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‘ Announcements

= No new reading
= No quiz this week

= HWO0S8 due Weds at 1159pm

= Project description and timeline is?!
available in files area on Canvas

m Please read the code and comments in
21 - mlm resduals.r carefully!

11/14/2022 1(...or will be, by Friday of Week 10!) .



‘ Project stuff

= HWO09 (see hwO09 folder)

o Many raw materials for Data, Discussion section and (especially)
Technical Appendix
= Project assignment sheet (see project folder) provides
o Raw materials for Introduction
o Timeline, guidelines and grading rubric for final IDMRAD paper

= Project Due Dates
o HWO9: Fri Nov 18 (grace till Sun Nov 20t")
o Rough IDMRAD draft: Weds Nov 23 (grace till Fri Nov 25t)
o Peer review: Fri Dec 2 (2 hrs grace!)
o Final IDMRAD paper: Fri Dec 9 (2 hrs grace!)
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‘ Office hour this week

» Mon and Weds at noon: BJ as usual
= Friday:

o BJ will take Lorenzo’s 11am office hour in 132E Baker
(my usual office)

o Lorenzo will be travelling but will hold a zoom office
hour at 3pm Friday. Zoom link TBA.
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‘ Outline

m The London Schools Data

0 A nice random-intercepts, random-slopes model
0 ASIDE: Shrinkage for regression lines

m Residuals in MLM'’s

0 Marginal residuals
0 Conditional residuals
0 Random effects residuals

m Level 1 and Level 2 Residual Plots

m Standardized Residuals
0 ASIDE: Cholesky Residuals

m Practical Advice
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‘ The London Schools Data

= Student (1..1978)
o Gender (O=Female, 1=Male), per student
o VR = verbal reasoning level (High/Med/Low)
o LRT = London Reading test (at beginning of year)
o Y = end-of-year test

= School (1..38)
a School.gender (All.Boy, All.Girl, Mixed)
a School.denom (Other,CofE,RomCath,State)
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‘ We'll focus on the random slopes,
random intercepts model...

= The MLIVI IS
Yi in —I—Oflj[Z]LRT + €, €~ N(O o )
Q) Bo + 105, Mo; ~ N (O, 7'0)

Q1 Br+mj, mj~N(O,77), Corr(no;,m;) =p

with variance components form
= (Bo + B1LRT;) + (nojp) + M LRT;) + €
= As an R model this would be
Y~1+LRT+(1+LRT|school)
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‘ ASIDE: Shrinkage for regression lines

> ## partially pooled:
> Imer.l <- Imer(Y ~ 1 + LRT + % = =
+ (1 + LRT|school)) .
> mlm.alphas <- coef(lmer.1l)S$school _://// ////
> 29 30 31 32 a3 34 S
> ## completely pooled:
> 1m.0 <- Im(Y ~ LRT) | // et /
> unpooled.betas <- coef (1m.0) = P 2 2 2 P 28
> ]
> ## completely unpooled: /////// Coefficients
> Im.1 <- Im(Y ~ school*LRT - LRT - 1) » = p pe - - = = //T“mfd
munpoole
> pooled.betas <- coef (lm.1) 1 mim alphas
> ## “21 - mlm-residuals.r” has e > : = — — = —
> ## important fitting and |
> ## plotting details.. ///////
. . . _ 1 2 2 4 5 6 7
The regression lines for the MLM lie _
between the completely pooled and ///////
Completely unpOOIed regression Iines; thiS —E;UUI 2IU4U —2IUEII 2IU4U —2IUUIEIU4U —2?_2{_?04—0 —EIUUIEIU4U —2IUEII 2IU4U —2IUUI 2IU4U
is the shrinkage phenomenon again
11/14/2022 8



‘ Residuals

m In ordinary linear regression the residuals are
easy to think about:

o Ely] = X8
a =y, — Ely]
= Multi-level models pose a couple of challenges

//50.\ o

/\“ /T

Y1Y2 - - -Yni  Yni+1 -+« Yni4ne Yng_14+1---Yny_1+ny

€
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‘ Residuals in Multi-Level Models

Level 2 A//BO\ X

Level 1 €

/// ST T~

Y1Y2 - - - Yny  Yni+1 -+ Ynid4ne Ynj_14+1---Ynyj_14n;

= Where are they?
0 Level 1? Level 2? Some combination?

