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Announcements

◼ No new reading

◼ No quiz this week

◼ HW08 due Weds at 1159pm

◼ Project description and timeline is1 available in 
files area on Canvas

◼ Please read the code and comments in 
22 – estimation and model 

selection.r carefully!

211/16/2022 1(…or will be, by Friday of Week 10!)



Project stuff
◼ HW09 (see hw09 folder) 

❑ Many raw materials for Data, Discussion sections and (especially) 
Technical Appendix 

◼ Project assignment sheet (see project folder) provides
❑ Raw materials for Introduction

❑ Timeline, guidelines and grading rubric for final IDMRAD paper

◼ Project Due Dates
❑ HW09: Fri Nov 18 (grace till Sun Nov 20th) 

❑ Rough IDMRAD draft: Weds Nov 23 (grace till Fri Nov 25th)

❑ Peer review: Fri Dec 2 (2 hrs grace!)

❑ Final IDMRAD paper: Fri Dec 9 (2 hrs grace!) 
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Office hour this week

◼ Mon and Weds at noon: BJ as usual

◼ Friday: 

❑ BJ will take Lorenzo’s 11am office hour in 132E Baker 
(my usual office)

❑ Lorenzo will be travelling but will hold a zoom office 
hour at 4pm Friday.  Zoom link:
https://cmu.zoom.us/j/98282667112?pwd=dm8yWXR
5NkdFemRlbnFYeXBEQXVVQT09

411/16/2022

https://cmu.zoom.us/j/98282667112?pwd=dm8yWXR5NkdFemRlbnFYeXBEQXVVQT09
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Outline
◼ Marginal and Conditional Models

◼ Estimation

❑ MLE: Full maximum likelihood

❑ EB: Empirical Bayes

❑ REML: Restricted or Residual maximum likelihood

◼ Likelihood Ratio Tests, AIC, BIC

❑ Change from REML to MLE for all three

◼ Df for marginal and conditional models

❑ DIC, cAIC

◼ Variable selection: Practical Advice

◼ Example (London Schools)



Marginal and Conditional Models
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Marginal and Conditional Models
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Marginal and Conditional Models
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Estimation: Maximum Likelihood

911/16/2022

1Here we define |A| = det(A).



Estimation: Maximum Likelihood

1011/16/2022
2(an example of a Gauss-Seidel algorithm)



Estimation: Empirical Bayes

◼ After the MLE’s መ𝛽 , ො𝜎2, and ෝ𝜔 = (some Ƹ𝜏2’s & some ො𝜌’s) have 

been obtained, we can plug them into the calculation

Ƹ𝜂𝐸𝐵 = 𝐸 𝜂 𝑌, መ𝛽 , ො𝜎2, ෝ𝜔 = න𝜂𝑓 𝜂|𝑌, መ𝛽 , ො𝜎2, ෝ𝜔 d𝜂

◼ The density 𝑓 𝜂|𝑌, መ𝛽 , ො𝜎2, ෝ𝜔 can be calculated from the 

other conditional and marginal densities, using Bayes’ rule.

◼ The point estimates Ƹ𝜂𝐸𝐵are called empirical Bayes estimates.

❑ Standard deviations for Ƹ𝜂𝐸𝐵 can be obtained in the same way.

❑ There is a lot of numerical analysis involved in evaluating the integral.

◼ The same thing is done with REML parameter estimates…
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Estimation: Maximum Likelihood

◼ Pro’s:

❑
መ𝛽𝑀𝐿𝐸 is unbiased, just like in ordinary regression.

❑ MLE’s are needed for model comparisons

◼ Con’s:

❑ ො𝜎𝑀𝐿𝐸
2 is biased, just like ordinary regression.  Estimates 

of the 𝜏2’s and 𝜌’s in ෝ𝜔 are biased as well.

❑ For larger models, the full Maximum Likelihood 
procedure can be slow.

