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Announcements

= No new reading
= No quiz this week

s HWO8 due Weds at 1159pm

m Project description and timeline is! available in
files area on Canvas

m Please read the code and comments in
22 - estimation and model

selection.r carefully!

11/16/2022 1(...or will be, by Friday of Week 10!) .



‘ Project stuff

= HWO09 (see hwO09 folder)

o Many raw materials for Data, Discussion sections and (especially)
Technical Appendix
= Project assignment sheet (see project folder) provides
o Raw materials for Introduction
o Timeline, guidelines and grading rubric for final IDMRAD paper

= Project Due Dates
o HWO9: Fri Nov 18 (grace till Sun Nov 20t")
o Rough IDMRAD draft: Weds Nov 23 (grace till Fri Nov 25t)
o Peer review: Fri Dec 2 (2 hrs grace!)
o Final IDMRAD paper: Fri Dec 9 (2 hrs grace!)

11/16/2022



‘ Office hour this week

» Mon and Weds at noon: BJ as usual
= Friday:

o BJ will take Lorenzo’s 11am office hour in 132E Baker
(my usual office)

o Lorenzo will be travelling but will hold a zoom office
hour at 4pm Friday. Zoom link:
https://cmu.zoom.us/j/98282667112?pwd=dm8yWXR
5NkdFemRIbnFYeXBEQXVVQT09

11/16/2022


https://cmu.zoom.us/j/98282667112?pwd=dm8yWXR5NkdFemRlbnFYeXBEQXVVQT09

‘ Outline

= Marginal and Conditional Models

= Estimation
o MLE: Full maximum likelihood
o EB: Empirical Bayes
0 REML: Restricted or Residual maximum likelihood

m Likelihood Ratio Tests, AIC, BIC
0 Change from REML to MLE for all three

m Df for marginal and conditional models
o DIC, cAIC

m Variable selection: Practical Advice
m_Example (London Schools)

11/16/2022



‘ Marginal and Conditional Models

Consider the general Laird-Ware formulation (I'm being a little careful to underline
things that are vectors. . .)

o [

|3

~d

~

XB+2Zn+e

N (0, 02[)

N(0, W)

The variance-covariance matrix o2/ and the variance-covariance matrix ¥ are both
pretty big, but also pretty simple. For example in the random slopes / random intercepts

model,
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and in general, ¥ = U(w), where w = (a few 72's and a few p's).
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‘ Marginal and Conditional Models

The Laird-Ware formulation

Y = Xf+Zn+e
e ~ N(0,0°1)
no~ N(Q’\II)

tells us that the joint pdf for Y and 7, given 0% and w = (a few 7%'s and a few p's) is

f(Y,nl|g, 0?,w) = (Some multivariate normal density)
We can figure out a lot about this density by factoring it

FYn|B, 0% w) = f(Y|B,n,0%) f(n|w)

(abusing notation to use the “f" to refer to different densities).

e f(Y]|B3,n,0%) is the conditional model

o [(Y|B,0%w)= [ f(Y|B,n,0°)f(n|B,w)dn is the marginal model

These correspond to the conditional and marginal residuals we looked at last time!

11/16/2022



‘ Marginal and Conditional Models

With the Laird-Ware formulation

Y = Xf+Zn+e
N(0,0%])
N(0,7)

|
%

|3
l

we can see that

e The conditional model f(Y|3,7,0?) specifies that

(Y|8,m,0%) ~ N(XB+ Zn,o°I)

e The marginal model f(Y|3,0°, w) specifies that

(Y|B.0% w) ~ N(XB,Var(Zn+e) = N(XB, 2% (w)Z" + 5°I)

11/16/2022



Estimation: Maximum Likelihood

Maximum Likelihood estimates are obtained from the marginal model
Y ~ N(XB,%(w,0%)
where Y(w,0?) = ZU(w)Z' + 0?1
which means that the likelihood for Y is!

(2m) 218 ?)| 2 exp (5~ XD D(e0”) - X5))

so —2 log(likelihood) is (up to an additive constant that we can ignore)
Y - XB)' 5w, 0)(¥ — XB) + log [E(w, %) (*)

If we can minimize (x) with respect to 3,w, 02, we will have maximized

the likelihood, and the values of the parameters that we find will be the
MLE's 8, w, 5.