= What are they? The o’s are random draws, so
does the following make sense?

0 E[yU] = o + oy LRT; ?7
- rU - y|_| E[yu] ??

11/14/2022
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‘ Residuals in Multi-Level Models

m The variance components version of the model
y; = (Bo + B1LRT;) + (?703-[1-] + nlj[qj]LRTi) + €;

could be re-expressed in matrix form as
y=XpB+2Zn+e

l.e.

1 LRT,
1 LRTQ { 30

"N
Y2
UYn

1 LRT,

Laird & Ware (1982,

1

LRT,

LRT,,

0

0

0

0

0

0

i Tlo1 i

o+

0

0

0

0

1

1

LRTn,l +1

LRT,,

| 0

Biometrics)

0

0

0

0

0

0

0

L Tho |

i €

Tlo2 €

M2 |4+ .
: €n

No.J
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‘ Residuals in Multi-Level Models

m Given the Laird-Ware form y = X8+ Zn+¢€
can formulate 3 different kinds of residuals:

a2 Marginal residuals: y—XpB (“="Zn+e¢)
o Conditional residuals: y—Xp—2Zn (“="¢)
0 Random effects: y—Xp —e€ (“="2n)

= In practice, estimate3 withB, the MLE, and
estimate n with ngruyp =~ E[n|the data]

o The “random effects” residuals aren’t very useful, but
it is good to check the n’s themselves!

= Nobre & Singer (2007, Biometrical Journal)
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‘ Residuals in Multi-Level Models
s L1: Marginal residuals: vy — X8 (“="Zn+ ¢)

o Should be mean 0, but may show grouping structure

o May not be homoskedastic! Will be correlated, unequal variances*!

o Good for checking fixed effects, just like linear regr.
m L1: Conditional residuals: yv— X038 — Zn (“="¢)

o Should be mean zero with no grouping structure

o Should be homoskedastic!
o Good for checking normality of ¢, outliers

m L2: Residuals: ]

o Should be mean-zero with no grouping structure

o Different n’s will have different variances (7§, T%, etc)
0 Good for checking Level 2 normality assumption

11/14/2022 IWe'll look at uncorrelated “Cholesky residuals’™ in a few slides. 13



‘ Residuals in the London Schools Data

> str(fixef (lmer.1))

> betal <-

fixef(lmer.1l) [1]

betal <- fixef (lmer.1l) [2]

> str(ranef (lmer.1l))

eta <- ranef (lmer.1l) $school

> attach (school. frame)

\%

vV VvV 4+ V

X <= cbind (1, LRT)

blocks <- lapply(split (X, school),

function (x) {matrix (x,ncol=2)})
J <- length (blocks)

n <- dim(school.frame) [1]

Z <- matrix(0,nrow=n,ncol=J*2)

+ 4+ + + + + VvV V

row <- 1
for (3 in 1:J) |
col <- 2%*j
nj <- dim(blocks[[j]]1)[1]
Z[row: (row+nj-1),c(col-1,col)] <-
blocks[[7]]

row <- row + nj

> beta <- rbind(betal,betal)

> # so beta is a column vector

> eta <- c(t(eta))
> # so eta 1s a column vector

resid.marg <- Y - X%*%beta

resid.cond <- Y - X%*%beta - Z%*%eta

11/14/2022

The file “residual-functions.r” provides readable functions to compute these.

library(HLMdiag) provides n’s, marginal and conditional residuals automatically...

14



Residuals in the London Schools Data

m Marginal residuals

y— X3 (“="Zn+e) .
look pretty good...

Marginal Residuals
Conditional Residuals

m Conditional residuals .

