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Modern Model Estimation Part 1: Gibbs

Sampling

The estimation of a Bayesian model is the most difficult part of undertaking
a Bayesian analysis. Given that researchers may use different priors for any
particular model, estimation must be tailored to the specific model under
consideration. Classical analyses, on the other hand, often involve the use
of standard likelihood functions, and hence, once an estimation routine is
developed, it can be used again and again.

The trade-off for the additional work required for a Bayesian analysis is
that (1) a more appropriate model for the data can be constructed than extant
software may allow, (2) more measures of model fit and outlier/influential case
diagnostics can be produced, and (3) more information is generally available
to summarize knowledge about model parameters than a classical analysis
based on maximum likelihood (ML) estimation provides. Along these same
lines, additional measures may be constructed to test hypotheses concerning
parameters not directly estimated in the model.

In this chapter, I first discuss the goal of model estimation in the Bayesian
paradigm and contrast it with that of maximum likelihood estimation. Then,
I discuss modern simulation/sampling methods used by Bayesian statisticians
to perform analyses, including Gibbs sampling. In the next chapter, I discuss
the Metropolis-Hastings algorithm as an alternative to Gibbs sampling.

4.1 What Bayesians want and why

As the discussion of ML estimation in Chapter 2 showed, the ML approach
finds the parameter values that maximize the likelihood function for the ob-
served data and then produces point estimates of the standard errors of these
estimates. A typical classical statistical test is then conducted by subtracting
a hypothesized value for the parameter from the ML estimate and dividing
the result by the estimated standard error. This process yields a standardized
estimate (under the hypothesized value). The Central Limit Theorem states
that the sampling distribution for a sample statistic/parameter estimate is
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asymptotically normal, and so we can use the z (or t) distribution to evalu-
ate the probability of observing the sample statistic we observed under the
assumption that the hypothesized value for it were true. If observing the sam-
ple statistic we did would be an extremely rare event under the hypothesized
value, we reject the hypothesized value.

In contrast to the use of a single point estimate for a parameter and its
standard error and reliance on the Central Limit Theorem, a Bayesian analysis
derives the posterior distribution for a parameter and then seeks to summarize
the entire distribution. As we discussed in Chapter 2, many of the quantities
that may be of interest in summarizing knowledge about a distribution are
integrals of it, like the mean, median, variance, and various quantiles. Obtain-
ing such integrals, therefore, is a key focus of Bayesian summarization and
inference.

The benefits of using the entire posterior distribution, rather than point es-
timates of the mode of the likelihood function and standard errors, are several.
First, if we can summarize the entire posterior distribution for a parameter,
there is no need to rely on asymptotic arguments about the normality of the
distribution: It can be directly assessed. Second, as stated above, having the
entire posterior distribution for a parameter available allows for a considerable
number of additional tests and summaries that cannot be performed under a
classical likelihood-based approach. Third, as discussed in subsequent chap-
ters, distributions for the parameters in the model can be easily transformed
into distributions of quantities that may be of interest but may not be di-
rectly estimated as part of the original model. For example, in Chapter 10,
I show how distributions for hazard model parameters estimated via Markov
chain Monte Carlo (MCMC) methods can be transformed into distributions
of life table quantities like healthy life expectancy. Distributions of this quan-
tity cannot be directly estimated from data but instead can be computed as a
function of parameters from a hazard model. A likelihood approach that pro-
duces only point estimates of the parameters and their associated standard
errors cannot accomplish this.

Given the benefits of a Bayesian approach to inference, the key question
then is: How difficult is it to integrate a posterior distribution to produce
summaries of parameters?

4.2 The logic of sampling from posterior densities

For some distributions, integrals for summarizing posterior distributions have
closed-form solutions and are known, or they can be easily computed using
numerical methods. For example, in the previous chapter, we determined the
expected proportion of—and a plausible range for—votes for Kerry in the
2004 presidential election in Ohio, as well as the probability that Kerry would
win Ohio, using known information about integrals of the beta distribution.
We also computed several summaries using a normal approximation to the
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posterior density, and of course, integrals of the normal distribution are well-
known.

For many distributions, especially multivariate ones, however, integrals
may not be easy to compute. For example, if we had a beta prior distribu-
tion on the variance of a normal distribution, the posterior distribution for
the variance would not have a known form. In order to remedy this problem,
Bayesians often work with conjugate priors, as we discussed in the previous
chapter. However, sometimes conjugate priors are unrealistic, or a model may
involve distributions that simply are not amenable to simple computation of
quantiles and other quantities. In those cases, there are essentially two ba-
sic approaches to computing integrals: approximation methods and sampling
methods.

