# 36-617: Applied Linear Models

mlm residuals Brian Junker 132E Baker Hall brian@stat.cmu.edu

#### Announcements

- No new reading
- No quiz this week
- HW08 due Weds at 1159pm
- Project description and timeline is<sup>1</sup> available in files area on Canvas

#### Please read the code and comments in 21 – mlm resduals.r carefully!

#### Project stuff

- HW09 (see hw09 folder)
  - Many raw materials for Data, Discussion section and (especially)
     Technical Appendix
- Project assignment sheet (see project folder) provides
  - Raw materials for Introduction
  - □ Timeline, guidelines and grading rubric for final IDMRAD paper
- Project Due Dates
  - □ **HW09:** Fri Nov 18 (grace till Sun Nov 20<sup>th</sup>)
  - Rough IDMRAD draft: Weds Nov 23 (grace till Fri Nov 25<sup>th</sup>)
  - Peer review: Fri Dec 2 (2 hrs grace!)
  - □ Final IDMRAD paper: Fri Dec 9 (2 hrs grace!)

#### Office hour this week

Mon and Weds at noon: BJ as usual

- Friday:
  - BJ will take Lorenzo's 11am office hour in 132E Baker (my usual office)
  - Lorenzo will be travelling but will hold a zoom office hour at 3pm Friday. Zoom link TBA.

### Outline

- The London Schools Data
  - A nice random-intercepts, random-slopes model
  - ASIDE: Shrinkage for regression lines
- Residuals in MLM's
  - Marginal residuals
  - Conditional residuals
  - Random effects residuals
- Level 1 and Level 2 Residual Plots
- Standardized Residuals
  - ASIDE: Cholesky Residuals
- Practical Advice

#### The London Schools Data

#### Student (1..1978)

- □ Gender (0=Female, 1=Male), per student
- VR = verbal reasoning level (High/Med/Low)
- LRT = London Reading test (at beginning of year)
- Y = end-of-year test
- School (1..38)
  - School.gender (All.Boy, All.Girl, Mixed)
  - School.denom (Other,CofE,RomCath,State)

We'll focus on the random slopes, random intercepts model...

#### The MLM is

 $y_{i} = \alpha_{0j[i]} + \alpha_{1j[i]} LRT_{i} + \epsilon_{i}, \quad \epsilon_{i} \sim N(0, \sigma^{2})$   $\alpha_{0j} = \beta_{0} + \eta_{0j}, \quad \eta_{0j} \sim N(0, \tau_{0}^{2})$  $\alpha_{1j} = \beta_{1} + \eta_{1j}, \quad \eta_{1j} \sim N(0, \tau_{1}^{2}), \quad \operatorname{Corr}(\eta_{0j}, \eta_{1j}) = \rho$ 

#### with variance components form

 $y_{i} = (\beta_{0} + \beta_{1}LRT_{i}) + (\eta_{0j[i]} + \eta_{1j[i]}LRT_{i}) + \epsilon_{i}$ 

# As an R model this would be Y ~ 1 + LRT + (1 + LRT|school)

#### ASIDE: Shrinkage for regression lines

```
> ## partially pooled:
> lmer.1 <- lmer(Y ~ 1 + LRT +
+ (1 + LRT | school))
> mlm.alphas <- coef(lmer.1)$school</pre>
>
> ## completely pooled:
> lm.0 < - lm(Y ~ LRT)
> unpooled.betas <- coef(lm.0)</pre>
>
> ## completely unpooled:
> lm.1 < - lm(Y ~ school*LRT - LRT - 1)
> pooled.betas <- coef(lm.1)</pre>
>
> ## "21 - mlm-residuals.r" has
> ## important fitting and
> ## plotting details...
```

The regression lines for the MLM lie between the completely pooled and completely unpooled regression lines; this is the shrinkage phenomenon again



#### Residuals

- In ordinary linear regression the residuals are easy to think about:
  - $\Box E[y_i] = X_i \beta$
  - $\Box r_i = y_i E[y_i]$
- Multi-level models pose a couple of challenges





Where are they?

Level 1? Level 2? Some combination?

What are they? The α's are random draws, so does the following make sense?
E[y<sub>ij</sub>] = α<sub>oj</sub> + α<sub>1j</sub> LRT<sub>ij</sub>??
r<sub>ii</sub> = y<sub>ii</sub> - E[y<sub>ii</sub>]??