-1.5 05 00 05 10 15 -2 -1 0 1 2

y - XB — Zﬁ (“:” 6) Marginal Yhat Conditional Yhat
look pretty good

11/14/2022 15



‘ Residuals in the London Schools Data

36 37 38

[N Y
L L

= Marginal residuals
y—XB (“=Znto |ald
plotted by school, vs. ‘B
Jmarg = X3

resid.marg

= When the n)’s are larger, -
the dependence on Z
can make these difficult © . | le/ g2 & | o e | &
to interpret B .aO: BRI ; T

yhat. marg

o
[ A
L1 1

[y ]
R
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‘ Residuals in the London Schools Data

m Conditional residuals

y—XB—Zﬁ (cc:aae)

plotted by school
:gcond — Xﬁ =+ Zﬁ
m These should not
depend on X or Z

m Can be hard to see
patterns in facets plot
should also look at
ungrouped residuals

4

resid.cond

36

37

38

o
LSy
L1

3

33

34

35

[
[ ey Y
T B R |

'
[ )
T B N B |

15

11/14/2022
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‘ Level 1 plots: Normality of
conditional residuals (€’s)

> par (mfrow=c(1l,1))

> ggnorm(resid.cond, main=
+ "Conditional Residuals")

> ggline (resid.cond)

m These Residuals are a little
light-tailed relative to the
Normal distribution

= But generally they look good

Sample Quantiles

Conditional Residuals

-3 -2 -1 0 1 2 3

Theoretical Quantiles

11/14/2022

18



‘ Level 2 plots: Normality of 1’s?

etal <- ranef(lmer.l)S$schooll[,1]
etal <- ranef(lmer.l)S$schooll, 2]
par (mfrow=c(2,1))

ggnorm (etal,
main = "EtaO (rand. intercepts)")

ggline (etal)

ggnorm(etal,
main = "Etal (rand. slopes)")

vV + VvV V + V V V V

ggline (etal)

m The tails seem to be a bit heavier
(for both 5 and n4) than the
normal distribution.

=  Generally not bad, for 38 data
points (except maybe that low
outlier!)

Sample Quantiles

Sample Quantiles

Eta0 (rand. intercepts)

[slye)
COO

™
o

-0.6
]
o

Theoretical Quantiles

Eta1 (rand. slopes)

-0.015 -0.005 0.005

Theoretical Quantiles
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‘ Level 1 plots: €é’s vs predictors

vVV +++V+V VV V V +V +V V

library (HLMdiag)

lev.l <- hlm resid(lmer.1,

include.ls=F)

lev.2 <- hlm resid(lmer.1,
include.ls=F, level="school")

resid.marg <- lev.lS.mar.resid
resid.cond <- lev.1$.resid
etal <- lev.2S.ranef.intercept
etal <- lev.2$.ranef.lrt

new.data <- data.frame (school,
LRT, resid.margqg)

ggplot (new.data,

aes (x=LRT, y=resid.marqg)) +

geom point (aes (color=school)) +
geom smooth ()

## and similarly for conditional

## residuals..

Some evidence of curvature here...
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+ + +V + ++V +V +V

Level 2 plots: 17’s vs predictors

LRT.avg <- with(school.frame,
sapply (split (LRT, school) ,mean))

new.data <- data.frame (LRT.avg,
school=factor (1:38),etal,etal)
ggplot (new.data,

aes (x=LRT.avg,y=etal)) +

geom point (aes (color=school)) +
geom smooth ()

ggplot (new.data,

aes (x=LRT.avg,y=etal)) +

geom point (aes (color=school)) +
geom smooth ()

Evidence of curvature, especially
in 14

Suggests a transformation of LRT,
perhaps a cubic?

school

m oot om N oo B
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=21
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* 28
.27

28
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a3
34
35
36
a7
38

11/14/2022



‘ Standardized Residuals

= There can be two “standardization” problems
with Level 1 MLM residuals

a Like Im() residuals, they have unequal variance
= Raw residuals for Im() have variances like 6%,/1 — hy;

= Similar but more complicated for € ;44 and € g

3 € marg Will have noticeable correlations induced by Zn

0 € .ong Should be approximately uncorrelated

m Level 2 residuals, 17’s, should be approximately
uncorrelated but also have unequal variances

11/14/2022 22



‘ Calculating standardized residuals

= These can be calculated! “by hand” but it is easier
to use library(HLMdiag):

>
[1

[5]

h.stdres.l <- hlm resid(lmer.1l,level=1, include.ls=F, standardize=T)

h.stdres.2 <- hlm resid(lmer.1l,level="school",include.ls=F,

standardize=T)

names (h. stdrif/}//////
"ld" "Y" /M

.std.resid"