Before modern sampling methods (e.g., MCMC) were available or com-
putationally feasible, Bayesians used a variety of approximation methods to
perform integrations necessary to summarize posterior densities. Using these
methods often required extensive knowledge of advanced numerical methods
that social scientists generally do not possess, limiting the usefulness of a
Bayesian approach. For example, quadrature methods—which involve eval-
uating weighted points on a multidimensional grid—were often used. As an-
other example, Bayesians often generated Taylor series expansions around the
mode of the log-posterior distribution, and then used normal approximations
to the posterior for which integrals are known. For multimodal distributions,
Bayesians would often use approximations based on mixtures of normals. All
of these approaches were methods of approximation and, hence, formed a foun-
dation for criticizing Bayesian analysis. Of course, it is true that a Bayesian
Central Limit Theorem shows that asymptotically most posterior distributions
are normal (see Gelman et al. 1995 for an in-depth discussion of asymptotic
normal theory in a Bayesian setting), but reliance on this theorem undermines
a key benefit of having a complete posterior distribution: the lack of need to—
and, in small samples, the inability to—rely on asymptotic arguments. I do
not focus on these methods in this book.

Sampling methods constitute an alternative to approximation methods.
The logic of sampling is that we can generate (simulate) a sample of size
n from the distribution of interest and then use discrete formulas applied
to these samples to approximate the integrals of interest. Under a sampling
approach, we can estimate a mean by:

∫

xf(x)dx ≈ 1

n

∑

x

and the variance by:

∫

(x− µ)2f(x)dx ≈ 1

n

∑

(x− µ)2.

Various quantiles can be computed empirically by noting the value of x for
which Q% of the sampled values fall below it.
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Thus, modern Bayesian inference typically involves (1) establishing a
model and obtaining a posterior distribution for the parameter(s) of interest,
(2) generating samples from the posterior distribution, and (3) using discrete
formulas applied to the samples from the posterior distribution to summarize
our knowledge of the parameters. These summaries are not limited to a single
quantity but instead are virtually limitless. Any summary statistic that we
commonly compute to describe a sample of data can also be computed for a
sample from a posterior distribution and can then be used to describe it!

Consider, for example, the voting example from the previous chapter in
which we specified a beta prior distribution for K, coupled with a binomial
likelihood for the most recent polling data. In that example, the posterior
density for K was a beta density with parameters α = 1498 and β = 1519.
Given that the beta density is a known density, we computed the posterior
mean as 1498/(1498 + 1519) = .497, and the probability that K > .5 as
.351. However, assume these integrals could not be computed analytically. In
that case, we could simulate several thousand draws from this particular beta
density (using x=rbeta(5000,1498,1519)in R, with the first argument being
the desired number of samples), and we could then compute the mean, median,
and other desired quantities from this sample. I performed this simulation and
obtained a mean of .496 for the 5,000 samples (obtained by typing mean(x)

in R) and a probability of .351 that Kerry would win (obtained by typing
sum(x>.5)/5000).

Notice that the mean obtained analytically (via integration of the posterior
density) and the mean obtained via sampling are identical to almost three
decimal places, as are the estimated probabilities that Kerry would win. The
reason that these estimates are close is that sampling methods, in the limit,
are not approximations; instead, they provide exact summaries equivalent
to those obtained via integration. A sample of 5,000 draws from this beta
distribution is more than sufficient to accurately summarize the density. As
a demonstration, Figure 4.1 shows the convergence of the sample-estimated
mean for this particular beta distribution as the sample size increases from
1 to 100,000. At samples of size n = 5, 000, the confidence band around the
mean is only approximately .0005 units wide. In other words, our error in
using simulation rather than analytic integration is extremely small. As the
sample size increases, we can see that the simulation error diminishes even
further.

4.3 Two basic sampling methods

In the example shown above, it was easy to obtain samples from the desired
beta density using a simple command in R. For many distributions, there
are effective routines in existence for simulating from them (some of which
ultimately rely on the inversion method discussed below). For other distribu-
tions, there may not be an extant routine, and hence, a statistician may need
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Fig. 4.1. Convergence of sample means on the true beta distribution mean across
samples sizes: Vertical line shows sample size of 5,000; dashed horizontal lines show
approximate confidence band of sample estimates for samples of size n = 5, 000; and
solid horizontal line shows the true mean.

to create one. Indeed, this is the entire reason for MCMC methods, as we will
discuss: Integration of posterior densities is often impossible, and there may
not be extant routines for sampling from them either, especially when they
are high-dimensional. I first discuss two sampling methods, each of which is
important for a basic understanding of MCMC methods. These methods, as
well as several others, are described in greater depth in Gilks (1996). For a
more detailed exposition on simulation methods, see Ripley (1987).