Here we define |A| = det(A).
11/16/2022



Estimation: Maximum Likelihood

To minimize

(Y~ XB)"'S7 w, o) (¥~ XB) +log[S(w, 0%)] (%)

with respect to [, w, o2 we want to (schematically, anyway):

e Get an initial estimate for é perhaps just the ordinary least-squares B's.

e lterate the following three steps® until changes in the values of (x) are less than
some “tolerance” (like 0.0002 or something):

1. Plug our current estimate for é into (*), and then minimize (%) with respect

to w and 02 to get new estimates &, 52.

2. Use these new values for w and 62 to re-calculate (@, 52), plug the new
value into (%) and use the method of Generalized Least Squares (GLS) to

obtain new estimates for (3.

3. Evaluate (x) at the new estimates of é, w, 62,

Steps 2 and 3 are generally well-solved problems in numerical analysis. On the other
hand, Step 1 can be quite difficult. That is part of the reason R makes 6 or 7 optimizers
available for estimating MLM'’s.

11/16/2022 2(an example of a Gauss-Seidel algorithm)
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Estimation: Empirical Bayes

s After the MLE’s 8, 62, and @ = (some £2’s & some p’s) have

been obtained, we can plug them into the calculation

gs = E[n]Y.£.6%.a| = [ nf (nlY.4.6% @) an

= The density f (n|Z,,@, 62,@) can be calculated from the
other conditional and marginal densities, using Bayes’ rule.

= The point estimates nggare called empirical Bayes estimates.

o Standard deviations for 755 can be obtained in the same way.

o There is a lot of numerical analysis involved in evaluating the integral.

= The same thing is done with REML parameter estimates...

11/16/2022
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Estimation: Maximum Likelihood

m Pro’s:
0 ,BMLE is unbiased, just like in ordinary regression.
o MLE’s are needed for model comparisons

m Con’s:
2

0 Oy 5 is biased, just like ordinary regression. Estimates

of the 7%’s and p’s in @ are biased as well.

o For larger models, the full Maximum Likelihood
procedure can be slow.

o Difficult to use standard tools to test 74 = 0, e.g.

11/16/2022
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Estimation: REML

m Restricted (or residual, or reduced) maximum
likelihood (REML) is based on the same idea as
estimating o2 in ordinary regression:

2 IfY = XB + ¢ thenfor H = X(XTX) X,
(I =Y = (1 ~H) (X +¢)
= (I —H)e ~ N(0,(I — H)o?)
0 Then we get a é-free, unbiased estimate of g2 as

1 1
RSS = ——[(-H)Y]' [a-H)y]
s REML applies the same idea to MLM'’s

A2 —

0]

n—=k n—=k
11/16/2022
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Estimation: REML

For the MLM Y = X8 + Zn + ¢, if we take H = X(X1X)"' X' again, we get that

(I-HY = (I-H)(XB+Zn+e¢) = (I-H)Zn+(I—H)e
~ N(0, (I - H)Z%(w,0%)Z" (I — H))

e We can use this fact to obtain obtain (-free estimates @ ppys and 6%pa,r- We

still have a challenging optimization problem, but it only has to be done once (no
iteration back and forth with 3).

e Finally we obtain @REML estimates using a GLS procedure similar to what was
done with (x).

It can be shown that:
o X(w 62, ) is biased, but X (& &2 ) is unbiased
WM LE OMLE : WREML)OREML
e Bremr and X(Qppar, 0%eaz) are not maximum likelihood estimates

Since people are often more interested in the random effects than the fixed effects in
MLM's (and because it's fast), REML is often the default estimation method.

11/16/2022 14



‘ Likelihood Ratio Tests

m If MO is nested in M1 (obtain MO from M1 by making linear
restrictions on the parameters), and if the data came from
MO, then as the sample size grows

—2|log(likelhood,;y) — log(likelihood,;;)]

will be distributed as y“on k df, where k is the number of
linear restrictions (usually, difference in # of parameters).

= Cautions
0 Evaluate log(likelihood) at the MLE’s for the model

o If MO has parameter values at the edge of the parameter
space for M1, LRT may not be chi-squared! under H,.

1Self, S. G., & Liang, K. Y. (1987). Asymptotic properties of maximum likelihood
11/16/2022 estimators and likelihood ratio tests under nonstandard conditions. Journal of 15
the American Statistical Association, 82(398), 605-610.



