36-617: Applied Hierarchical Models

Bayes, Multilevel Models and Stan Brian Junker 132E Baker Hall brian@stat.cmu.edu

Announcements

- Peer Reviews (Due Fri 1159pm)
 - Reviews should be collegial and helpful. Point out things the paper is doing right, and suggestions for improvement.
 - Write in the rubric categories provided, but do not assign points
- Reading (in HW10 & weeks 13 & 14 folders on Canvas)
 - Lynch, Ch 3 (read), Ch 4 (skim)
 - Lynch, Ch 9 (read)
- HW10 (Due Wed Dec 7, 1159pm)
 - Just some "finger exercises" so you can play with estimating multilevel models with Stan, examining Stan output, etc.
- Last Quiz (Mon-Tue Dec 5-6)
 - □ Like midsemester survey your thoughts about the class.

Outline

Bayes

- When we can recognize the posterior
- When we can't recognize the posterior
- Monte Carlo, MCMC, and STAN
- Example 1: Minnesota Radon Intercept Only
 - What's new?
 - What is \hat{R} ?
 - What is n_{eff} ?
- <u>Example 2</u>: Mn Radon: Level 1 predictor "floor", Level 2 predictor "log(uranium)"
- Example 3: CD4 levels in HIV-positive youth

Bayes

The Slogan

- (posterior) \propto (likelihood) \times (prior)
- (posterior) \propto (level 1) \times (level 2)

$$f(\theta|data) = \frac{f(data|\theta)f(\theta)}{\int f(data|t)f(t)dt}$$

• Inferences based on features of $f(\theta | data)$, e.g.

Hierarchical Beta-Binomial model

Likelihood is binomial:
 Level 1: x ~ Binom(x|n,p)

$$f(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}$$

Prior is beta distribution: Level 2: $p \sim Beta(p | \alpha, \beta)$

$$f(p|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

- (posterior) \propto (likelihood)×(prior)
 (level 1)×(level 2)
 - = Beta(p| α +x, β +n-x)

Hierarchical Normal-Normal model

 Likelihood (for mean) is
 Level 1: normal:

$$f(x_1, \dots, x_n | \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2} \quad x_1, x_2, \dots, x_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

• Prior is normal (for mean): $1 = 1 (m m)^2$ = $U = \frac{M}{U}$

$$f(\mu) = \frac{1}{\sqrt{2\pi\tau_0}} e^{-\frac{1}{2\tau_0^2}(\mu - \mu_0)}$$

• (posterior) \propto (likelihood)×(prior)

$$\mu \sim N(\mu_0, \tau_0^2)$$

• (posterior) \propto (level 1)×(level 2) $\mu \sim N(\mu_n, \tau_n^2)$

When we can recognize the posterior...

Hierarchical Beta-Binomial

 $\square f(p|data) = Beta(p|\alpha',\beta'), \alpha' = \alpha + x, \beta' = \beta + n - x$

Hierarchical Normal-Normal

•
$$f(\mu|data) = N(\mu|\mu_n, \tau_n^2)$$

• $\mu_n = \frac{\tau_0^2}{\tau_0^2 + \sigma^2/n} \, \overline{y} + \frac{\sigma^2/n}{\tau_0^2 + \sigma^2/n} \mu_0$
• $\tau_n^2 = \frac{1}{n/\sigma^2 + 1/\tau_0^2}$

When we can't recognize the posterior...

- We still need a way to calculate (or approximate) things like
 - Posterior mean $\mu_{\theta,post} = \int \theta f(\theta | data) d\theta$
 - Posterior mode $\hat{\theta}_{post} = argmax_{\theta}f(\theta|data)$
 - Posterior Variance $\sigma_{\theta,post}^2 = \int (\theta \mu_{\theta,post})^2 f(\theta | data) d\theta$
 - □ Posterior quantile $\theta_{q,post} s.t.P[\theta \le \theta_{q,post} | data] = q$
 - (e.g. 2.5th %tile, 25th %tile, median, 75th %tile, 97.5th %tile)
- There are a lot of numerical methods to do this
 - Midpoint/trapezoid/Simpson rules, Gaussian quadrature, Laplace's method, *Monte Carlo Integration*, etc., etc. etc.