4.3.1 The inversion method of sampling

For drawing a sample from a univariate distribution f(x), we can often use
the inversion method. The inversion method is quite simple and follows two
steps:

1. Draw a uniform random number u between 0 and 1 (a U(0, 1) random
variable).
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2. Then z = F−1(u) is a draw from f(x).

In step 1, we draw a U(0, 1) random variable. This draw represents the
area under the curve up to the value of our desired random draw from the
distribution of interest. Thus, we simply need to find z such that:

u =

∫ z

L

f(x)dx,

where L is the lower limit of the density f . Put another way, u = F (z). So,
phrased in terms of z:

z = F−1(u).

To provide a concrete example, take the linear density function from Chap-
ter 2: f(x) = (1/40)(2x+3) (with 0 < x < 5). As far as I know, no routines are
readily available that allow sampling from this density, and so, if one needed
draws from this density, one would need to develop one. In order to generate a
draw from this distribution using the inversion method, we first need to draw
u ∼ U(0, 1) and then compute z that satisfies

u =

∫ z

0

1

40
(2x + 3)dx.

We can solve this equation for z as follows. First, evaluate the integral:

40u = x2 + 3x
∣
∣
z

0
= z2 + 3z.

Second, complete the square in z:

40u +
9

4
= z2 + 3z +

9

4
=

(

z +
3

2

)2

.

Third, take the square root of both sides and rearrange to find z:

z =
−3±

√
160u + 9

2
.

This result reveals two solutions for z; however, given that z must be between
0 and 5, only the positive root is relevant. If we substitute 0 and 1—the
minimum and maximum values for u—we find that the range of z is [0, 5] as
it should be.

Figure 4.2 displays the results of an algorithm simulating 1,000 random
draws from this density using the inversion method. The figures on the left-
hand side show the sequence of draws from the U(0, 1) density, which are
then inverted to produce the sequence of draws from the density of interest.
The right-hand side of the figure shows the simulated and theoretical density
functions. Notice how the samples from both densities closely follow, but do
not exactly match, the theoretical densities. This error is sampling error, which
diminishes as the simulation sample size increases.
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Fig. 4.2. Example of the inversion method: Left-hand figures show the sequence
of draws from the U(0, 1) density (upper left) and the sequence of draws from the
density f(x) = (1/40)(2x + 3) density (lower left); and the right-hand figures show
these draws in histogram format, with true density functions superimposed.

The following R program was used to generate these draws. The first line
simulates 1,000 random draws from the U(0, 1) distribution; the second line
generates the vector z as the inverse of u :

#R program for inversion method of sampling

u=runif(1000,min=0,max=1)

z=(1/2) * (-3 + sqrt(160*u +9))

Although the inversion method is very efficient and easy to implement, two
key limitations reduce its usability as a general method for drawing samples
from posterior densities. First, if the inverse function is impossible to derive
analytically, obviously the method cannot be used. For example, the normal
integral cannot be directly solved, and hence, the inversion method cannot be
used to simulate from the normal distribution.1 To some extent, this problem

1 Of course, we do have efficient algorithms for computing this integral, but the
integral cannot be solved analytically.
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begs the question: If we can integrate the density as required by the inversion
method, then why bother with simulation? This question will be addressed
shortly, but the short answer is that we may not be able to perform integration
on a multivariate density, but we can often break a multivariate density into
univariate ones for which inversion may work.

The second problem with the inversion method is that the method will
not work with multivariate distributions, because the inverse is generally not
unique beyond one dimension. For example, consider the bivariate planar den-
sity function discussed in Chapter 2:

f(x, y) =
1

28
(2x + 3y + 2),

with 0 < x, y < 2. If we draw u ∼ U(0, 1) and attempt to solve the double
integral for x and y, we get:

28u = yx2 +
3xy2

2
+ 2xy,

which, of course, has infinitely many solutions (one equation with two un-
knowns). Thinking ahead, we could select a value for one variable and then
use the inversion method to draw from the conditional distribution of the
other variable. This process would reduce the problem to one of sampling
from univariate conditional distributions, which is the basic idea of Gibbs
sampling, as I discuss shortly.

4.3.2 The rejection method of sampling

When F−1(u) cannot be computed, other methods of sampling exist. A very
important one is rejection sampling. In rejection sampling, sampling from a
distribution f(x) for x involves three basic steps:

1. Sample a value z from a distribution g(x) from which sampling is easy
and for which values of m× g(x) are greater than f(x) at all points (m is
a constant).

