE ENTRIES ARE ARBITRARY, CORRESPONDING T0
Rows or THE BLOCKS NHIGH ovERLAP (SEE BLOCK sTRuGTuRE AND
THE ENANPLE EELov).
ON OUTPUT, INTEGER ARRAY CONTAINING THE PIVOTING.SEQUENCE
USED. LENGTH Is NRRovs

x ON ourpur, CONTAINS THE COMPUTED SOLUTION (IF IFLAG .NE. 0)
LENGTH Is N.
ON OUTPUT, INTEGER

= (—1)*#(N0. or INTERGHANGEs DURING FACTORIZATION)
IF A Is INVERTIBLE

= 0 IF A -IS sINGULAR

BLOKS

INTEGS

NBLOKS ),
OCKS IS

NBLOKS)Hbiki
H.-

A-mlIFE
NBLOKS
B

IPIVOT

IFLAG

_ AUNILIARY PROGRAMS _
FCBLOK (BLoxs,INTEGs,NBLoKs,IPIvoT,scRTcH,IFLAG) FACTORS THE MATRIX

A , AND Is USED FOR THIS PURPOSE IN SLVBLK. ITS ARGUMENTS
ARE AS IN SLVBLK, EXCEPT FOR

SCRTCH = A NDRK ARRAY or LENGTH HAx(INTEGs(1,I)).
SBBLOK (BLOKS,INTEGS,NBLOKS,IPIVOT,B,X) SOLVES THE SYSTEM Aux = B

ONCE A IS FACTORED. THIS IS DONE AUTOMATICALLY BY SLVBLK
FOR ONE RIGHT SIDE B, BUT SUBSEQUENT SOLUTIONS MAY BE
OBTAINED FOR ADDITIONAL B*VECTORS. THE ARGUMENTS ARE ALL
AS IN SLVBLK.

DTBLOK (BLOKS,INTEGS,NBLOKS,IPIVOT,IFLAG,DETSGN,DETLOG) COMPUTES THE
DETERMINANT OF A ONCE SLVBLK OR FCBLOK HAS DONE THE FACT-
ORIZATION.THE FIRST FIVE ARGUMENTS ARE AS IN SLVBLK.

DETSGN = SIGN OF THE DETERMINANT
DETLOG = NATURAL LOG OF THE DETERMINANT

319
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------ BLOCK STRUCTURE OF A ——---—-
THE NBLOKS BLOCKS ARE STORED CONSECUTIVELY IN THE ARRAY BLOKS .
THE FIRST BLOCK HAS ITS (1,1)*ENTRY AT BLOKS(1), AND, IF THE I—TH
BLOCK HAS ITS (1,1)-ENTRY AT BLOKS(INDEX(I)), THEN

INDEX(I+1) = INDEI(I) + NROW(I)*NCOL(I) .
THE BLOCKS ARE PIECED TOGETHER TO GIVE THE INTERESTING PART OF A

AS FOLLOWS. FOR I = 1,2,...,NBLOKS—1, THE (1,1)-ENTRY OF THE NEXT
BLOCK (THE (I+1)ST BLOCK ) CORRESPONDS TO THE (LAST+1,LAST+1)-ENTRY
OF THE CURRENT I-TH BLOCK. RECALL LAST = INTEGS(3,I) AND NOTE THAT
THIS MEANS THAT

A. EVERY BLOCK STARTS ON THE DIAGONAL OF A .
B. THE BLOCKS OVERLAP (USUALLY). THE ROWS OF THE (I+1)ST BLOCK

WHICH ARE OVERLAPPED BY THE I-TH BLOCK MAY DE ARBITRARILY DE-
FINED INITIALLY. THEY ARE OVERHRITTEN DURING ELIMINATION.

THE RIGHT SIDE FOR THE EQUATIONS IN THE I-TH BLOCK ARE STORED COR-
RESPONDINGLY AS THE LAST ENTRIES OF A PIECE OF B OF LENGTH NROW
(= INTEGS(1,I)) AND FOLLOWING IMMEDIATELY IN B THE CORRESPONDING
PIECE FOR THE RIGHT SIDE OF THE PRECEDING BLOCK, WITH THE RIGHT SIDE
FOR THE FIRST BLOCK STARTING AT B(1) . IN THIS, THE RIGHT SIDE FOR
AN EQUATION NEED ONLY BE SPECIFIED ONCE ON INPUT, IN THE FIRST BLOCK
IN WHICH THE EQUATION APPEARS.

------ EXAMPLE AND TEsT DRIvER ----—-
THE TEsT DRIVER FDR THIs PACKAGE CONTAINS AN EXAMPLE, A LINEAR

SYSTEM or ORDER 11, WHOSE NONZERO ENTRIEs ARE INDICATED IN THE FOL-
LoHING scHEHA BY THEIR RDN AND COLUMN INDEx MODULO 10. NEXT TO IT
ARE THE coNTENTs or THE INTEGs ARRRAY HHEN THE MATRIX Is TAKEN T0
BE ALMOST BLOCK DIAGONAL WITH NBLOKS = 5, AND BELOW IT ARE THE FIVE
BLOCKS.