Monte Carlo Integration

• Suppose $f(\theta)$ is a density, and we want $\int g(\theta)f(\theta)d\theta$

We know

 $\Box \int g(\theta) f(\theta) d\theta = E[g(\Theta)], \quad \text{where } \Theta \sim f(\theta)$

 If we have an iid sample θ⁽¹⁾, θ⁽²⁾, ..., θ^(M) from f(θ), then by the Law of Large Numbers

$$\overline{g(\theta)} = \frac{1}{M} \sum_{m=1}^{M} g(\theta^{(m)}) \approx E[g(\Theta)]$$

• By the CLT, a CI for $E[g(\Theta)]$ is approximately $(\overline{g(\theta)} - 2 \cdot SD_{g(\theta)}/\sqrt{M}, \overline{g(\theta)} + 2 \cdot SD_{g(\theta)}/\sqrt{M})$

Problem: What if there are many $\theta's$?

- If $\theta \in \Re^1$ there are many good ways to sample from $f(\theta)$
- For our multilevel models, $f(\theta) = f(\alpha's, \beta's, \tau^{2'}s, \sigma^{2}|data)$
- Even for a "simple" problem like the random intercept model for the Mn Radon data,
 f(θ) = f(α₁, ..., α₈₅, β₀, τ², σ²|data)
 this is 88 parameters: θ ∈ ℜ⁸⁸!
- How can we sample from such a highdimensional density??

<u>Solution</u>: Markov-Chain Monte Carlo (MCMC)

- MCMC is very useful for multivariate distributions, e.g. $f(\theta_1, \theta_2, ..., \theta_K)$
- Naive MCMC: Instead of dreaming up a way to make a draw (simulation) of all K variables at once MCMC takes draws one variable at a time
- We "pay" for this by not getting independent draws. The draws are the states of a <u>Markov Chain.</u>
- The draws will not be "exactly right" right away; the Markov chain has to "burn in" or "warm up" to a stationary distribution; the draws after the "burn-in" or "warm up" segment are what we want!

(Digression: What is a Markov Chain?)

- A <u>Markov Chain</u> is a stochastic process, i.e. it is a sequence of random variables T₁, T₂, T₃, T₄, T₅, ...
- The thing that makes it a Markov Chain is the <u>Markov</u> <u>Property</u>:
 - \Box T_{m+1} is independent of T₁, ... T_{m-1}, given T_m
 - "the future is independent of the past, given the present"
- A <u>stationary</u> Markov Chain has a transition probability function f(t_m|t_{m-1})...
 - If the T's are discrete rv's, can write f(t_m|t_{m-1}) in terms of a matrix of probabilities
 - If the T's are continuous rv's, f(t_m|t_{m-1}) is just a conditional density

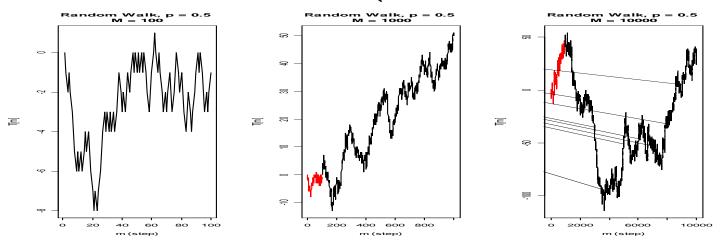
(Digression: What is a Markov Chain? ...An Example)

Random Walk

 \Box T₀ = initial state or "starting point", e.g. 0

The transition probability is

$$p(T_m = t_m | T_{m-1} = t_{m-1}) = \begin{cases} p, & \text{if } t_m = t_{m-1} + 1 \\ 1 - p, & \text{if } t_m = t_{m-1} - 1 \\ 0 & \text{else} \end{cases}$$



Back to MCMC: The Gibbs Sampler

• We want to simulate draws from $f(\theta_1, ..., \theta_K)$.