Stdized Cond
Residuals

Cond Fitted
Values

Cholesky Marg

Residuals

".fitted"

> names (h.stdres.?2)

[1]

"school"

Stdized 1jy's

/

".std.ranef.intercept"

.chol.mar.resid"

Stdized 1j;’s

/

A/'SChOOl"

".mar.fitted"

\

".std.ranef.lrt"

Marg Fitted
Values

11/14/2022
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‘ ASIDE: Cholesky Residuals

= Correlation in the marginal residuals ¥ — X 3
can make it hard to interpret ggnorm plots, etc.

m “Cholesky residuals” are marginal residuals,

transformed to remove the correlation:
¥ = Var(y — Xp)

= In the R file accompanying this lecture we show
how to get components of the fitted Imer model
to construct 2, S, to construct Cholesky residuals...

m Using him_resid() from library(HLMdiag) easier!

Sst

€chol

Var (Zn+¢€) = ZVar(n)Z' +0°1
Y (ie. S=Chol(Y))
S~y - XB)

11/14/2022
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‘ Level 1: Standardized vs Not

Conditional Residuals Marginal Residuals

sresid.cond <-
h.stdres.1$.std.resid o~

cresid.marg <-

h.stdres.l$.chol.mar.resid
ggnorm (resid.cond, main= . s
"Conditional Residuals") Wwﬂf}

o
T T T T T T T T T T T T T T

dggline (resid.cond) 3240 1203 3240 1203

Theoretical Quantiles Theoretical Quantiles

Sample Quantiles
Sample Quantiles

ggnorm (sresid.cond, main=
"Stdized Cond Residuals" ) Stdized Cond Residuals Cholesky Marg Residuals

ggline (sresid.cond) o Z° o

ggnorm(resid.marg, maln=
"Marginal Residuals™")

Sample Quantiles
Sample Quantiles

ggline (resid.marqg)

ggnorm(cresid.marg, main= o
"Cholesky Marg Residuals") T (R

Theoretical Quantiles Theoretical Quantiles

vV +V V +V V 4V V 4V +V +V

ggline (cresid.margqg)

 Level 1 Standardization makes
little difference for this data
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‘ Level 2: Standardized vs Not

n o n

vV + Vv V +V V +V V +V +V +V

"Etal
ggline (etal)

.eta.0 <-
.stdres.2$.std.ranef.intercept

.eta.l <-
h.

ggnorm(etal, main =
"Etal

stdres.2S.std.ranef.lrt

rand. intercepts)")

ggline (eta0)

rand. slopes)")

(
(
ggnorm(etal, main =
(
(

ggnorm(s.eta.0, main =
"Stdized etal (Intercept)")

ggline(s.eta.0)

ggnorm(s.eta.l, main =
"Stdized etal (Slopes)")

ggline(s.eta.l)

Sample Quantiles

Sample Quantiles

0.6

Eta0 (rand. intercepts) Eta1 (rand. slopes)

0.005 0010

Sample Quantiles

-0.005

-0.015

Theoretical Quantiles Theoretical Quantiles

Stdized eta0 (Intercept) Stdized eta1 (Slopes)

Sample Quantiles

Theoretical Quantiles Theoretical Quantiles

» Level 2 Standardization
slightly improves normality

11/14/2022
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‘ Residuals: Practical Advice

m Looking at some residuals is better than looking at
none.

o In many MLM’s, marginal and conditional residuals can be
used roughly as you would with ordinary linear regression

0 Good to look at facet plots of Level 1 residuals

0 Some problems will be easier to see with ungrouped plots
of Level 1 (€ yuarg and € ongq) and Level 2 (#)’s ) residual
plots (vs. y’s, predictor variables, etc.)

0o Standardized residuals helpful for assessing normality,
outliers

= If you forget HLMdiag, residuals (1lmer.1)
gives you the conditional residuals

11/14/2022
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‘Summary

m The London Schools Data

0 A nice random-intercepts, random-slopes model
0 ASIDE: Shrinkage for regression lines

m Residuals in MLM’s

0 Marginal residuals
0 Conditional residuals
0 Random effects residuals

m Level 1 and Level 2 Residual Plots

m Standardized Residuals
o ASIDE: Cholesky Residuals

m Practical Advice
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