‘ Likelihood Ratio Tests

m Because the likelihoods should be evaluated at the MLE’s, it is
better to use MLE for estimation than REML.

o REML estimates can be “close enough”, but for any particular problem
we don’t know if they’ll be close enough unless we calculate the MLE’s
too (in which case, just use the MLE’s!)

= If MO has parameter value(s) at the edge of the parameter
space for M1, the LRT may not have a chi-squared distribution?
under MO. So:

2 LRT fine for restrictions on f’s or p’s

o LRT Not OK for testing whether t2 = 0, or equivalently, comparing a
model with or without a particular random effect.
(LRT tends to be conservative: choosing 72 = 0 when t2 > 0)

= In MLM’s counting df can be tricky — see slides on AIC, BIC, etc.

1Self, S. G., & Liang, K. Y. (1987). Asymptotic properties of maximum likelihood
11/16/2022 estimators and likelihood ratio tests under nonstandard conditions. Journal of 16
the American Statistical Association, 82(398), 605-610.



‘ Information Criteria: AIC & BIC

m AIC =-2logLik(M) + 2 k
0 Tends to pick models with lower prediction error
m BIC = -2logLik(M) + k log(n)
a0 Tends to pick models closer to the “correct” model

m [ssues:

0 BIC picks simpler models than AIC
= Models do not have to be nested

2 Need loglLik(M) evaluated at, or very near, MLE’s
s REML estimates often not good enough?

2 What should k (degrees of freedom) be?

1Can use update(..., REML=F) or
11/16/2022 Imer(...,REML=F) to force MLEs... 17



‘ k=df for Marginal Model

= Marginal model:
Y|B,w,0* ~ N(XB,%(w,0?))

m Degrees of freedom are straightforward:
k = (number of §’s in §) + (number of 7%’s & p’s in w)
m R’s AIC, BIC and logLik functions:
o Log(likelihood) based on marginal model f(Z |E, w,0%)

o df as abovel: remember to set REML=F
0 Fine for testing f’s or p’s (O is in the middle of param space)
o Not great for testing n’s or 74’s (0 is at the boundary)

1R might use this df + 1 (for 2). But it would not matter for AIC or BIC,
11/16/2022 since the +1 would cancel out when we compare different models. 18



‘ k=df for Conditional Model

m Conditional model:
Y|n,B,w, 0% ~ N(Xp + ZQ,JZI)

m Degrees of freedom (?):
k = (number of ’s in E) + (number of n’s in Q?)
m The appropriate df for n not so obvious...
Yi = Q)+ €i, € ~ N(0,0%)
aj = fo+mn 0y~ N(O,75)
a0 78 large = one-way ANOVA with J cells (df=))

0 78 small = fitting grand mean only (df=1)
o 1<k <J, depending on size of 7,2

11/16/2022
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How to select random effects??

= Many schools of thought but | will briefly discuss
just two: DIC and cAIC.

= Both are modifications of AIC
m DIC =-2loglLik(M) + 2 k
0 Loglik(M) based on marginal model f( Y |£, w,0%)

a k. is estimated from the curvature of the likelihood, which
is driven by the size of the T2’s

o loglik(M) based on the conditional model f( Y |Q' ﬁ, w,0%)

o k. is a different “model curvature” estimate

11/16/2022 20



‘ Variable Selection: Practical Advice

m Start with multilevel model that represents your
initial guesses about group structure in the data

m Selection on all the fixed effects first, using AIC or BIC
o AIC will result in bigger models that predict better

o BIC will result in smaller models that interpret better

m Then use DIC or cAIC to select random effects

o True confessions:

m  Others find cAIC useful; for me, DIC is usually enough.

m  Forinformal explorations | am occasionally lazy and use AIC or BIC
forn’s —not great!

o We will talk later in the semester about other, simulation-
based methods for selecting random effects.

11/16/2022 21



‘ Variable Selection: Practical Advice

= Whenever you put an interaction in a model, you should also
put the lower order terms in the model (R usually does this
for you)
o0 X*Yexpandstol+X+Y+X:Y
0 X*Y*Zexpandstol+X+Y+Z+XY+X:Z+Y:Z+X:Y:Z (etc.etc.)
2 Similarly for polynomials: if you put I(X*3) in a model, make sure 1+ X

+ 1(X"2) + I1(X"3) are in the model (R doesn’t do this for you!)