NROW1 = 3, NCOL1 = 4
11 12 13 14
21 22 23 24 NRDH2 = 3, NCOL2 = 3
31 32 33 34

LAST1 = 2 3 43 44 45
53 54 55 NRDN3 = 3, NGDL3 = 4

LAST2 = 3 es 5? as ea NROW4 = 3, NCOL4 = 4rs 77 rs 79 NROWS = 4, NCOL5 = 4
as
as so
05 co 01
19 10 11

86 87 88
LAST3 = 1 97 98

LAST4 = 1 08
18

LAST5 = 4

ACTUAL INPUT TO BLOKS SHOWN BY ROWS OF BLOCKS OF
(THE‘## ITEMS ARE ARBITRARY, THIS STORAGE IS USED BY

A .
SLVBLK)

11 12 13 14 / as as as / 66 6? 63 69- / so as we so /
21 22 23 24 / 43 44 45 / rs 77 78 79 / 44 #* ## so /
31 32 33 34/ 53 54 55/ as 5? as 59/ er as as ac!

151* 111* ll‘-III III!
11* Illlll ##-

08 09 00 01
18 19 10 11

INDEX = 1 INDEX = 13 INDEX = 22 INDEX = 34 INDEX = 46

ACTUAL RIGHT SIDE VALUES WITH *1 FOR ARBITRARY VALUES
B1 B2 B3 #* B4 B5 B6 B7 B8 **'#* B9 ## oi B10 B11

(IT WOULD HAVE BEEN MORE EFFICIENT TO COMBINE BLOCK 3 WITH BLOCK 4)

#1!‘-
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INTEGER INTEGS(3,NBLOKS),IPIVOT(1),IFLAG
REAL BLOKS(1),B(1),X(1) :1
IN THE CALL TU FCBLOK, X IERUEED FDR TEHPDRARY sTDRAGE.
cALL FCBLOKCBLOKS,INTEGs,NBLOKS,IPIVOT,X,IFLAG)
IF (IFLAG .EQ. 0) RETURN
CALL S88LOK(BLOKS,INTEGs,NBLOKS,IPIVOT,B,X)
END

RETURN

SUBROUTINE FCBLOK ( BLOKS, INTEGS, NBLOKS, IPIVOT, SCRTCH, IFLAG )
CALLS SUBROUTINES F A C T R B AND S H I F T B .

U1
CDO’?!

I=I-
l"l."'fi 58¢»??1'.FUi."

D
COED

IR SUPERVISES THE PLU FACTORIZATION WITH PIVOTING OF
S OF THE ALMOST BLOCK DIAGONAL MATRIX STORED IN THE ARRAYS

AND I N T E G S .

FACTRB = SUBPROCRAM WHICH CARRIES OUT STEPS 1,...,LAST OF GAUSS
ELIMINATION (WITH PIVOTING) FOR AN INDIVIDUAL BLOCK.

SHIFTB = SUBPROGRAM WHICH SHIFTS THE REMAINING ROWS TO THE TOP OF
THE NEXT BLOCK

ARAMETERS
BLOKS

INTEGS
NBLOKS
IPIVOT

SCRTCH

IFLAG

AN ARRAY THAT INITIALLM CONTAINS THE ALMOST BLOCK DIAGDNAL
MATRIX A TO BE FACTORED, AND DN RETURN cDNTAINs THE con-
PUTED FACTORIZATION OF A .AN INTEGER ARRAY DESCRIBING THE BLOCK STRUCTURE OF A .
THE NUMBER or BLOCKS IN A .
AN INTEGER ARRAY OF DIMENSION sUN (INTEGs(1,N) ; N-1,

.,NBLOKS) WHICH, ON RETURN, CONTAINS THE PIVOTING STRA-
TEGY USED.
WORK AREA REQUIRED, OF LENGTH MAX (INTEGS(1,N) ; NI1,

.,NBLOKS).
OUTPUT PARAMETER;
= O IN CASE MATRIX WAS FOUND TO BE SINGULAR.
OTHERWISE,

(—1)**(NUMBER OF RDN INTERcHANGEs DURING FACTORIZATION)
INTEGER INTEGS(3,NBLOKS),IPIVOT(1),IFLAG, I,INDEX,INDEXB,INDEXN,

LAST,NCOL,NROW
REAL BLOKS(1).SCRTCH(1)

1

#-

IFLAG =
INDEXB
INDEXN
I = 1

1
1 .

LOOP OVER THE BLOCKS. I IS LOOP INDEX
10 INDEX = INDEXN

NROW
NCOL
LAST

INTEGS(1,I)
INTEGS(2,I)
INTEGS(3.I) '

CARRY OUT ELIMINATION ON—THE I*TH BLOCK UNTIL NEXT BLOCK
ENTERS, I.E., FOR COLUMNS 1,...,LAST OF I-TH BLOCK.
CALL FACTRB(BLOKS(INDEX),IPIVOT(INDEXB),SCRTCH,NROW,NCOL,LAST,