❑ Difficult to use standard tools to test 𝜏2 = 0, e.g.
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Estimation: REML

◼ Restricted (or residual, or reduced) maximum 
likelihood (REML) is based on the same idea as 
estimating 𝜎2 in ordinary regression:

❑ If 𝑌 = 𝑋𝛽 + 𝜖, then for 𝐻 = 𝑋 𝑋𝑇𝑋
−1
𝑋𝑇, 

𝐼 − 𝐻 𝑌 = (𝐼 − 𝐻) 𝑋𝛽 + 𝜖

= 𝐼 − 𝐻 𝜖 ∼ 𝑁 0, 𝐼 − 𝐻 𝜎2

❑ Then we get a 𝛽-free, unbiased estimate of 𝜎2 as 

ො𝜎2 =
1

𝑛 − 𝑘
𝑅𝑆𝑆 =

1

𝑛 − 𝑘
(I−H)𝑌

𝑇
(I−H)𝑌

◼ REML applies the same idea to MLM’s
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Estimation: REML
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Likelihood Ratio Tests
◼ If M0 is nested in M1 (obtain M0 from M1 by making linear 

restrictions on the parameters), and if the data came from 
M0, then as the sample size grows

−2 log 𝑙𝑖𝑘𝑒𝑙ℎ𝑜𝑜𝑑𝑀0 − log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑀1

will be distributed as 𝜒2on k df, where k is the number of 
linear restrictions (usually, difference in # of parameters).

◼ Cautions

❑ Evaluate log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 at the MLE’s for the model

❑ If M0 has parameter values at the edge of the parameter 
space for M1, LRT may not be chi-squared1 under H0.

1511/16/2022

1Self, S. G., & Liang, K. Y. (1987). Asymptotic properties of maximum likelihood 

estimators and likelihood ratio tests under nonstandard conditions. Journal of 

the American Statistical Association, 82(398), 605-610.



Likelihood Ratio Tests
◼ Because the likelihoods should be evaluated at the MLE’s, it is 

better to use MLE for estimation than REML. 
❑ REML estimates can be “close enough”, but for any particular problem

we don’t know if they’ll be close enough unless we calculate the MLE’s 
too (in which case, just use the MLE’s!)

◼ If M0 has parameter value(s) at the edge of the parameter 
space for M1, the LRT may not have a chi-squared distribution1 

under M0.  So:  
❑ LRT fine for restrictions on 𝛽’s or 𝜌’s

❑ LRT Not OK for testing whether  𝜏2 = 0, or equivalently, comparing a 
model with or without a particular random effect.
(LRT tends to be conservative: choosing 𝜏2 = 0 when 𝜏2 > 0)

◼ In MLM’s counting df can be tricky – see slides on AIC, BIC, etc.
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1Self, S. G., & Liang, K. Y. (1987). Asymptotic properties of maximum likelihood 

estimators and likelihood ratio tests under nonstandard conditions. Journal of 

the American Statistical Association, 82(398), 605-610.



Information Criteria: AIC & BIC

◼ AIC = -2logLik(M) + 2 k
❑ Tends to pick models with lower prediction error

◼ BIC = -2logLik(M) + k log(n)
❑ Tends to pick models closer to the “correct” model

◼ Issues:
❑ BIC picks simpler models than AIC

◼ Models do not have to be nested

❑ Need logLik(M) evaluated at, or very near, MLE’s
◼ REML estimates often not good enough1

❑ What should k (degrees of freedom) be?

1711/16/2022

1Can use update(…, REML=F) or 

lmer(…,REML=F) to force MLEs…



k=df for Marginal Model

◼ Marginal model:

𝑌|𝛽,𝜔, 𝜎2 ∼ 𝑁(𝑋𝛽, Σ 𝜔, 𝜎2 )

◼ Degrees of freedom are straightforward:

k = (number of 𝛽’s in 𝛽) + (number of 𝜏2’s & 𝜌’s in 𝜔)

◼ R’s AIC, BIC and logLik functions:

❑ Log(likelihood) based on marginal model 𝑓 𝑌 𝛽,𝜔, 𝜎2)

❑ df as above1 ; remember to set REML=F

❑ Fine for testing 𝛽’s or 𝜌’s (0 is in the middle of param space)

❑ Not great for testing 𝜂’s or 𝜏2’s (0 is at the boundary)
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1R might use this df + 1 (for 𝜎2). But it would not matter for AIC or BIC, 

since the +1 would cancel out when we compare different models.



k=df for Conditional Model
◼ Conditional model:

𝑌|𝜂, 𝛽, 𝜔, 𝜎2 ∼ 𝑁(𝑋𝛽 + Z𝜂, 𝜎2𝐼)

◼ Degrees of freedom (?):

k = (number of 𝛽’s in 𝛽) + (number of 𝜂’s in 𝜂?)