= Whenever you put a random effect in a model, include the

same term as a fixed effect

o Ifyouwant (1 + X+ Y]|group), make sure the model includes
1+X+Y+ (1+X+Y|group)

0 It’s OK to have fixed effects that are not also random effects

m Like all rules, there are times that these should be broken

11/16/2022 22



‘ Example: London Schools Data

## adding two variables to the school.frame data

> school.frameSsch.avg <- with (school.frame, unlist (sapply(split (LRT,school),
+ function (x) {rep(mean (x),length(x))})))

> school.frameSLRT.cwc <- with (school.frame, LRT-sch.avqg)

> str (school. frame)

'data.frame': 1978 obs. of 9 wvariables:
S Y : L1: End-of-year test score
$ school : L2: School ID
S LRT : L1: Beginning-of-year score
S Gender : Ll: Female or male
S School.denom : L2: Factor w/ 4 levels "CofE","Other","RomCath", "State"
$ School.gender: L2: Factor w/ 3 levels "All.Boy","All.Girl", "Mixed"
S VR : Ll: Factor w/ 3 levels "High","Low", "Med"
S sch.avg : L2: LRT cluster (school) means
S LRT.cwcC : Ll: LRT, centered within cluster (school)
> ##

> ## It’s good to make a note of which variables vary with individuals
> ## (students; L1), and which ones vary with cluster (school; L2).

11/16/2022 Source: Goldstein (1993); see also library(miImREv) 23



‘ On the next pages, we’'ll quickly
compare six models

= Random Intercept Only
o Y~1+ (1] school)
= Random Intercept, Fixed Slope
o Y~ LRT+ (1| school)
= Random Intercept, Random Slope
o Y~ LRT + (LRT | school)
= Random Intercept, Random Slope, CWC
o Y~ LRT.cwc + (1 + LRT.cwc | school)
= Random Intercept, individual and group predictor
o Y~ LRT + sch.avg + (1 + LRT | school)

= Random Intercept, Cross-Level Interaction
o Y~ LRT * sch.avg + (1 + LRT | school)

11/16/2022 Details in school-frame-mim.r

24



‘ Random Intercept Only

> Ilmer.l1

<- Imer (Y ~ 1

+ (1 | school), data=s
> display(lmer.1)

Ilmer (formula = Y ~ 1 +

data = school.frame)
coef.est coef.se
-0.01 0.06

Error terms:

Groups
school

Residual

Name

(Intercept)

_|_
chool. frame)

(1 | school),

Std.Dev.
0.30
0.96

[T X1 Moo R [T [C =T [FC =T
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‘ Random Intercept,

> Imer.2 <- lmer (Y ~ LRT +

+ (1 | school), data=school.frame)

> display(lmer.2)

lmer (formula = Y ~ LRT + (1 |
school), data = school.frame)

coef.est coef.se

(Intercept) 0.01 0.05

LRT 0.05 0.00

Error terms:

Groups Name Std.Dev.
school (Intercept) 0.23
Residual 0.79

Fixed Slope

36 7 38
Al -
) _/ /
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- L]
M -
= :
L mesetd - .
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.
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LRT
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Random Intercept, Random Slope

38

> Imer.3 <- lmer (Y ~ LRT +
+ (LRT | school), data=school.frame) ?

(=]
LT
\\\ "

&

37
Model failed to converge with 2 ///K/
max|grad| = 0.235913 (tol = 0.002) = 20 2 2 = i s
. 21 tt
> display (lmer.3) ”;Jf%{;égr/ : /{4/////////y/////;/
lmer (formula = Y ~ LRT + (LRT | R
22 23 24 25 26 27 28
school), data = school.frame) , - .
f.est f. 0 Yk o~ “g#‘/ 24
coef.est coef.se : /gfﬁ/ /{?//
(Intercept) 0.01 0.05 > 17 19 20 21
LRT 0.05 0.00 2 &

¥
&
5,

10 13 14

Error terms:
Groups Name Std.Dev. Corr o
school (Intercept) 0.24

LRT 0.01 0.57 -
Residual 0.79 .