#- IFLAG)
CHECK FOR HAVING REACHED A SINGULAR BLOCK OR THE LAST BLOCK

IF (IFLAG .EQ. 0 .OR. I .EOI NBLOKS)
#- RETURN

I=I+1
INDEXN = NROH#NCOL + INDEX

PUT THE REST OF THE I—TH BLOCK ONTO THE NEXT BLOCK
CALL sHIFTB(BLOKs(INDEX),IPIvOT(INDEIB),NHOW,NCOL,LAsT,

Ill BLOKS(INDEXN),INTECS(1,I),INTEGS(2,I))
INDEXB = INDEXB + NROW '

END
GD TO 1D

H
ii
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SUBROUTINE FACTRB ( w, IFIvDT, D, NRDH, NCOL, LAsT. IFLAG )
ADAPTED FROM P.132 OF *ELEMENT.NUMER.ANALYSIS* BY CDNTE—DE BOOR
CONSTRUCTS A PARTIAL PLU FACTORIZATION, CORRESPONDING TO STEPS 1,.. ,

L A 5 T IN GAUss ELIHINATIDN, FDR THE NATRII w DF DRDER
( N R D w , N C D L ), UsING PIvoTING OF SCALED Rows.

PARAMETERS
W CONTAINS THE (NROW,NCOL) MATRIX TO BE PARTIALLY FACTORED

ON INPUT, AND THE PARTIAL FACTORIZATION ON OUTPUT.
IPIVOT AN INTEGER ARRAY OF LENGTH NROW CONTAINING A RECORD OF THE

PIVOTING STRATEGY USED; ROW IPIVOT(I) IS USED DURING THE
I-TH ELIMINATION STEP, I=1,...,LAST.

D A WORK ARRAY OF LENGTH NROW USED TO STORE ROW SIZES
TEMPORARILY. ‘

NROW NUMBER OF ROWS OF W. '
NCOL NUMBER OF COLUMNS OF W.
LAST NUMBER OF.ELIMINATION STEPS TO BE CARRIED OUT.
IFLAG ON OUTPUT, EOUALS IFLAG ON INPUT TIMES (-1)#*(NUMBER OF

ROW INTERCHANGES DURING THE FACTORIZATION PROCESS), IN
_ CASE NO ZERO PIVOT WAS ENCOUNTERED.

OTHERWISE, IFLAG = 0 ON OUTPUT.

INTEGER IFIvDT(NRow),NcDL,LAsT,IFLAG, I,IPIvI,IFIvx,J,x,KP1
REAL W(NROW,NCOL),D(NROW), AwIKDI,coLNAx,RATID,RDwNAx

INITIALIZE IPIvOT, D
DO 1D I=1,NRDw

IFIvDT(I) - I
ROWHAX - 0.
DO 9 J-1,NcoL

9 ROWHAX = AMAX1(ROWMAX, ABS(W(I,J)))
IF (ROWMAX .EQ. D.) GD TD see

1D D(I) - RDwHAx I
GAUss ELIHINATIDN wITH PIVOTING DF EGALED Rows, LOOP ovER K=1,.,LAST

K - 1 -
As PIvDT Row FOR K—TH STEP,_PIOR_AMONG THE Rows NDT YET UsED,
I.E., FROM Rows IPIvOT(KJ,...,IPIVOT(NROW), THE DNE wHosE K—TH
ENTRY (COMPARED To THE Row sIzE) Is LARGEST. THEN, IF THIs Row
DOES NDT TURN OUT TD BE Row IPIvOT(K), REDEFINE IFIvoT<R) AP-
PROPRIATELY AND REGDRD THIS INTERCHANGE BY GHANGING THE sIGN
OF I F L A G .
IPIVK - IPIvDT(K)
IF (K .EQ. NROW) GO TO 21

11

J - K
KP1 = K+1
COLMAX = ABs(w(IFIvK.x))/D(IPIvx)

FIND THE (RELATIVELY) LARGEsT PIvoT
DO 15 I-HP1,NRDw ‘ .

IFIvI — IFIvDT(I) F
AWIKDI - ABs(w(IPIvI,K))/D(IPIvI)
IF (AwIHDI_.LE. COLMAX) GD To 15

COLMAX = AWIKDI
J - I

15 GDNTINUE i
IF (J .EQ. K) so To 15
IPIVK - IFIvoT(J)
IPIvDT(J) - IFIvDT(x)
IPIVOT(K) = IPIVK
IFLAG - -IFLAG

15 GDNTINUE ,
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IF PIVOT ELEMENT IS T00 SMALL IN ABSOLUTE VALUE, DECLARE
MATRIX T0 BE NUNINVERTIBLE AND QUIT.
IF (ABs(W(IPIvK,K))+D(IPIvK) .LE. D(IPIVK))

* GO TO 999
OTHERHISE, SUBTRACT THE APPROPRIATE MULTIPLE OF THE PIvOT
ROH FROM REMAINING ROWS, I.E., THE ROHS IPIvOT(K+1),...,
IPIvOT(NROH), TO MAKE K-TH ENTRY ZERO. sAvE THE HULTIPLIER IN
ITS PLACE.
DO 20 I=KP1,NROW

IPIVI = IPIVOT(I)
W(IPIVI,K) = W(IPIVI,K)/W(IPIVK,K)
RATIO = -W(IPIVI,K)
DO 20 J=KP1,NCOL

20 W(IPIVI,J) = RATIO#W(IPIVK,J) + W(IPIVI,J)
K = KP1
CHECK FOR HAVING REACHED THE NEXT BLOCK.
IF (K .LE. LAST) GO TO 11

RETURN
IF LAST .EQ. NROW , CHECK NOW THAT PIVOT ELEMENT IN LAST ROW
IS NONZERO.