The variance components version of the model

 $y_{i} = (\beta_{0} + \beta_{1}LRT_{i}) + (\eta_{0j[i]} + \eta_{1j[i]}LRT_{i}) + \epsilon_{i}$ 

could be re-expressed in matrix form as

$$y = X\beta + Z\eta + \epsilon$$



Laird & Ware (1982, *Biometrics*)

- Given the Laird-Ware form  $y = X\beta + Z\eta + \epsilon$ , can formulate 3 different kinds of residuals:
  - Marginal residuals:  $y X\beta$  ("=" $Z\eta + \epsilon$ )
  - Conditional residuals:
  - Random effects:

 $y - X\beta - Z\eta \quad (``="\epsilon)$  $y - X\beta - \epsilon \quad (``="Z\eta)$ 

- In practice, estimate  $\beta$  with  $\hat{\beta}$ , the MLE, and estimate  $\eta$  with  $\eta_{BLUP} \approx E[\eta|$ the data]
  - The "random effects" residuals aren't very useful, but it is good to check the η's themselves!
- Nobre & Singer (2007, Biometrical Journal)

#### **L1:** Marginal residuals: $y - X\hat{\beta}$ ("=" $Z\eta + \epsilon$ )

- Should be mean 0, but may show grouping structure
- May not be homoskedastic! Will be correlated, unequal variances<sup>1</sup>!
- Good for checking fixed effects, just like linear regr.

• <u>L1: Conditional residuals</u>:  $y - X\hat{\beta} - Z\hat{\eta}$  ("=" $\epsilon$ )

- Should be mean zero with no grouping structure
- Should be homoskedastic!
- Good for checking normality of  $\epsilon$ , outliers
- <u>L2: Residuals:</u> η
  - Should be mean-zero with no grouping structure
  - Different  $\eta$ 's will have different variances ( $\tau_0^2, \tau_1^2$ , etc)
  - Good for checking Level 2 normality assumption

```
> row < -1
> str(fixef(lmer.1))
                                               > for (j in 1:J) {
> beta0 <- fixef(lmer.1)[1]</pre>
                                                   col <- 2*j
                                               +
> beta1 <- fixef(lmer.1)[2]</pre>
                                                   nj <- dim(blocks[[j]])[1]</pre>
                                               +
                                                   Z[row: (row+nj-1), c(col-1, col)] <-
                                               +
> str(ranef(lmer.1))
                                                       blocks[[j]]
                                               +
> eta <- ranef(lmer.1)$school</pre>
                                                   row <- row + nj
                                               +
                                               + }
> attach(school.frame)
                                               > beta <- rbind(beta0,beta1)</pre>
> X <- cbind(1, LRT)
                                               > # so beta is a column vector
> blocks <- lapply(split(X, school),</pre>
                                               > eta <- c(t(eta))
    function(x) {matrix(x,ncol=2)})
+
                                               > # so eta is a column vector
> J <- length(blocks)
                                               > resid.marg <- Y - X%*%beta</pre>
> n <- dim(school.frame)[1]</pre>
                                               > resid.cond <- Y - X%*%beta - Z%*%eta
> Z <- matrix(0, nrow=n, ncol=J*2)</pre>
```

11/14/2022

The file "residual-functions.r" provides readable functions to compute these. library(HLMdiag) provides  $\eta$ 's, marginal and conditional residuals automatically...

Marginal residuals

 $y - X \hat{\beta}$  ("=" $Z\eta + \epsilon$ ) look pretty good...

Conditional residuals
  $y - X\hat{\beta} - Z\hat{\eta}$  ("="\epsilon)
 look pretty good



- Marginal residuals  $y - X\hat{\beta}$  ("=" $Z\eta + \epsilon$ ) plotted by school, vs.  $\hat{y}_{marg} = X\hat{\beta}$
- When the η's are larger, the dependence on Z can make these difficult to interpret



Conditional residuals

$$y - X\hat{\beta} - Z\hat{\eta} \quad (``="\epsilon)$$

plotted by school  $\hat{y}_{cond} = X\hat{\beta} + Z\hat{\eta}$ 

- These should not depend on X or Z
- Can be hard to see patterns in facets plot; should also look at ungrouped residuals



# Level 1 plots: Normality of conditional residuals ( $\hat{\epsilon}$ 's)

- > par(mfrow=c(1,1))
- > qqnorm(resid.cond, main=
- + "Conditional Residuals")
- > qqline(resid.cond)
- These Residuals are a little light-tailed relative to the Normal distribution
- But generally they look good



## Level 2 plots: Normality of $\hat{\eta}$ 's?

```
> eta0 <- ranef(lmer.1)$school[,1]
> eta1 <- ranef(lmer.1)$school[,2]
> par(mfrow=c(2,1))
> qqnorm(eta0,
+ main = "Eta0 (rand. intercepts)")
> qqline(eta0)
> qqnorm(eta1,
+ main = "Eta1 (rand. slopes)")
> qqline(eta1)
```

- The tails seem to be a bit heavier (for both η<sub>0</sub> and η<sub>1</sub>) than the normal distribution.
- Generally not bad, for 38 data points (except maybe that low outlier!)