• Let $T_m = (\theta_1^{(m)}, \theta_2^{(m)}, \dots, \theta_K^{(m)})$ be a reasonable initial state

■ Now successively sample¹ each θ_k from its "complete conditional" distribution:

$$\begin{array}{lll} \theta_{1}^{(m+1)} & \sim & f(\theta_{1}|\theta_{2}^{(m)}, \theta_{3}^{(m)}, \dots, \theta_{K}^{(m)}) \\ \theta_{2}^{(m+1)} & \sim & f(\theta_{2}|\theta_{1}^{(m+1)}, \theta_{3}^{(m)}, \dots, \theta_{K}^{(m)}) \\ \theta_{3}^{(m+1)} & \sim & f(\theta_{3}|\theta_{1}^{(m+1)}, \theta_{2}^{(m+1)}, \theta_{4}^{(m)}, \dots, \theta_{K}^{(m)}) \\ & \vdots & \vdots & \vdots \\ \theta_{K}^{(m+1)} & \sim & f(\theta_{K}|\theta_{2}^{(m+1)}, \theta_{3}^{(m+1)}, \dots, \theta_{K-1}^{(m+1)}) \\ \end{array} \\ \text{and let } T_{m+1} = (\theta_{1}^{(m+1)}, \theta_{2}^{(m+1)}, \dots, \theta_{K}^{(m+1)}) \\ \text{After "burn-in" B, $T_{B+1''}$ $T_{B+2'}$..., T_{M} are MCMC draws "from f"} \end{array}$$

MCMC generalities...

- The theory of MCMC (e.g. Chib & Greenberg, American Statistician, 1995, pp. 327-335) tells us that
 - □ $T_m = (\theta_1^{(m)}, \theta_2^{(m)}, \dots, \theta_K^{(m)})$ is a stationary Markov Chain □ T_m has stationary distribution f(θ_1 , ..., θ_K)
- So, if we sample M steps, and throw away the first few, the remaining T_m 's can be treated like a sample from $f(\theta_1, ..., \theta_K)$

• Not an iid sample though! \sqrt{M} -law may not apply!

Pretty easy to build adequate MCMC sampler when K is small and posterior well-behaved.

STAN: A software add-on to R...

- Working out the complete conditionals (CC's) & sampling from them is easy but mortally inefficient for large parameter spaces
- STAN¹ sidesteps the problem:
 - Works out posterior distribution from your spec
 - Uses a modern version of MCMC called *Hamiltonian Monte Carlo* (No U-Turn Sampler - NUTS) to provide highly efficient, nearly-iid samples from posterior
 - Writes & compiles code in C++ to increase speed
- library(bayesplot) for diagnostic tests & plots
 Also links to additional documentation/tutorials

Predecessors to STAN...

- BUGS¹ and JAGS² automate MCMC
 - Describe "slogan" in R-like language
 - BUGS figures out complete conditionals & runs parameter-at-a-time Metropolis-Hastings MCMC for you
- STAN³ implements a faster MCMC method for models with continuous parameters
 - Uses a BUGS-like language
 - Requires more preliminary declarations
 - □ Usually faster than BUGS/JAGS, often by 10x or more...
 - 1. Bayesian inference Using Gibbs Sampling

11/28/2022

- 2. Just Another Gibbs Sampler
 - 3. In honor of Stanislaw Ulam (1909–1984) Monte Carlo & Hydrogen Bomb...

• MLM form

$$y_i = \alpha_{0j[i]} + \epsilon_i,$$

 $\epsilon_i \sim N(0, \sigma^2)$
 $\alpha_{0j} = \beta_0 + \eta_j,$
 $\eta_j \sim N(0, \tau^2)$

Hierarchical form

```
Level 1: y_i \sim N(\alpha_{0j[i]}, \sigma^2)
Level 2: \alpha_{0j} \sim N(\beta_0, \tau^2)
```