21 IF( ABS(W(IPIVK,NROW))+D(IPIVK) .GT. D(IPIVK) )
* RETURN

SINGULARITY FLAG SET
see IFLAG = 0

RETURN
END
SUBROUTINE SHIFTB ( AI, IPIVOT, NRowI, NCOLI, LAST,

4 AI1, NRowI1, NCOLI1 3
sHIFTs THE Rows IN CURRENT BLOCK, AI, NoT UsED AS PIVOT ROWS, IF

" ANY, I.E., ROWS IPIVOT(LAST+1),...,IPIVOT(NROWI), ONTO THE FIRST
MMAX = NROW—LAST ROWS OF THE NEXT BLOCK, AI1, WITH COLUMN LAST+J OF
AI GOING TO COLUMN J , J=1,...,JMAX=NCOLI-LAST. THE REMAINING COL-
UMNS OF THESE ROWS OF AI1 ARE ZEROED OUT.

PICTURE

DRIGINAL sITUATIoN AFTER REsULTs IN A NEW BLOCK I+1
LAsT = 2 COLUMNS HAVE BEEN GREATED AND READY To BE
DDNE IN FAGTRE (ASSUMING No FAGTDRED BY NEXT FACTRB CALL.
INTERcHANGEs OF Rows)

1
X X 1X X X X X X X X

1
O X 1X X X 0 X X X X

BLOCK I ' 1
NROWI = 4 0 0 1X X X 0 0 1X X X 0 01
NCOLI = 5 1 1 1
LAST = 2 0 0 1X X X 0 0 1X X X 0 01'

1------------------------------- NEW1
11 X I X I 1X I I X X1 BLOCK
1 1 1 I+1

BLOCK I+1 IX X I X I 1X I X I K1
1NRowI1= 5 1 1

NcoLI1= 5 1x X X X x 1x X x X x1
------------------------------- 1--—----------1

1

INTEGER IPIvDT(NRDwI),LAsT, IF,J,JHAx,JNAxP1,N,NHAx
REAL AI(NRDwI,NcoLI),AI1(NRowI1,NcoLI1)
HHAI = NRowI - LAST
JHAI = NcDLI - LAsT
IF (MMAX .LT. 1 .OR. JNAI .LT. 1) RETURN

323
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DU 10 M=1,HMA1
IP = IPIUOT(LAST+H)
no 10 J—1,JHAI

10 AI1(M,J) = AI(IP,LAST+J)
IF (JMAX .EQ. HCOLI1) RETURN
JMAXP1 = JHAX + 1
DO 2O J=JHAXP1,NCOLI1

AI1(H,J) = 0.2O

END
SUBROUTINE SBBLOK ( BLOKS, INTEGS, NBLOKS, IPIVOT, B, X )

CALLS SUBROUTINES S U B F O R AND S U B B A K .
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PUT THE REHAINDER OF BLOCK I INTO AI1

ZERO OUT THE UPPER RIGHT CORNER OF AI1

RETURN

SUPERVISES THE SOLUTION (BY FORNARD AND BACKHARD SUBSTITUTION) OF
THE LINEAR SYSTEH A*X I B FOR X, WITH THE PLU FACTORIZATION OF A
ALREADY GENERATED IN
ARE SOLVED VIA S U

ARAHETERS
BLOKS, INTEGS, NBLOKS, IPIVOT ARE AS ON RETURN FROM FCBLOK.
B THE RIGHT SIDE, STORED CORRESPONDING TO THE STORAGE OF

THE EQUATIONS. SEE COMMENTS IN S L U B L K FOR DETAILS.
SOLUTION VECTORX

INTEGER INTEGS(3,NBLOKS),IPIVOT(1), I,INDEX,INDEXB,INDEXX,J,LAST
Ill

UII 'T1‘T.1 DO PFIJJ

NBP1,nc0L,NR0w
REAL RLOKs(1),B(1),x(1)

L O K . INDIVIDUAL BLOCKS OF EQUATIONS
AND 'S U B B A K .

FORWARD SUBSTITUTION PASS

INDEX = 1
INDEXB = 1
INDEXX I 1
DO 20 I=1,NBLOKS

NROW - IHTEGS(1,I)

#

20

LAST = IHTEcs(3.I>
CALL SUBFOR(BLOKS(INDEX),IPIVOT(INDEIB),NRON,LAST,B(INDEXB),

X(INDEXX))
INDEX = NROW#INTEGS(2,I) + INDEX
INDEXB = INDEXB + NROH
INDEXX = INDEXX + LAST

BACK SUBSTITUTION PASS

NBP1 = NBLOKS + 1
DO 3O J=1,NBLOKS H

I = NBP1 — J

30
1

EN

NROW
NCOL
LAST

IHTEGS(1,I)
INTEGS(2,I)
INTEGS(3,I)

INDEX = INDEX — NRON*NCOL
INDEXB = INDEXB - NRON
INDEXX = INDEXX - LAST
CALL SUBBAK(BLOKS(INDEX),IPIVOT(INDEXB),NROH,NCOL,LAST,

X(INDEXX))
RETURN
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SUBROUTINE SUBFOR ( N, IPIVOT, NROW, LAST, B, X )
CARRIES OUT THE FORWARD PASS OF SUBSTITUTION FOR THE CURRENT BLOCK,
I.E., THE ACTION ON THE RIGHT SIDE CORRESPONDING TO THE ELIMINATION
CARRIED OUT IN F A C T R B FOR THIS BLOCK.