2. Compute the ratio R = f(z)
m×g(z) .

3. Sample u ∼ U(0, 1). If R > u, then accept z as a draw from f(x). Other-
wise, return to step 1.

In this algorithm, m×g(x) is called an “envelope function,” because of the
requirement that the density function g(x) multiplied by some constant m be
greater than the density function value for the distribution of interest [f(x)]
at the same point for all points. In other words, m × g(x) envelops f(x). In
step 1, we sample a point z from the pdf g(x).

In step 2, we compute the ratio of the envelope function [m × g(x)] eval-
uated at z to the density function of interest [f(x)] evaluated at the same
point.
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Finally, in step 3, we draw a U(0, 1) random variable u and compare it
with R. If R > u, then we treat the draw as a draw from f(x). If not, we
reject z as coming from f(x), and we repeat the process until we obtain a
satisfactory draw.

This routine is easy to implement, but it is not immediately apparent why
it works. Let’s again examine the density discussed in the previous section and
consider an envelope function that is a uniform density on the [0, 5] interval
multiplied by a constant of 2. I choose this constant because the height of
the U(0, 5) density is .2, whereas the maximum height of the density f(x) =
(1/40)(2x + 3) is .325. Multiplying the U(0, 5) density by two increases the
height of this density to .4, which is well above the maximum for f(x) and
therefore makes m × g(x) a true envelope function. Figure 4.3 shows the
density and envelope functions and graphically depicts the process of rejection
sampling.

In the first step, when we are sampling from the envelope function, we are
choosing a location on the x axis in the graph (see top graph in Figure 4.3).
The process of constructing the ratio R and comparing it with a uniform
deviate is essentially a process of locating a point in the y direction once
the x coordinate is chosen and then deciding whether it is under the density
of interest. This becomes more apparent if we rearrange the ratio and the
inequality with u:

f(z) <=>
︸ ︷︷ ︸

m× g(z)× u.

?

m × g(z) × u provides us a point in the y dimension that falls somewhere
between 0 and m× g(z). This can be easily seen by noting that m× g(z)× u
is really simply providing a random draw from the U(0, g(z)) distribution:
The value of this computation when u = 0 is 0; its value when u = 1 is
m × g(z) (see middle graph in Figure 4.3). In the last step, in which we
decide whether to accept z as a draw from f(x), we are simply determining
whether the y coordinate falls below the f(x) curve (see bottom graph in
Figure 4.3). Another way to think about this process is that the ratio tells us
the proportion of times we will accept a draw at a given value of x as coming
from the density of interest.

The following R program simulates 1,000 draws from the density f(x) =
(1/40)(2x+3) using rejection sampling. The routine also keeps a count of how
many total draws from g(x) must be made in order to obtain 1,000 draws from
f(x).

#R program for rejection method of sampling

count=0; k=1; f=matrix(NA,1000)

while(k<1001)

{

z=runif(1,min=0,max=5)

r=((1/40)*(2*z+3))/(2*.2)
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Fig. 4.3. The three-step process of rejection sampling.

if(r>runif(1,min=0,max=1))

{f[k]=z; k=k+1}

count=count+1

}

Figure 4.4 shows the results of a run of this algorithm. The histogram of
the sample of 1,000 draws very closely matches the density of interest.

Rejection sampling is a powerful method of sampling from densities for
which inversion sampling does not work. It can be used to sample from any

density, and it can be used to sample from multivariate densities. In the multi-
variate case, we first choose an X—now a random vector, rather than a single
point—from a multivariate enveloping function, and then we proceed just as
before.
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Fig. 4.4. Sample of 1,000 draws from density using rejection sampling with theo-
retical density superimposed.

Rejection sampling does have some limitations. First, finding an enveloping
function m×g(x) may not be an easy task. For example, it may be difficult to
find an envelope with values that are greater at all points of support for the
density of interest. Consider trying to use a uniform density as an envelope
for sampling from a normal density. The domain of x for the normal density
runs from −∞ to +∞, but there is no corresponding uniform density. In the
limit, a U(−∞,+∞) density would have an infinitely low height, which would
make g(x) fall below f(x) in the center of the distribution, regardless of the
constant multiple m chosen. Second, the algorithm may not be very efficient.
If the enveloping function is considerably higher than f(x) at all points, the
algorithm will reject most attempted draws, which implies that an incredible
number of draws may need to be made before finding a single value from f(x).
In theory, the efficiency of a rejection sampling routine is calculable before
implementing it. In the case above, the total area under the enveloping curve
is 2 (5×.4), but the total area under the density of interest is 1 (by definition of
a density function). Thus, the algorithm used should accept about 50% of the
draws from g(x). In fact, in the case shown and discussed above, it took 2,021
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attempts to obtain 1,000 draws from f(x), which is a rejection rate of 50.5%.
These two limitations make rejection sampling, although possible, increasingly
difficult as the dimensionality increases in multivariate distributions.