◼ The appropriate df for 𝜂 not so obvious…

❑ one-way ANOVA with J cells (df=J)

❑ fitting grand mean only (df=1)

❑ 1 · keff· J, depending on size of ¿02

1911/16/2022



How to select random effects??

◼ Many schools of thought but I will briefly discuss 
just two:  DIC and cAIC.

◼ Both are modifications of AIC

◼ DIC = -2logLik(M) + 2 keff

❑ LogLik(M) based on marginal model 𝑓 𝑌 𝛽,𝜔, 𝜎2)

❑ keff is estimated from the curvature of the likelihood, which 
is driven by the size of the 𝜏2’s

◼ cAIC = -2logLik(M) + 2 keff

❑ logLik(M) based on the conditional model 𝑓 𝑌 𝜂, 𝛽, 𝜔, 𝜎2)

❑ keff is a different “model curvature” estimate

2011/16/2022
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Variable Selection: Practical Advice

◼ Start with multilevel model that represents your 
initial guesses about group structure in the data

◼ Selection on all the fixed effects first, using AIC or BIC

❑ AIC will result in bigger models that predict better

❑ BIC will result in smaller models that interpret better

◼ Then use DIC  or cAIC to select random effects

❑ True confessions: 
◼ Others find cAIC useful; for me, DIC is usually enough.

◼ For informal explorations I am occasionally lazy and use AIC or BIC 
for 𝜂’s – not great!

❑ We will talk later in the semester about other, simulation-
based methods for selecting random effects.



Variable Selection: Practical Advice

◼ Whenever you put an interaction in a model, you should also 
put the lower order terms in the model (R usually does this 
for you)
❑ X*Y expands to 1 + X + Y + X:Y

❑ X*Y*Z expands to 1 + X + Y + Z + X:Y + X:Z + Y:Z + X:Y:Z     (etc. etc.)

❑ Similarly for polynomials: if you put I(X^3) in a model, make sure  1 + X 
+ I(X^2) + I(X^3) are in the model (R doesn’t do this for you!)

◼ Whenever you put a random effect in a model, include the 
same term as a fixed effect
❑ If you want (1 + X + Y|group), make sure the model includes 

1 + X + Y + (1+X+Y|group)

❑ It’s OK to have fixed effects that are not also random effects

◼ Like all rules, there are times that these should be broken

2211/16/2022



Example: London Schools Data
## adding two variables to the school.frame data

> school.frame$sch.avg <- with(school.frame, unlist(sapply(split(LRT,school),

+                         function(x) {rep(mean(x),length(x))})))

> school.frame$LRT.cwc <- with(school.frame,LRT-sch.avg)

> str(school.frame)

'data.frame':   1978 obs. of  9 variables:

$ Y            : L1: End-of-year test score

$ school       : L2: School ID

$ LRT          : L1: Beginning-of-year score

$ Gender       : L1: Female or male

$ School.denom : L2: Factor w/ 4 levels "CofE","Other","RomCath", "State" 

$ School.gender: L2: Factor w/ 3 levels "All.Boy","All.Girl", "Mixed"

$ VR           : L1: Factor w/ 3 levels "High","Low","Med"

$ sch.avg : L2: LRT cluster (school) means

$ LRT.cwc : L1: LRT, centered within cluster (school)

> ## 

> ## It’s good to make a note of which variables vary with individuals 

> ## (students; L1), and which ones vary with cluster (school; L2).