AT THE END, X(J) CONTAINS THE RIGHT SIDE OF THE TRANSFORMED
IPIVOT(J)*TH EQUATION IN THIS BLOCK, J=1,...,NRON. THEN, SINCE
FOR I=1,...,NROH—LAST, B(NRON+I) IS GOING TO BE USED AS THE RIGHT
SIDE OF EQUATION I IN THE NEXT BLOCK (SHIFTED OVER THERE FROM
THIS BLOCK DURING FACTORIZATION), IT IS SET EQUAL TO X(LAST+I) HERE.

ARAMETERS
N, IPIVOT, NRDN. LAST ARE AS DN RETURN FRDN FACTRB.
B(J) IS EXPECTED TD GDNTAIN, DN INPUT, THE RIGHT SIDE DF J—TH

EDUATIDN FDR THIS BLOCK, J-1,...,NRDw. "
E(NRDN+J> CONTAINS, DN OUTPUT, THE APPRDPRIATELY HDDIFIED RIGHT

SIDE FDR EDUATIDN J INANEIT BLOCK, J=1,...,NRDN—LAsT.
x(J) CONTAINS, DN DUTPUT, THE APPRDPRIATELY HDDIFIED RIGHT

SIDE DF EDUATIDN IPIVDT(J) IN THIS BLOCK, J=1,...,LAST (AND
EVEN FDR J=LAsT+1,...,NRDN).

INTEGER IPIvDT(NRDN). IF,JHAx,H
DINENEIDN B(NRDw + NRDN-LAsT)
REAL w(NRDw,LAsT),E(1),x(NRDN)
IP = IPIvDT(1)
x(1) = BCIP)
IF (NRDN .EQ. 1) GD TD 99
DD 15 H=2,NRDN

IP = IPIVDT(K)
JHAI = AMINO(K—1,LAST)
SUM = D.
DD 14 J=1,JHAI

14 SUM = H(IP,J)*X(J) + SUN
15 X(K) = B(IP) — SUM

TRANSFER HDDIFIED RIGHT SIDES OF EQUATIONS IPIVUT(LAST+1),.. ,
IFIvDT(NRDw> TD NENT BLOCK. '
NRDNHL = NRDN - LAST
IF {NRDNHL .EQ. D) GD TD 99
LASTP1 = LAST+1 *
DD 25 K=LASTP1,NRDH"

25 B(NRDwHL+K> = x(N>
99 RETURN

END
SUBROUTINE SUBBAK ( N, IPIVOT, NRDN, NGDL, LAST, x )

CARRIES OUT EAGNGUBGTITUTIDN FDR GURRENT BLOCK.
ARAMETERS

N, IPIVOT, NROW, NCOL, LAST ARE AS ON RETURN FROM FACTRB.
I(1),...,X(NCOL) CONTAINS, ON INPUT, THE RIGHT SIDE FOR THE

EQUATIONS IN THIS BLOCK AFTER BACKSUBSTITUTION HAS BEEN
CARRIED UP TO BUT NOT INCLUDING EQUATION IPIVOT(LAST).
MEANS THAT X(J) CONTAINS THE RIGHT SIDE OF EQUATION IPI“
VOT(J) A5 MODIFIED DURING ELIMINATION, J=1,...,LAST, WHILE
FOR J .GT. LAST, X(J) IS ALREADY A COMPONENT OF THE SOLUTT
ION VECTOR.

X(1).---.X(NCOL) CONTAINS, ON OUTPUT, THE COMPONENTS OF THE SOLUT-
ION CORRESPONDING TO THE PRESENT BLOCK.

INTEGER IPIvDT(NRDw),LAsT, IP,J,K,KP1
REAL w(NRDw,NcDL>,x(NGDL), SUH
K = LAST
IP = IPIvDT(K3
SUM = D.
IF (K .EQ. NCOL) GD TD 4
KP1 = K+1

2 DD 3 J=KP1,NCOL
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Here is a subroutine for solving linear systems involving B-splines which
uses less storage than does SLVBLK, but does not save the factorization

3 sun - H(IP,J)*1(J) + sun .
4 x(K) - (x(N) - sun)/U(IP,H) ..

IF (K .EQ. 1) RETURN
KP1 - K
K - K-1
IP - IPIVOT(K)
SUM = 0. GD To 2

END
SUBROUTINE DTBLOK ( BLOKS, INTEGS, NBLOKS, IPIVOT, IFLAG.