4.4 Introduction to MCMC sampling

The limitations of inversion and rejection sampling make the prospects of
using these simple methods daunting in complex statistical analyses involv-
ing high-dimensional distributions. Although rejection sampling approaches
can be refined to be more efficient, they are still not very useful in and of
themselves in real-world statistical modeling. Fortunately, over the last few
decades, MCMC methods have been developed that facilitate sampling from
complex distributions. Furthermore, aside from allowing sampling from com-
plex distributions, these methods provide several additional benefits, as we
will be discussing in the remaining chapters.

MCMC sampling provides a method to sample from multivariate densities
that are not easy to sample from, often by breaking these densities down
into more manageable univariate or multivariate densities. The basic MCMC
approach provides a prescription for (1) sampling from one or more dimensions
of a posterior distribution and (2) moving throughout the entire support of a
posterior distribution. In fact, the name “Markov chain Monte Carlo” implies
this process. The “Monte Carlo” portion refers to the random simulation
process. The “Markov chain” portion refers to the process of sampling a new
value from the posterior distribution, given the previous value: This iterative
process produces a Markov chain of values that constitute a sample of draws
from the posterior.

4.4.1 Generic Gibbs sampling

The Gibbs sampler is the most basic MCMC method used in Bayesian statis-
tics. Although Gibbs sampling was developed and used in physics prior to
1990, its widespread use in Bayesian statistics originated in 1990 with its in-
troduction by Gelfand and Smith (1990). As will be discussed more in the next
chapter, the Gibbs sampler is a special case of the more general Metropolis-
Hastings algorithm that is useful when (1) sampling from a multivariate pos-
terior is not feasible, but (2) sampling from the conditional distributions for
each parameter (or blocks of them) is feasible. A generic Gibbs sampler follows
the following iterative process (j indexes the iteration count):
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0. Assign a vector of starting values, S, to the parameter vector:
Θj=0 = S.

1. Set j = j + 1.

2. Sample (θj
1 | θj−1

2 , θj−1
3 . . . θj−1

k ).

3. Sample (θj
2 | θj

1, θj−1
3 . . . θj−1

k ).
...

...

k. Sample (θj
k | θ

j
1, θj

2, . . . , θj
k−1).

k+1. Return to step 1.

In other words, Gibbs sampling involves ordering the parameters and sampling
from the conditional distribution for each parameter given the current value of
all the other parameters and repeatedly cycling through this updating process.
Each “loop” through these steps is called an “iteration” of the Gibbs sampler,
and when a new sampled value of a parameter is obtained, it is called an
“updated” value.

For Gibbs sampling, the full conditional density for a parameter needs only
to be known up to a normalizing constant. As we discussed in Chapters 2 and
3, this implies that we can use the joint density with the other parameters
set at their current values. This fact makes Gibbs sampling relatively simple
for most problems in which the joint density reduces to known forms for each
parameter once all other parameters are treated as fixed.

4.4.2 Gibbs sampling example using the inversion method

Here, I provide a simple example of Gibbs sampling based on the bivariate
plane distribution developed in Chapter 2 f(x, y) = (1/28)(2x + 3y + 2). The
conditional distribution for x was:

f(x | y) =
f(x, y)

f(y)
=

2x + 3y + 2

6y + 8
,

and the conditional distribution for y was:

f(y | x) =
f(x, y)

f(x)
=

2x + 3y + 2

4x + 10
.

Thus, a Gibbs sampler for sampling x and y in this problem would follow
these steps:

1. Set j = 0 and establish starting values. Here, let’s set xj=0 = −5 and
yj=0 = −5.

2. Sample xj+1 from f(x | y = yj).
3. Sample yj+1 from f(y | x = xj+1).
4. Increment j = j + 1 and return to step 2 until j = 2000.
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How do we sample from these conditional distributions? We know what they
are, but they certainly are not standard distributions. Since they are not
standard distributions, but since these conditionals are univariate and F−1()
can be calculated for each one, we can use an inversion subroutine to sample
from each conditional density. How do we find the inverses in this bivariate
density? Recall that inversion sampling requires first drawing a u ∼ U(0, 1)
random variable and then inverting this draw using F−1. Thus, to find the
inverse of the conditional density for y|x, we need to solve:

u =

∫ z

0

2x + 3y + 2

4x + 10

for z. Given that this is the conditional density for y, x is fixed and can be
treated as a constant, and we obtain:

u(4x + 10) = (2x + 2)y + (3/2)y2
∣
∣
z

0
.