2311/16/2022 Source: Goldstein (1993); see also library(mlmREv)



On the next pages, we’ll quickly 
compare six models
◼ Random Intercept Only

❑ Y ~ 1 + (1 | school)

◼ Random Intercept, Fixed Slope
❑ Y ~ LRT + (1 | school)

◼ Random Intercept, Random Slope
❑ Y ~ LRT + (LRT | school)

◼ Random Intercept, Random Slope, CWC
❑ Y ~ LRT.cwc + (1 + LRT.cwc | school)

◼ Random Intercept, individual and group predictor
❑ Y ~ LRT + sch.avg + (1 + LRT | school)

◼ Random Intercept, Cross-Level Interaction
❑ Y ~ LRT * sch.avg + (1 + LRT | school)

2411/16/2022 Details in school-frame-mlm.r



Random Intercept Only

> lmer.1 <- lmer(Y ~ 1 + 

+ (1 | school), data=school.frame)

> display(lmer.1)

lmer(formula = Y ~ 1 + (1 | school), 

data = school.frame)

coef.est coef.se 

-0.01     0.06 

Error terms:

Groups   Name        Std.Dev.

school   (Intercept) 0.30    

Residual             0.96    
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Random Intercept, Fixed Slope

> lmer.2 <- lmer(Y ~ LRT + 

+ (1 | school), data=school.frame)

> display(lmer.2)

lmer(formula = Y ~ LRT + (1 | 

school), data = school.frame)

coef.est coef.se

(Intercept) 0.01     0.05   

LRT         0.05     0.00   

Error terms:

Groups   Name        Std.Dev.

school   (Intercept) 0.23    

Residual             0.79    

2611/16/2022



Random Intercept, Random Slope

> lmer.3 <- lmer(Y ~ LRT + 

+ (LRT | school), data=school.frame)

Model failed to converge with 

max|grad| = 0.235913 (tol = 0.002)

> display(lmer.3)

lmer(formula = Y ~ LRT + (LRT | 

school), data = school.frame)

coef.est coef.se

(Intercept) 0.01     0.05   

LRT         0.05     0.00   

Error terms:

Groups   Name        Std.Dev. Corr

school   (Intercept) 0.24          

LRT         0.01     0.57 

Residual             0.79          
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Random Intercept, Random Slope, CWC

> lmer.4 <- lmer(Y ~ LRT.cwc + 

+ (1 + LRT.cwc | school),

+ data=school.frame)

Model failed to converge with 

max|grad| = 0.0042402 (tol = 0.002) 

> display(lmer.4)

lmer(formula = Y ~ LRT.cwc + (1 + 

LRT.cwc | school), data = 

school.frame)

coef.est coef.se

(Intercept) -0.01     0.06  

LRT.cwc 0.05     0.00  

Error terms:

Groups   Name        Std.Dev. Corr

school   (Intercept) 0.32          

LRT.cwc 0.01     0.83 

Residual             0.79 
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Random Intercept, individual and 
group predictor
> lmer.5 <- lmer(Y ~ LRT + 

+ sch.avg + (1 + LRT | school),

+  data=school.frame)

> display(lmer.5)

lmer(formula = Y ~ LRT + sch.avg + 

(1 + LRT | school), data = 

school.frame)

coef.est coef.se

(Intercept)  0.00     0.05  

LRT          0.05     0.00  

sch.avg -0.01     0.01  

Error terms:

Groups   Name        Std.Dev. Corr

school   (Intercept) 0.24          

LRT         0.01     0.62 

Residual             0.79          
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Random Intercept, Cross-Level 
Interaction
> lmer.6 <- lmer(Y ~ LRT * sch.avg +

+  (1 + LRT | school),

+  data=school.frame)

Model failed to converge with 

max|grad| = 0.0309104 (tol = 0.002)

> display(lmer.6)

lmer(formula = Y ~ LRT * sch.avg + 

(1 + LRT | school), data = 

school.frame)

coef.est coef.se

(Intercept) -0.01     0.05  

LRT          0.05     0.00  

sch.avg 0.00     0.01  

LRT:sch.avg 0.00     0.00  

Error terms:

Groups   Name        Std.Dev. Corr

school   (Intercept) 0.24          

LRT         0.01     0.64 

Residual             0.79          
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Which Model Fits Best (so far…)?
> AIC.ml <- function(M) {AIC(update(M,REML=F))}        ## We’ll talk about

> BIC.ml <- function(M) {BIC(update(M,REML=F))}        ## AIC/BIC/DIC and

> DIC.ml <- function(M) {extractDIC(update(M,REML=F))} ## REML next week

> res <-

+ rbind(AIC=sapply(list(lmer.1,lmer.2,lmer.3,lmer.4,lmer.5,lmer.6),AIC.ml),

+       BIC=sapply(list(lmer.1,lmer.2,lmer.3,lmer.4,lmer.5,lmer.6),BIC.ml),

+       DIC=sapply(list(lmer.1,lmer.2,lmer.3,lmer.4,lmer.5,lmer.6),DIC.ml))