Nn R

% A

2000 2040 -20 0 20 40 -200 20 40 -20 O 20 40 -20 0 20 40 -20 0 20 40 -20 0 20 40
LRT
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‘ Random Intercept, Random Slope, CWC

38

> Ilmer.4 <- Imer(Y ~ LRT.cwc + 36
+ (1 + LRT.cwc | school), f
+ data=school. frame)

A 32 33 34 35

Model failed to converge with

max|grad| = 0.0042402 (tol = 0.002) E:ﬁ/
> display (lmer.4) e

Imer (formula = Y ~ LRT.cwc + (1 +

i
N
>
\
\

=]
L

24 25 26 27 23

22
LRT.cwc | school), data = Ef . 5% /\éﬁ/ ; :.v... . Aﬁé/ X
- e " W A ey [ )
school. frame) 21 SN )ﬁﬁf//#@r”
> 15 16 17T 18 19 20 21
coef.est coef.se ) o
_ | s . - ...o - . & *y ....
(Intercept) -0.01 0.06 zﬂ/}ﬁ(f A /,ﬁ/ .
LRT.cwc 0.05 0.00 8 9 10 11 12 13 14
29 . .. L[] . ...
] 3 : ey /ﬁéﬁ/ £at
Error terms: zfg/ /Q?/ f /#/ /‘f{'/ A% ﬁ(
Groups Name Std.Dev. Corr - 2 2 2 > : !
24 . .8 H < .. ] L
school (Intercept) 0.32 D_)#/ f I : /’#'/ B /‘/
LRT .CwC O . O 1 O . 8 3 = -ZID .DI ZID 4ID -2:.0 DI ZID 4ID -ZID lj ZID 4ID -ZID DI 2ID 4ID -ZID DI 2ID 4ID -ZID.DI ZID 4ID -ZID DT ZID -1ID
. LRT.cwc
Residual 0.79
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‘ Random Intercept, individual and
group predictor

> lmer.5 <- lmer (Y ~ LRT + 36 £ 38
+ sch.avg + (1 + LRT | school), ?/ﬁ//////;/

ol
+ data=school.frame) 2 .
> display(lmer.b) 2 20 = 32 32 34 3

21 . .
lmer (formula = Y ~ LRT + sch.avg + ”)Jﬁ%{;ggr/ //f/////////r/////’/
(1 + LRT | school), data = 2 tased >

22 23 24 25 26 27 28

school. frame)

coef.est coef.se 0
(Intercept) 0.00 0.05 >
LRT 0.05 0.00 2
sch.avg -0.01 0.01

17 19 20 21

v

10

Error terms:

S nih

N

Groups Name Std.Dev. Corr ~ '3 -

school (Intercept) 0.24 , . e
LRT 0.01 0.62 ° } - 4 /ﬁ/

ReS ldual O '7 9 -ZID D 2ID 4ID -ZID D 2ID 40 -2ID IJ 2ID 40 -2ID D 2ID 40 -2ID D 2ID 40 -2ID D 2ID 40 -2ID D 2ID 40

LRT
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‘ Random Intercept, Cross-Level
Interaction

> lmer.6 <- Imer(Y ~ LRT * sch.avg +

36 7 38
+ (1 + LRT | school), N
+ data=school.frame) m/A///
Model failed to converge with ) 29 20 31 32 13 24 35

max|grad| = 0.0309104 (tol = 0.002) 2
> display (lmer.6) ]

.
X
B
.

23 24 25 26 27 23

lmer (formula = Y ~ LRT * sch.avg +
(1 + LRT | school), data = ‘
school. frame) 5

.

16 17 20 21

coef.est coef.se

(Intercept) -0.01 0.05 E ﬂa$¢/ _;dﬁ//%ﬁég/
LRT 0.05 0.00 ? - g
sch.avg 0.00 0.01 2

LRT:sch.avg 0.00 0.00 K

Frror terms:

Groups Name Std.Dev. Corr

% %

% '’
school  (Intercept) 0.24 PR da 200 Bdo 200 B0 B0 0 Ja0 B0 W a0 20 6 Fd B8 B
LRT 0.01 0.64 -
Residual 0.79
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‘ Which Model Fits Best (so far...)?