STAN form

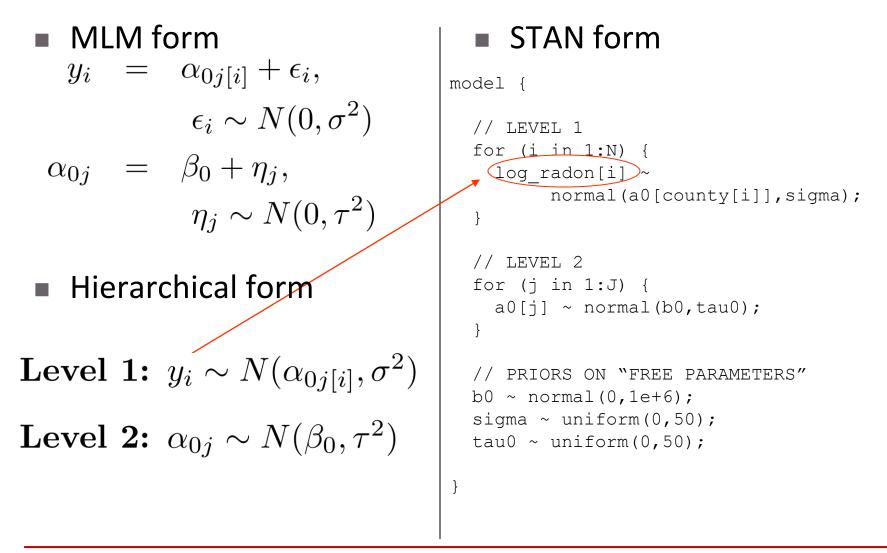
model {

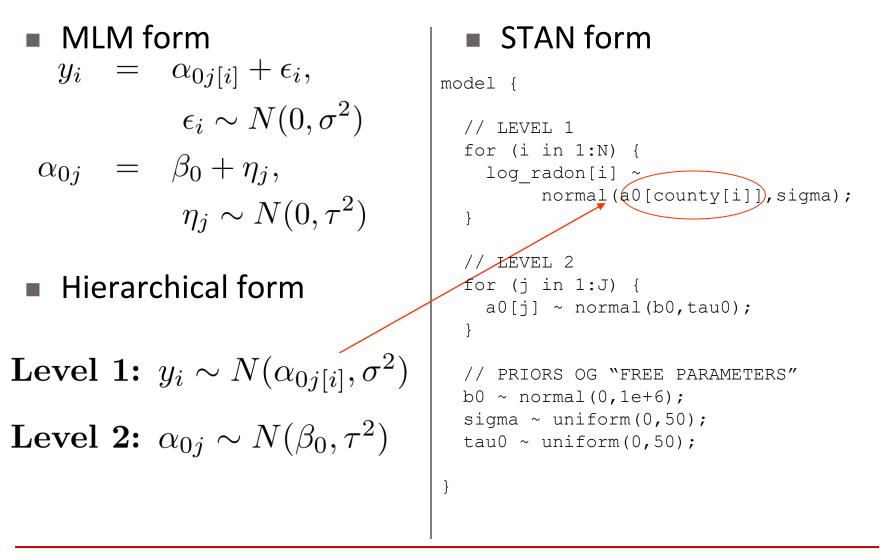
}

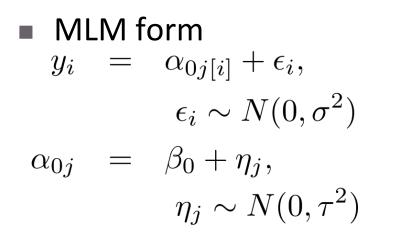
```
// LEVEL 1
for (i in 1:N) {
   log_radon[i] ~
        normal(a0[county[i]],sigma);
}
```

```
// LEVEL 2
for (j in 1:J) {
    a0[j] ~ normal(b0,tau0);
}
```

```
// PRIORS ON "FREE PARAMETERS"
b0 ~ normal(0,1e+6);
sigma ~ uniform(0,50);
tau0 ~ uniform(0,50);
```







Hierarchical form

Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$ Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$