Thus:

u(4x + 10) = (2x + 2)z + (3/2)z2.

After multiplying through by (2/3) and rearranging terms, we get:

(2/3)u(4x + 10) = z2 + (2/3)(2x + 2)z.

We can then complete the square in z and solve for z to obtain:

z =

√

(2/3)u(4x + 10) + ((1/3)(2x + 2))
2 − (1/3)(2x + 2).

Given a current value for x and a random draw u, z is a random draw from
the conditional density for y|x. A similar process can be undertaken to find
the inverse for x|y (see Exercises).

Below is an R program that implements the Gibbs sampling:

#R program for Gibbs sampling using inversion method

x=matrix(-5,2000); y=matrix(-5,2000)

for(i in 2:2000)

{

#sample from x | y

u=runif(1,min=0, max=1)

x[i]=sqrt(u*(6*y[i-1]+8)+(1.5*y[i-1]+1)*(1.5*y[i-1]+1))

-(1.5*y[i-1]+1)

#sample from y | x

u=runif(1,min=0,max=1)

y[i]=sqrt((2*u*(4*x[i]+10))/3 +((2*x[i]+2)/3)*((2*x[i]+2)/3))

- ((2*x[i]+2)/3)

}
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This program first sets the starting values for x and y equal to −5. Then,
x is updated using the current value of y. Then, y is updated using the just-
sampled value of x. (Notice how x[i] is computed using y[i-1], whereas
y[i] is sampled using x[i].) Both are updated using the inversion method
of sampling discussed above.

This algorithm produces samples from the marginal distributions for both
x and y, but we can also treat pairs of x and y as draws from the joint density.
We will discuss the conditions in which we can do this in greater depth shortly.
Generally, however, of particular interest are the marginal distributions for
parameters, since we are often concerned with testing hypotheses concerning
one parameter, net of the other parameters in a model. Figure 4.5 shows a
“trace plot” of both x and y as well as the marginal densities for both variables.
The trace plot is simply a two-dimensional plot in which the x axis represents
the iteration of the algorithm, and the y axis represents the simulated value
of the random variable at each particular iteration. Heuristically, we can then
take the trace plot, turn it on its edge (a 90 degree clockwise turn), and allow
the “ink” to fall down along the y-axis and “pile-up” to produce a histogram
of the marginal density. Places in the trace plot that are particularly dark
represent regions of the density in which the algorithm simulated frequently;
lighter areas are regions of the density that were more rarely visited by the
algorithm. Thus, the “ink” will pile-up higher in areas for which the variable
of interest has greater probability. Histograms of these marginal densities are
shown to the right of their respective trace plots, with the theoretical marginal
densities derived in Chapter 2 superimposed. Realize that these marginals are
unnormalized, because the leading 1/28 normalizing constant cancels in both
the numerator and the denominator.

Notice that, although the starting values were very poor (−5 is not a valid
point in either dimension of the density), the algorithm converged very rapidly
to the appropriate region—[0, 2]. It generally takes a number of iterations for
an MCMC algorithm to find the appropriate region—and, more theoretically,
for the Markov chain produced by the algorithm to sample from the appro-
priate “target” distribution. Thus, we generally discard a number of early
iterations before making calculations (called the “burn-in”). The marginal
densities, therefore, are produced from only the last 1,500 iterations of the
algorithm.

The histograms for the marginal densities show that the algorithm samples
appropriately from the densities of interest. Of course, there is certainly some
error—observe how the histograms tend to be a little too low or high here
and there. This reflects sampling error, and such error is reduced by sampling
more values (e.g., using 5,000 draws, rather than 2,000); we will return to this
issue in the next chapter.

Aside from examining the marginal distributions for x and y, we can also
examine the joint density. Figure 4.6 shows a two-dimensional trace plot, taken
at several stages. The upper left figure shows the state of the algorithm after
5 iterations; the upper right figure shows the state after 25 iterations; the
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Fig. 4.5. Results of Gibbs sampler using the inversion method for sampling from
conditional densities.

lower left figure shows it after 100 iterations; and the lower right figure shows
it after the 2,000 iterations. Here again, we see that the algorithm, although
starting with poor starting values, converged rapidly to the appropriate two-
dimensional, partial plane region represented by f(x, y).