A DETSGN, DETLDG ) I
COHPUTES THE DETERHINANT DF AN ALMOST BLOCK DIAGDNAL MATRIX NHDsE
PLU FAGTDRIZATIDN HAS BEEN OBTAINED PREVIOUSLY IN FGELDH.
*** THE LDGARITHH DF THE DETERHINANT Is GDHPUTED INsTEAD DF THE
DETERHINANT ITsELF TD AVOID THE DANGER DF DUERFLDN DR UNDERFLDN
INHERENT IN THIs GALGULATIDN.
ARAHETERS .

BLOKS, INTEGS, NBLOKS. IPIVOT, IFLAG ARE As DN RETURN FRDH FCBLOK.
IN PARTICULAR, IFLAG = (-1)**(NUMBER DF INTERGHANGEE DUR-
ING FAGTDRIZATIDN) IF SUCCESSFUL, oTHERNIsE IFLAG = D.

DETsGN DN OUTPUT, GDNTAINs THE sIGN DF THE DETERHINANT.
DETLDG DN OUTPUT, GDNTAINs THE NATURAL LDGARITHH DF THE DETERMI-

NANT IF-DETERMIHANT Is NDT ZERO. DTHERNIsE GDNTAINs D.
INTEGER INTEGS(3,NBLOKS),IPIVOT(1),IFLAG, I,INDExP,IP,K,LAsT
REAL ELDHs(1),DETsGN,DETLDG
DETSGN = IFLAG
DETLDG - D.
IF (IFLAG .EQ. 0) RETURN
INDEX - D
INDEIP - D
DD 2 I=1,NELDHs _

NRDN - INTEGS(1,I)
LAST = IHTEGS(3,I)
DD 1 H-1,LAsT

IP - INDEN + NRDw*(H-1) + IPIvDT(INDExP+H)
DETLDG = DETLDG + ALDG(ABs(ELDHs(IP)))

1 DETsGN - DETSGH*SIGH(1.,BLUKSfIP))
INDEX = NROH*IHTEGS(2,I) + INDEE,

2 INDEXP - IHDEXP + NRDH FRETURN
END

SUBROUTINE CUIDTH ( w,B,NEQU,NGDLs,INTEGs,NBLDHs, D, X,IFLAG )
THIs PRDGRAN Is A VARIATION DF THE THEHE IN THE ALGDRITHH EANDET1
BY MARTIN AND HILKIHSUN (NUMER.HATH.~9(1s?5)2?s—sD?). IT SOLVES
THE LINEAR sYsTEH

A*X = B
DF NEQU EDUATIDNs.IN CASE A Is ALHDsT ELDGH DIAGDNAL NITH ALL
BLOCKS HAUING NGDLs GDLUHs UsING ND HDRE sTDRAGE THAN IT TAKES TD
sTDRE THE INTERESTING PART DF A . sUGH sYsTEHs DGGUR IN THE DETERM-
INATION OF THE B-SPLINE COEFFICIENTS Q? A SPLINE APPROXIMATION.

PARAMETERS
N DN INPUT. A THD-DIHENEIDNAL ARRAT DF sIzE (NEQU,NCOLS) GDNTAIN-
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CHIDTH 32?

ING THE INTERESTING PART OF THE ALMOST BLOCK DIAGONAL COEFFICI-
ENT MATRIX A (SEE DESCRIPTION AND EXAMPLE BELOW). THE ARRAY
INTEGS DESCRIBES THE sTDRAGE scHEME.
DN DUTPUT, H GDNTAINs THE UPPER TRIANGULAR FAGTDR U DF THE
LU FACTORIZATION DF A PDssIHLY PERMUTED VERSION DF A . IN PAR-
TICULAR, THE DETERMINANT DF A GDULD NDN BE FDUND As

IFLAG*H(1,1)*H(2,1)* ... * N(NEDU,1) .
B DN INPUT, THE RIGHT sIDE DF THE LINEAR sYsTEH, DF LENGTH NEQU.

THE CONTENTS DF B ARE GHANGED DURING EXECUTION.
NEQU NUMBER DF EQUATIONS IN sYsTEH
NcDLs BLOCK HIDTH. I.E., NUMER DF COLUMNS IN EAGH BLOCK.
INTEGs INTEGER ARRAY, DF sIzE <2,NEqU), DESCRIBING THE BLOCK sTRUGT-

URE DF A .
INTEGS(1,I)
INTEGs(2,I)

ND. DF Rows IN ELDGH I ' = NRDN
ND. DP ELIMINATIDN STEPS IN BLOCK I
UVERHANG OVER NEAT BLOCK = LAsT

NELDHs NUMBER DF BLOCKS -
D NDRH ARRAY, TD GDNTAIN RDN sIzEs . IF sTDRAGE Is SCARCE, THE

ARRAY I GDULD BE UsED IN THE GALLING sEqUENGE FDR D .
X DN DUTPUT, GDNTAINs GDMPUTED sDLUTIDN (IF IFLAG .NE. D), DF

LENGTH NEQU .
IFLAG DN OUTPUT, INTEGER

= (-1)**(HD.OF INTERCHANGES DURING ELIMINATIDN)
IF A Is INVERTIBLE

= D IF A Is sINGULAR
————-- BLOCK sTRUcTURE DF A —--—~— ‘

THE INTERESTING PART DF A Is TAHEN To cDNsIsT DF NBLOKS GDN-
SECUTIVE ELDGHs, HITH THE I—TH BLOCK MADE UP DF NRDHI = INTEGs(1,I)
CONSECUTIVE Rows AND NcDLs CONSECUTIVE GDLUMNs DF A , AND WITH
THE FIRsT LAsTI = INTEGs(2,I) cDLUMNs TD THE LEFT DF THE.NExT ELDGH.
THEsE BLOCKS ARE sTDRED CUNSECUTIVELY IN THE NDRHARRAY H .