STAN form

model {

}

```
// LEVEL 1
for (i in 1:N) {
    log_radon[i] ~
        normal(a0[county[i]], sigma);
}
// LEVEL 2
for (j in 1:J) {
    a0[j] ~ normal(b0,tau0);
}
// PRIORS ON "FREE PARAMETERS"
b0 ~ normal(0,1e+6);
sigma ~ uniform(0,50);
tau0 ~ uniform(0,50);
```

```
MLM form
                                                STAN form
     y_i = \alpha_{0j[i]} + \epsilon_i,
                                             model {
                 \epsilon_i \sim N(0, \sigma^2)
                                                // LEVEL 1
                                                for (i in 1:N) {
   \alpha_{0j} = \beta_0 + \eta_j,
                                                  log radon[i] ~
                                                        normal(a0[county[i]], sigma);
                 \eta_i \sim N(0, \tau^2)
                                                }
                                                // LEVEL 2

    Hierarchical form

                                                for (j in 1:J) {
                                                  [a0[j]) ~ normal(b0,tau0);
Level 1: y_i \sim N(\alpha_{0 \mathcal{I}[i]}, \sigma^2)
                                                   PRIORS ON "FREE PARAMETERS"
                                                b0 \sim normal(0,1e+6);
                                                sigma ~ uniform(0,50);
Level 2: \alpha_{0j} \sim N(\beta_0, \tau^2)
                                                tau0 ~ uniform(0, 50);
                                              }
```

• MLM form

$$y_i = \alpha_{0j[i]} + \epsilon_i,$$

 $\epsilon_i \sim N(0, \sigma^2)$
 $\alpha_{0j} = \beta_0 + \eta_j,$
 $\eta_j \sim N(0, \tau^2)$

Hierarchical form

Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$ Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$

STAN form

model {

}

```
// LEVEL 1
for (i in 1:N) {
   log_radon[i] ~
        normal(a0[county[i]],sigma);
}
```

```
// LEVEL 2
for (j in 1:J) {
    a0[j] ~ normal(b0,tau0);
}
```

// PRIORS ON "FREE PARAMETERS"
b0 ~ normal(0,1e+6);
sigma ~ uniform(0,50);
tau0 ~ uniform(0,50);

Have to add priors to all free parameters

Example 1: Minnesota Radon – Intercept Only

MLM:

$$y_i = \alpha_{0j[i]} + \epsilon_i,$$

 $\epsilon_i \sim N(0, \sigma^2)$
 $\alpha_{0j} = \beta_0 + \eta_j,$
 $\eta_j \sim N(0, \tau^2)$

- Demonstration in R and STAN...
- (comparison with lmer also)

Hierarchical:

Level 1:
$$y_i \sim N(\alpha_{0j[i]}, \sigma^2)$$

Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$

Review...

- print(stanfit.object) and summary(stanfit.object): point estimates and Cl's for parameters.
- MCMC samples themselves available via extract(stanfit.object)
- Other estimation, plotting and diagnostic functions (see library (help=rstan))
- Library(bayesplot) and library(shinystan): graphical estimation and diagnostic tools

What's new?

- STAN automatically
 - Runs 4 separate MCMC chains of 2000 steps each
 - Number of steps for each specified with "iter=" in stan() function
 - Throws away the first half of each chain as "burn-in/warm-up"
 - You can change these when you run stan(); see help(stan)
 - □ You can also set initial values for the chains; again help(stan)

STAN reports

- an "Rhat" statistic for each parameter estimated
- an "neff" statistic for each parameter (effective sample size)
- We'll look at their definitions on the next page
 For STAN, Rhat usually quite close to the "ideal" value of 1.00

What is \hat{R} ?

Suppose we have M chains:

•••	Chains				Means	Variances
	$ heta^{(1;1)},$	$ heta^{(1;2)},$	••••,	$ heta^{(1;N)}$	$\overline{ heta}_1$	W_1
	-		·	-	:	:
	$\theta^{(M;1)},$	$\theta^{(M;2)},$	••••	$ heta^{(M;N)}$	$\overline{ heta}_M$	W_M
_		$(1;1), heta^{(1;2)}, \dots, heta^{(1;N)}$ $\vdots \ddots \vdots$ $(M;1) heta^{(M;2)} \qquad heta^{(M;N)}$		nd mean	$\overline{ heta}$	

$$W = \frac{1}{M(N-1)} \sum_{m=1}^{M} \sum_{n=1}^{N} (\theta^{(m;n)} - \bar{\theta}_m)^2 = \frac{1}{M} \sum_{m=1}^{M} W_m$$