After sampling from the distribution for x and y, we can now summarize
our knowledge of the density. The theoretical mean for x can be found by
taking the marginal for x (f(x) = (1/28)(4x + 10)) and by integrating across
all values for x:

µx =

∫ 2

0

x× f(x)dx = 1.095.

A similar calculation for y yields a theoretical mean of 1.143. The empirical
estimates of the means, based on the last 1,500 draws from the marginal
distributions for the variables (discarding the first 500 as the burn-in) are
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Fig. 4.6. Results of Gibbs sampler using the inversion method for sampling from
conditional densities: Two-dimensional view after 5, 25, 100, and 2,000 iterations.

x̄ = 1.076 and ȳ = 1.158. The discrepancy between the theoretical and the
empirical means is attributable to sampling error in the MCMC algorithm. A
longer run would reduce the error, although, even with 1,500 simulated draws,
the discrepancies here are minimal (less than 2% for both x and y).

4.4.3 Example repeated using rejection sampling

In the Gibbs sampling algorithm we just discussed, we used the inversion
method for sampling from the conditional distributions of x and y. It is often
the case that using the inversion method may not be feasible, for several rea-
sons. First, the conditionals in the Gibbs sampler may not be univariate. That
is, we do not have to break our conditional distributions into univariate con-
ditional densities; we may choose multivariate conditional densities, as we will
see in Chapter 7. Second, F ()−1 may not be calculable, even in one dimension.
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For example, if the distribution were bivariate normal, the conditionals would
be univariate normal, and F ()−1 cannot be analytically computed.2 Third,
even if the inverse of the density is calculable, the normalizing constant in the
conditional may not be easily computable. The inversion algorithm technically
requires the complete computation of F ()−1, which, in this case, requires us to
know both the numerator and the denominator of the formulas for the condi-
tional distributions. It is often the case that we do not know the exact formula
for a conditional distribution, but instead, we know the conditional only up
to a normalizing (proportionality) constant. Generally speaking, conditional
distributions are proportional to the joint distribution evaluated at the point
of conditioning. So, for example, in the example discussed above, if we know
y = q, then the following is true:

f(x | y = q) = (1/28)× 2x + 3q + 2

6q + 8
∝ 2x + 3q + 2.

Notice that (1/28)(6q + 8) is not contained in the final proportionality; the
reason is that this factor is simply a constant that scales this slice of the joint
density so that its integral is 1. However, this constant is not necessary for
Gibbs sampling to work! Why not? Because the Gibbs sampler will only set
y = q in direct proportion to its relative frequency in the joint density. Put
another way, the Gibbs sampler will visit y = q as often as it should under
the joint density. This result is perhaps easier to see in a contingency table;
consider the example displayed in Table 4.1.

Table 4.1. Cell counts and marginals for a hypothetical bivariate dichotomous
distribution.

x = 0 x = 1 x|y = k

y = 0 a b a + b

y = 1 c d c + d

y|x = m a + c b + d a + b + c + d

In this example, if we follow a Gibbs sampling strategy, we would choose
a starting value for x and y; suppose we chose 0 for each. If we started with
y = 0, we would then select x = 0 with probability a/(a + b) and x = 1
with probability b/(a + b). Once we had chosen our x, if x had been 0, we
would then select y = 0 with probability a/(a+ c) and y = 1 with probability
c/(a + c). On the other hand, if we had selected x = 1, we would then select

2 Again, we do have efficient algorithms for computing this integral, but it cannot
be directly analytically computed.
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y = 0 with probability b/(b + d) and y = 1 with probability d/(b + d). Thus,
we would be selecting y = 0 with total probability

p(y = 0) = p(y = 0 | x = 0)p(x = 0) + p(y = 0 | x = 1)p(x = 1).

So,

p(y = 0) =

(
a

a + c

)(
a + c

a + b + c + d

)

+

(
b

b + d

)(
b + d

a + b + c + d

)

=
a + b

a + b + c + d
.

This proportion reflects exactly how often we should choose y = 0, given
the marginal distribution for y in the contingency table. Thus, the normalizing
constant is not relevant, because the Gibbs sampler will visit each value of
one variable in proportion to its relative marginal frequency, which leads us to
then sample the other variable, conditional on the first, with the appropriate
relative marginal frequency.