FDR EIANPLE, HERE Is AN 11TH DRDER MATRIX AND ITs ARRANGEMENT IN
THE NDRHARRAY H . (THE INTEREETING ENTRIEs DF A ARE INDIGATED HY
THEIR RDN AND COLUMN INDEX MDDULD 10.)

___ A ___ ___ Q ___

NRON1=3
11 12 13 14 ‘ 11 12 13 14
21 22 23 24 21 22 23 24
S1 32 33 34 NRON2=2 31 32 33 34

LAST1=2 43 44 45 46 43 44 45 46
53 54 55 55 NRON3=3 53 54 55 56

LAST2=3 65 5? 68 G9 55 6? GB 69
75 T? 78 T9 T5 T? TB T9
B6 8? 88 B9 NRON4=1 B5 B? 88 B9

LAST3=1 9? 98 99 90 NROW5=2 -9? 98 99 90
LAST4=1 OB 09 OO O1 O8 O9 OO 01

18 19 10 11 18 19 1O 11
LAST5=4

FOR THIS INTERPRETATION OF A AS AN ALMOST BLOCK DIAGONAL MATRIX,
NE HAVE NBLOKS = 5 , AND THE INTEGS ARRAY IS

I= 1 2 3 4 5
K=

INTEGs(H,I) = 1 s 2 3 1 2
2 2 3 1 1 4

—————— —- METHDD -—-—-——-
GAUss ELIMINATIDN NITH sGALED PARTIAL PIVOTING Is USED, BUT MULT-

IPLIERS ARE N D T s A v E D IN DRDER TD SAVE sTDRAGE. RATHER, THE
RIGHT sIDE IS DPERATED DN DURING ELIMINATIDN.

THE TND PARAMETERS
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, I P v T E D AND L A s T E Q
ARE UsED TD KEEP TRACK DF THE AGTIDN. IPVTEQ Is THE INDEA DF THE
VARIABLE'TO BE ELIMINATED NEAT, FRDM EQUATIDNs IPVTEQ+1,...,LASTEQ,
UsING EQUATION IPUTEQ (PDssIELY AFTER AN INTERGHANGE) As THE PIVOT
EQUATION. THE ENTRIES IN THE PIVOT GDLUHN ARE A L N A Y s IN GDLUMN
1 OF H . THIS IS ACCOMPLISHED BY PUTTING THE ENTRIES IN ROHS
IPVTEQ+1,...,LASTEQ REVISED EY THE ELIMINATION OF THE IPVTEQ—TH
VARIABLE DNE TO THE LEFT IN N . IN THIs HAY, THE GDLUHNs OF THE
EQUATIONS IN A GIVEN ELDGH (As sTDRED IN N ) HILL BE ALIGNED NITH
THDsE DF THE NEAT BLOCK AT THE MOMENT WHEN THEsE NEAT EQUATIONS EE-
COME INV LVED IN THE ELIMINATION PROCESS.

THUS, OR THE ABOVE EXAMPLE, THE FIRST ELIMINATION STEPS PROCEED -
AS FOLLOWS.

12
22
32
44
54

13
23
33

11 12 13 14
22 23 24

#33 34
#43 44 45 45

56 #53 54 55 55

11 12 13
#22 23 24
#32 33 34
43 44 45 46
53 54 55

#11
#21
#31
43
53

14 14
24
34

45
55

45
55

11
22
33

#44
#54

12 13 14
23 24
34
45
55

45
55

ETC.

55 5? 58

IN ALL
SCALED PA

59 65 5? 58 59 56 5? 68 59 55 5?
I II 1'

58 59.

OTHER RESPECTS, THE PROCEDURE IS STANDARD, INCLUDING THE
RTIAL PIVOTING.