- Average within-chain variance

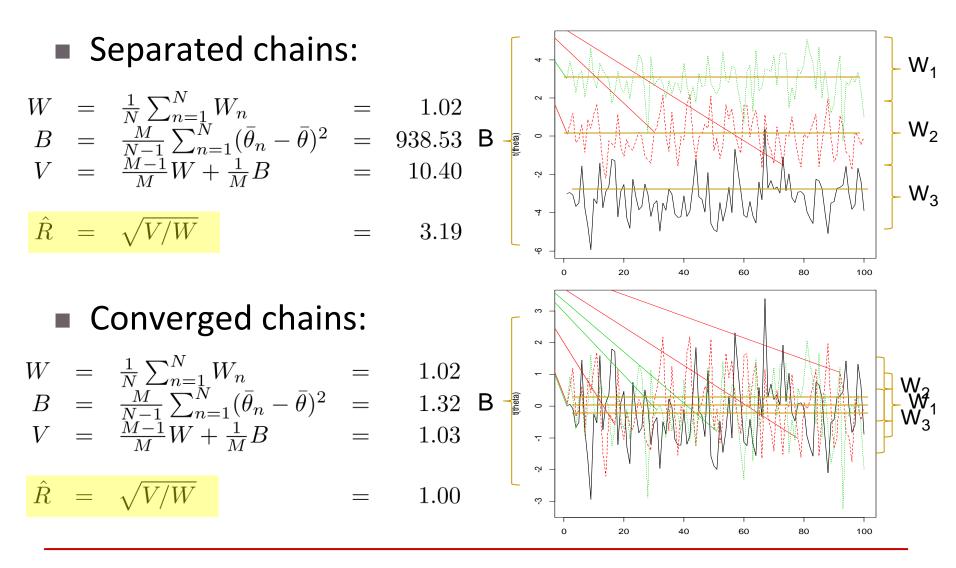
$$B = \frac{M}{M-1} \sum_{m=1}^{M} (\bar{\theta}_m - \bar{\theta})^2$$

= Between-chain variance, inflated for sample size

$$V = \frac{M-1}{M}W + \frac{1}{M}B$$

= Pooled variance estimate,

What is \hat{R} ?



What is
$$n_{eff}$$
?

 Because the Markov Chain draws may have dependence, the usual rule of thumb for a 95% estimation interval from the MC draws

$$(\bar{\theta}_{draws} - \frac{2 \cdot SD(\hat{\theta}_{draws})}{\sqrt{n_{draws}}}, \bar{\theta}_{draws} + \frac{2 \cdot SD(\hat{\theta}_{draws})}{\sqrt{n_{draws}}})$$

doesn't work.

 One way to deal with this is to calculate what the equivalent (or "effective") sample size would be, if the draws were independent. With this value, n_{eff}, we could get our usual interval,

$$(\bar{\theta}_{draws} - \frac{2 \cdot SD(\hat{\theta}_{draws})}{\sqrt{n_{eff}}}, \bar{\theta}_{draws} + \frac{2 \cdot SD(\hat{\theta}_{draws})}{\sqrt{n_{eff}}})$$

https://en.wikipedia.org/wiki/Effective_sample_size

https://mc-stan.org/docs/2_21/reference-manual/effective-sample-size-section.html

What is n_{eff} ?

• If $Var(\theta_k) \equiv \sigma^2 = \sigma_{draws}^2$, and $Cov(\theta_j, \theta_k) \equiv \rho$, then it is easy to figure out the effective sample size: for $n = n_{draws}$ samples of θ , we have

$$Var(\bar{\theta}) = Var\left(\frac{1}{n}\sum_{k=1}^{n}\theta_{k}\right)$$
$$= \sum_{k=1}^{n}\frac{1}{n^{2}}Var(\theta_{k}) + \sum_{k=1}^{n}\sum_{j=1,j\neq k}^{n}\frac{1}{n^{2}}Cov(\theta_{j},\theta_{k})$$
$$= n\frac{\sigma^{2}}{n^{2}} + n(n-1)\frac{\rho\sigma^{2}}{n^{2}} = \sigma^{2}\frac{1+(n-1)\rho}{n}$$

so $n_{eff} = \frac{n}{1 + (n-1)\rho}$, where $n = n_{draws}$.