> colnames(res) <- c("lmer.1","lmer.2","lmer.3","lmer.4","lmer.5","lmer.6")

> 

> t(round(res,2))

AIC     BIC     DIC

lmer.1 5528.35 5545.12 5522.35

lmer.2 4752.30 4774.66 4744.30

lmer.3 4749.36 4782.90 4737.36

lmer.4 4761.55 4795.08 4749.55

lmer.5 4751.02 4790.15 4737.02

lmer.6 4745.94 4790.65 4729.94

3111/16/2022

Y ~ 1 + (1 | school)

Y ~ LRT + (1 | school)

Y ~ LRT + (LRT | school) 

Y ~ LRT.cwc + (1 + LRT.cwc | school)

Y ~ LRT + sch.avg + (1 + LRT | school)

Y ~ LRT * sch.avg + (1 + LRT | school)



Some Automatic & Exact Methods

◼ There are a number of R packages that will do 
variable selection for lmer models, including:
❑ LMERConvenienceFunctions automates 

backwards selection of fixed effects and forward 
selection of random effects, using AIC, BIC, etc.
◼ fitLMER.fnc() is general-purpose function for this

❑ RLRsim provides simulation-based exact likelihood 
ratio tests for random effects
◼ exactLRT() performs exact LRT test for true ML fits

◼ exactRLRT() performs exact LRT test for REML fits
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Automated Variable Selection…
> library(LMERConvenienceFunctions) # for fitLMER.fnc() function...

# start with a "big fixed effects" model

> lmer.10 <- lmer(Y ~ LRT + VR + Gender + School.gender +School.denom + 

+ (1+LRT|school), data=school.frame)

> lmer.11 <- fitLMER.fnc(lmer.10,

+ ran.effects=c("(School.gender|school)",

+ "(School.denom|school)"),method="BIC")

> anova(lmer.5,lmer.10,lmer.11)

refitting model(s) with ML (instead of REML)

Data: school.frame

Models:

lmer.11: Y ~ LRT + VR + Gender + (1 + LRT | school)

lmer.5: Y ~ LRT + School.denom + VR + (1 + LRT | school)

lmer.10: Y ~ LRT + VR + Gender + School.gender + School.denom + (1 + LRT | 

lmer.10:     school)

Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)

lmer.11  9 4566.9 4617.2 -2274.4   4548.9                        

lmer.5  11 4577.2 4638.7 -2277.6   4555.2     0      2          1

lmer.10 14 4618.9 4697.2 -2295.5   4590.9     0      3          1

3311/16/2022

fitLMER.fnc:

1. Backwards elimination of F.E’s

2. Forward selection of R.E.’s

3. Backwards elimination of F.E.’s



Exact Test of Random Effect..
library(RLRsim)

m0 <- lmer(Y ~ LRT + VR + Gender + (1  | school), data=school.frame)

lmer.11a <- lmer(Y ~ LRT + VR + Gender + (1|school) + (0 + LRT | school),

data=school.frame) # need indep rand effects for RLRsim...

lmer.LRT.only <- lmer(Y ~ LRT + VR + Gender + (0 + LRT | school),

data=school.frame)

formula(m0) # formula under H0: no random slopes for LRT

formula(lmer.11a) # model under HA: yes random slopes for LRT

formula(lmer.LRT.only) # model with *only* random slopes for LRT

exactRLRT(lmer.LRT.only,lmer.11a,m0)

#         simulated finite sample distribution of RLRT.

#         

#         (p-value based on 10000 simulated values)

# 

# data:  

# RLRT = 6.2561, p-value = 0.0055
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Summary
◼ Marginal and Conditional Models

◼ Estimation

❑ MLE: Full maximum likelihood

❑ EB: Empirical Bayes

❑ REML: Restricted or Residual maximum likelihood

◼ Likelihood Ratio Tests, AIC, BIC

❑ Change from REML to MLE for all three

◼ Df for marginal and conditional models

❑ DIC, cAIC

◼ Variable selection: Practical Advice

◼ Example (London Schools)