AIC.ml <- function (M) {AIC (update (M,REML=F)) } ## We’ll talk about
BIC.ml <- function (M) {BIC (update (M,REML=F)) } ## AIC/BIC/DIC and
DIC.ml <- function (M) {extractDIC (update (M,REML=F))} ## REML next week

res <-
rbind (AIC=sapply(list (lmer.1l,1lmer.2,1lmer.3,1lmer.4,1lmer.5,1lmer.6),AIC.ml

’

)
BIC=sapply(list (lmer.1l,1lmer.2,1lmer.3,1lmer.4,1lmer.5,1lmer.6),BIC.ml)
DIC=sapply(list(lmer.1l,1lmer.2,1lmer.3,1lmer.4,1lmer.5,1lmer.6),DIC.ml)

)
)

colnames (res) <- c("lmer.1","lmer.2","lmer.3","lmer.4","Imer.5", "Imer.o"

vV V. V + + 4+ V V V V

t (round(res, 2))
ATIC BIC DIC

lmer.1l 5528.35 5545.12 5522.35 Y ~ 1 + (1 | school)

Imer.2 4752.30 4774.66 4744.30 Y ~ LRT + (1 | school)

lmer.3 4749.36 4782.90 4737.36 Y ~ LRT + (LRT | school)

lmer.4 4761.55 4795.08 4749.55 Y ~ LRT.cwc + (1 + LRT.cwc | school)
lmer.5 4751.02 4790.15 4737.02 Y ~ LRT + sch.avg + (1 + LRT | school)
lmer.6 4745.94 4790.65 4729.94 Y ~ LRT * sch.avg + (1 + LRT | school)

11/16/2022 31



‘ Some Automatic & Exact Methods

m There are a number of R packages that will do
variable selection for Imer models, including:

0 LMERConvenilenceFunctions automates
backwards selection of fixed effects and forward
selection of random effects, using AIC, BIC, etc.

m fitLMER. fnc () isgeneral-purpose function for this

o RLRsim provides simulation-based exact likelihood
ratio tests for random effects
m exactLRT () performs exact LRT test for true ML fits
m exactRLRT () performs exact LRT test for REML fits

11/16/2022
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Automated Variable Selection...

library (LMERConvenienceFunctions) # for fitLMER.fnc() function...
start with a "big fixed effects" model

lmer.10 <- Ilmer (Y ~ LRT + VR + Gender + School.gender +School.denom +
(1+LRT | school), data=school.frame)

lmer.11 <- fitLMER.fnc(lmer.10,

ran.effects=c("(Schoof?ggHHEFT§Ch®eLL1#§§N‘N§

" (School.denom|school)"),method="BIC") fitLMER.fnc:
1. Backwards elimination of F.E’s

2. Forward selection of R.E.’s
3. Backwards elimination of F.E.’s

v + 4+ V 4+ VvV #== V

anova (lmer.5,1mer.10,1lmer.11)
refitting model (s) with ML (instead of REML)

Data: school. frame

Models:

lmer.11: Y ~ LRT + VR + Gender + (1 + LRT | school)

lmer.5: Y ~ LRT + School.denom + VR + (1 + LRT | school)

lmer.10: Y ~ LRT + VR + Gender + School.gender + School.denom + (1 + LRT |

lmer.10: school)
Df AIC BIC 1loglLik deviance Chisqg Chi Df Pr (>Chisq)
Imer.11 9 4566.9 4617.2 -2274.4 4548.9
Imer.5 11 4577.2 4638.7 -2277.6 4555.2 0
Imer.10 14 4618.9 4697.2 -2295.5 4590.9 0 3 1
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‘ Exact Test of Random Effect..

library (RLRsim)

mO0 <- lmer (Y ~ LRT + VR + Gender + (1 | school), data=school. frame)

lmer.lla <- Ilmer (Y ~ LRT + VR + Gender + (1l|school) + (0 + LRT | school),
data=school.frame) # need indep rand effects for RLRsim...

Imer.LRT.only <- Imer(Y ~ LRT + VR + Gender + (0 + LRT | school),

data=school. frame)
formula (m0O) # formula under HO: no random slopes for LRT
formula (lmer.lla) # model under HA: yes random slopes for LRT
formula (lmer.LRT.only) # model with *only* random slopes for LRT
exactRLRT (Ilmer.LRT.only, lmer.11a,m0)
simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated wvalues)

data:
RLRT = 6.2561, p-value = 0.0055
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‘Summary

m Marginal and Conditional Models

= Estimation
0 MLE: Full maximum likelihood
o EB: Empirical Bayes
0 REML: Restricted or Residual maximum likelihood

= Likelihood Ratio Tests, AIC, BIC
o Change from REML to MLE for all three

m Df for marginal and conditional models
o DIC, cAlIC

m Variable selection: Practical Advice
m Example (London Schools)

11/16/2022 35