#### Eta0 (rand. intercepts)



### Level 1 plots: $\hat{\epsilon}$ 's vs predictors

- > library(HLMdiag)
- > lev.1 <- hlm\_resid(lmer.1,</pre>
- + include.ls=F)
- > lev.2 <- hlm\_resid(lmer.1,</pre>
- + include.ls=F,level="school")
- > resid.marg <- lev.1\$.mar.resid</pre>
- > resid.cond <- lev.1\$.resid</pre>
- > eta0 <- lev.2\$.ranef.intercept
- > eta1 <- lev.2\$.ranef.lrt</pre>
- > new.data <- data.frame(school,</pre>
- + LRT, resid.marg)
- > ggplot(new.data,
- + aes(x=LRT,y=resid.marg)) +
- + geom\_point(aes(color=school)) +
- + geom\_smooth()
- > ## and similarly for conditional
  > ## residuals...
- Some evidence of curvature here...



## Level 2 plots: $\hat{\eta}$ 's vs predictors

- > LRT.avg <- with(school.frame,
- + sapply(split(LRT, school), mean))
- > new.data <- data.frame(LRT.avg,</pre>
- + school=factor(1:38),eta0,eta1)
- > ggplot(new.data,
- + aes(x=LRT.avg,y=eta0)) +
- + geom\_point(aes(color=school)) +
- + geom\_smooth()
- > ggplot(new.data,
- + aes(x=LRT.avg,y=eta1)) +
- + geom\_point(aes(color=school)) +
- + geom\_smooth()
- Evidence of curvature, especially in  $\eta_1$
- Suggests a transformation of LRT, perhaps a cubic?



#### Standardized Residuals

- There can be two "standardization" problems with Level 1 MLM residuals
  - Like lm() residuals, they have <u>unequal variance</u>
    - Raw residuals for Im() have variances like  $\hat{\sigma}^2 \sqrt{1 h_{ii}}$
    - Similar but more complicated for  $\hat{\epsilon}_{marg}$  and  $\hat{\epsilon}_{cond}$
  - $\hat{\epsilon}_{marg}$  will have noticeable correlations induced by Z $\eta$
  - $\hat{\epsilon}_{cond}$  should be approximately uncorrelated
- Level 2 residuals,  $\hat{\eta}$ 's, should be approximately uncorrelated but also have unequal variances

#### Calculating standardized residuals

- These can be calculated<sup>1</sup> "by hand" but it is easier to use library(HLMdiag):
- > h.stdres.1 <- hlm\_resid(lmer.1,level=1,include.ls=F,standardize=T)</pre>



<sup>1</sup>See demonstration at end of "21 – mlm residuals.r" <sub>23</sub>

#### ASIDE: Cholesky Residuals

- Correlation in the marginal residuals  $y X\hat{\beta}$  can make it hard to interpret qqnorm plots, etc.
- "Cholesky residuals" are marginal residuals, transformed to remove the correlation:

$$\Sigma = \operatorname{Var}(y - X\beta) = \operatorname{Var}(Z\eta + \epsilon) = Z\operatorname{Var}(\eta)Z^T + \sigma^2 I$$
  

$$SS^T = \Sigma \text{ (i.e. } S = Chol(\Sigma)\text{)}$$
  

$$e_{chol} = S^{-1}(y - X\beta)$$

- In the R file accompanying this lecture we show how to get components of the fitted Imer model to construct Σ, S, to construct Cholesky residuals...
- Using hlm\_resid() from library(HLMdiag) easier!

#### Level 1: Standardized vs Not

- > sresid.cond <-
- + h.stdres.1\$.std.resid
- > cresid.marg <-</pre>
- + h.stdres.1\$.chol.mar.resid
- > qqnorm(resid.cond, main=
- + "Conditional Residuals")
- > qqline(resid.cond)
- > qqnorm(sresid.cond, main=
- + "Stdized Cond Residuals")
- > qqline(sresid.cond)
- > qqnorm(resid.marg, main=
- + "Marginal Residuals")
- > qqline(resid.marg)
- > qqnorm(cresid.marg, main=
- + "Cholesky Marg Residuals")
- > qqline(cresid.marg)



• Level 1 Standardization makes little difference for this data

#### Level 2: Standardized vs Not





 Level 2 Standardization slightly improves normality

#### **Residuals: Practical Advice**

- Looking at some residuals is better than looking at none.
  - In many MLM's, <u>marginal</u> and <u>conditional residuals</u> can be used roughly as you would with ordinary linear regression
  - Good to look at facet plots of Level 1 residuals
  - Some problems will be easier to see with ungrouped plots of Level 1 (ê marg and ê cond) and Level 2 (ŋ's) residual plots (vs. ŷ's, predictor variables, etc.)
  - Standardized residuals helpful for assessing normality, outliers
- If you forget HLMdiag, residuals (lmer.1) gives you the conditional residuals

#### Summary

- The London Schools Data
  - A nice random-intercepts, random-slopes model
  - ASIDE: Shrinkage for regression lines
- Residuals in MLM's
  - Marginal residuals
  - Conditional residuals
  - Random effects residuals
- Level 1 and Level 2 Residual Plots
- Standardized Residuals
  - ASIDE: Cholesky Residuals
- Practical Advice