INTEGER IFLAG,INTEGS(2,NBLOKS).NCOLS,NEQU. I.II,IGDUNT,1PvTED
# ,ISTAR,J,LASTCL,LASTEQ,LASTI,NEXTEQ,NROHAD

REAL B
1

IFLAG

(NEDU),D(NEDU),N(NEDU,NcDLs),A(NEDU), AHI1DD,cDLMAA,RDNHAA,TEHP
= 1

IPVTEQ = O
LASTEQ = O

DO 5O
THE I-LOOP RUNS OVER THE BLOCKS

I=1,NBLOKS _

THE EQUATIONS FOR THE CURRENT BLOCK ARE ADDED TO THOSE CURRENT-
LY
BY
REC

NRO
DO

5

1O
LAS

INVOLVED IN THE ELIMINATIDN PRDGEss, HY-INGREAEING LASTEQ
INTEGs(1,I) AFTER THE RDHsIzE OF THEsE EQUATIONS HAs BEEN

DRDED IN THE ARRAY D .
HAD = INTEGS(1,I)
1D IGDUNT=1,NRDNAD
NEITEQ = LASTEQ + ICOUNT
RDNHAX = 0.
DD 5 J=1,NCOLS

RDNHAA = AMAA1(RDNMAA,AEs(N(NEATEQ,J)))
IF (RDNHAA .EQ. D.) Go TO ess
D(NEXTEQ) = RDNHAX ' -
TEQ = LASTEQ + NRDNAD

THERE HILL BE LAsTI = INTEGs(2,I) ELIMINATIDN sTEPs EEFDRE
THE EQUATIONS IN THE NEAT BLOCK BECOME INVOLVED. FURTHER,
L A
REN

S T C L RECORDS THE NUMBER OF COLUMNS INVOLVED IN THE CUR-
T ELIMINATION STEP. IT STARTS EQUAL TO NCOLS WHEN A BLOCK

FIRST BECOMES INVOLVED AND THEN DROPS BY ONE AFTER EACH ELIM-
INA

LAS
LAS
DO

Ill

TION STEP.

TGL = NGDLs
TI = INTEGs(2,I)
3D IGDUNT=1,LAsTI
IPVTEQ = IPVTEQ + 1
IF (IPUTEQ .LT. LASTEQ) GD To 11
IF ( ABS(N(IPVTEQ,1))+D(IPVTEQ) .GT. D(IPVTEQ) )

GO To 50
GO TO 999
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11

13

14

15

18

2O
3O
50

59

50
51

TO

999

DETERMINE THE sMALLEsT I s T A R IN (IPVTEQ LASTEQ) FDR
NHIGH AEs(N(IsTAR,1)>/D(IsTAR) Is As LARGE As POSSIBLE AND
INTERGHANGE EDUATIDNs IPVTEQ AND IsTAR IN GAsE IPVTEQ

CWIDTH 329

.LT. ISTAR .

SUBTRACT THE APPROPRIATE MULTIPLE OF EQUATION IPVTEQ FROM
EQUATIONS IPVTEQ+1,...,LASTEQ TO MAKE THE COEFFICIENT OF THE
IPVTEQ—TH UNKNOWN (PRESENTLY IN COLUMN 1 OF W ) ZERO UT
STORE THE NEW COEFFICIENTS IN W ONE TO THE LEFT FROM THE OLD

GDLMAA = ABS(W(IPVTEQ,1))/D(IPVTEQ)
ISTAR = IPVTEQ
IPVTP1 = IPVTEQ + 1
DO 13 II=IPVTP1,LASTEQ

AHIIOD = AEs(N(II,1})[D(II>
IF (ANIIDD .LE. GDENAA)
GDLMAA = ANI1DD .
IsTAR = II
GDNTINUE

IF ( ABS(W(ISTAR,1))+D(ISTAR) .EQ. D(ISTAR) )
1- G0 TU

IF (IsTAR .EQ. IPvTED>
IFLAG = —IFLAG
TEMP = D(IsTAR)
D(IsTAR) = D(IPvTED)
D(IPvTEQJ = TEMP
TEMP = E(IsTAR)
E(IsTAR) = B(IPVTEQ)
E(IPvTEQ) = TEMP
DD 14 J=1,LASTCL

TEMP = W(ISTAR,J)
H(IsTAR,J) = W(IPVTEQ,J)
W(IPVTEQ,J) = TEMP

DO 2O II=IPVTP1,LASTEQ

GO TO 13

999
GO TO 15

RATIO = W(II,1)/W(IPVTEQ,1)
DO 18 J=2 LASTCL

w(II,Jl1> = W(II,J) - RATIO*W(IPVTEQ 1)
N(II,LAsTcL) = O. '
E(II) = E(II) — RATIO#B(IPVTEQ)

LASTCL = LASTCL “ 1
CONTINUE

AT THIs PDINT, H AND B GDNTAIN AN UPPER TRIANGULAR LINEAR sYsTEM
EQUIVALENT TO THE DRIGINAL ONE, WITH W(I,J) GDNTAINING ENTRY
(I, I—1+J ) OF THE GDEFFIGIENT MATRIA. SOLVE THIs sYsTEN EY BACKSUB-
sTITUTIDN, TAKING INTD AGGDUNT ITs BLOCK sTRUGTURE

I-LOOP OVER THE BLOCKS IN REVERSE ORDER
I = NBLOKS

LAsTI = INTEGs(2,I)
JMAA = NcDLs — LAsTI
DO 70 ICOUNT=1,LASTI

SUM = 0.
IF (JMAA .EQ. O) GD TD 51
DO 50 J=1,JMAX

sUM = sUM + X(IPVTEQ+J)eW(IPVTEQ,J+1)
A(IPvTED) = (E(IPvTEQ)—sUM)/N(IPvTEQ.1)
JMAX = JMAX + 1
IPVTEQ = IPVTEQ - 1

I = I 1
IF (I .GT. D) GD TD so

IFLAG

END

= O RETURN

RETURN
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