If the correlations depend on the lag t between θ_i and θ_{i+t}, then one can calculate that

$$n_{eff} = \frac{n_{draws}}{1 + 2\sum_{t=1}^{\infty} \rho_t} \approx \frac{n_{draws}}{1 + 2\sum_{t=1}^{t_{max}} \rho_t}$$

where $\rho_t \approx 0$, $\forall t \ge t_{max}$ (usually around 20 or 30 at most, as you can see from the acf plots...).

https://en.wikipedia.org/wiki/Effective_sample_size

11/28/2022

https://mc-stan.org/docs/2_21/reference-manual/effective-sample-size-section.html

Rules of thumb for \hat{R} and n_{eff}

- $\hat{R} = 1$ at perfect "convergence" to the Markov Chain's stationary distribution
 - $\square \hat{R} \leq 1.05 \text{ is ideal}$
 - □ $\hat{R} \leq 1.10$ is often acceptable
- n_{eff} is a measure of accuracy but also of how
 "bad" the correlations ρ_t in the Markov Chain are
 - □ $n_{eff} \ge 100$ is often "good enough" for estimation
 - □ $n_{eff} \ge (0.5) n_{draws}$ suggests low ρ_t 's
 - □ $n_{eff} \ge (0.1)n_{draws}$ suggests acceptable ρ_t 's
 - \Box $n_{eff} < (0.1) n_{draws}$ suggests worrisome ρ_t 's

Example 2: Mn Radon: Level 1 predictor "floor", Level 2 predictor "log(uranium)"

MLM:

 $y_i = \alpha_{0j[i]} + \alpha_{1j[i]} (\text{floor})_i + \epsilon_{ij[i]}, \ \epsilon_{ij} \sim N(0, \sigma^2)$

 $\begin{aligned} \alpha_{0j} &= \beta_{00} + \beta_{01} \log(\text{uranium}_j) + \eta_{0j}, \ \eta_{0j} \sim N(0, \tau_0^2) \\ \alpha_{1j} &= \beta_{10} + \eta_{1j}, \ \eta_{1j} \sim N(0, \tau_1^2) \end{aligned}$ $\blacksquare \text{ Hierarchical:}$

Level 1: $y_i \sim N(\alpha_{0j[i]} + \alpha_{1j[i]}(\mathsf{floor})_i, \sigma^2)$

Level 2: $\alpha_{0j} \sim N(\beta_{00} + \beta_{01} \log(\operatorname{uranium}_j), \tau_0^2)$

 $\alpha_{1j} \sim N(\beta_{10}, \tau_1^2)$ Demonstration in R and STAN...

Example 3: CD4 in HIV-positive youth

See R handout, and demonstration in class

Wrap-Up...

- STAN automates MCMC
 - □ Specify (posterior)∝(level 1)×(level 2)×... in an R-like language
 - STAN designs and runs the MCMC for you
 - Gelman & Hill use BUGS, we will use STAN
- Summaries of parameter estimates, and good graphs: rstan helper functions, basyesplot & shinystan...
 - □ Rhat \leq 1.05 is a handy "convergence diagnostic"
 - □ $n_{eff} \ge (0.5)n_{draws}$ suggests nice low values for ρ_t 's
 - □ Use n_{eff} rather than n_{draws} for "back of envelope" Cl's

Summary

- Bayes
 - When we can recognize the posterior
 - When we can't recognize the posterior
 - Monte Carlo, MCMC, and STAN
- Example 1: Minnesota Radon Intercept Only
 - What's new?
 - What is \hat{R} ?
 - What is n_{eff} ?
- <u>Example 2</u>: Mn Radon: Level 1 predictor "floor", Level 2 predictor "log(uranium)"
- Example 3: CD4 levels in HIV-positive youth