Returning to the example at hand, then, we simply need to know what
the conditional distribution is proportional to in order to sample from it.
Here, if we know y = q, then f(x | y = q) ∝ 2x + 3q + 2. Because we do not
necessarily always know this normalizing constant, using the inversion method
of sampling will not work.3 However, we can simulate from this density using
rejection sampling. Recall from the discussion of rejection sampling that we
need an enveloping function g(x) that, when multiplied by a constant m,
returns a value that is greater than f(x) for all x. With an unnormalized
density, only m must be adjusted relative to what it would be under the
normalized density in order to ensure this rule is followed. In this case, if we
will be sampling from the joint density, we can use a uniform density on the
[0, 2] interval multiplied by a constant m that ensures that the density does
not exceed m × .5 (.5 is the height of the U(0,2) density). The joint density
reaches a maximum where x and y are both 2; that peak value is 12. Thus,
if we set m = 25, the U(0, 2) density multiplied by m will always be above
the joint density. And, we can ignore the normalizing constants, including
the leading (1/28) in the joint density and the 1/(6y + 8) in the conditional
for x and the 1/(4x + 10) in the conditional for y. As exemplified above, the
Gibbs sampler will sample from the marginals in the correct proportion to
their relative frequency in the joint density. Below is a Gibbs sampler that
simulates from f(x, y) using rejection sampling:

3 The normalizing constant must be known one way or another. Certainly, we can
perform the integration we need to compute F−1 so long as the distribution is
proper. However, if we do not know the normalizing constant, the integral will
differ from 1, which necessitates that our uniform draw representing the area
under the curve be scaled by the inverse of the normalizing constant in order to
represent the area under the unnormalized density fully.



96 4 Modern Model Estimation Part 1: Gibbs Sampling

#R program for Gibbs sampling using rejection sampling

x=matrix(-1,2000); y=matrix(-1,2000)

for(i in 2:2000)

{

#sample from x | y using rejection sampling

z=0

while(z==0)

{

u=runif(1,min=0, max=2)

if( ((2*u)+(3*y[i-1])+2) > (25*runif(1,min=0,max=1)*.5))

{x[i]=u; z=1}

}

#sample from y | x using rejection sampling

z=0

while(z==0)

{

u=runif(1,min=0,max=2)

if( ((2*x[i])+(3*u)+2) > (25*runif(1,min=0,max=1)*.5))

{y[i]=u; z=1}

}

}

In this program, the overall Gibbs sampling process is the same as for the
inversion sampling approach; the only difference is that we are now using re-
jection sampling to sample from the unnormalized conditional distributions.
One consequence of switching sampling methods is that we have now had to
use better starting values (−1 here versus −5 under inversion sampling). The
reason for this is that the algorithm will never get off the ground otherwise.
Notice that the first item to be selected is x[2]. If y[1] is -5, the first condi-
tional statement (if . . .) will never be true: The value on the left side of the
expression, ((2*u)+(3*y[i-1])+2), can never be positive, but the value on
the right, (25*runif(1,min=0,max=1)*.5), will always be positive. So, the
algorithm will “stick” in the first while loop.

Figures 4.7 and 4.8 are replications of the previous two figures produced
under rejection sampling. The overall results appear the same. For example,
the mean for x under the rejection sampling approach was 1.085, and the
mean for y was 1.161, which are both very close to those obtained using the
inversion method.

4.4.4 Gibbs sampling from a real bivariate density

The densities we examined in the examples above were very basic densities
(linear and planar) and are seldom used in social science modeling. In this
section, I will discuss using Gibbs sampling to sample observations from a
density that is commonly used in social science research—the bivariate normal
density. As discussed in Chapter 2, the bivariate normal density is a special
case of the multivariate normal density in which the dimensionality of the
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Fig. 4.7. Results of Gibbs sampler using rejection sampling to sample from condi-
tional densities.

density is 2, and the variables—say x and y—in this density are related by
the correlation parameter ρ. For the sake of this example, we will use the
standard bivariate normal density—that is, the means and variances of both
x and y are 0 and 1, respectively—and we will assume that ρ is a known
constant (say, .5). The pdf in this case is:

f(x, y|ρ) =
1

2π
√

1− ρ2
exp

{

−x2 − 2ρxy + y2

2(1− ρ2)

}

.

In order to use Gibbs sampling for sampling values of x and y, we need to
determine the full conditional distributions for both x and y, that is, f(x|y)
and f(y|x). I have suppressed the conditioning on ρ in these densities, simply
because ρ is a known constant in this problem.
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Fig. 4.8. Results of Gibbs sampler using rejection sampling to sample from condi-
tional densities: Two-dimensional view after 5, 25, 100, and 2,000 iterations.

As we discussed above, Gibbs sampling does not require that we know
the normalizing constant; we only need to know to what density each con-
ditional density is proportional. Thus, we will drop the leading constant
(1/(2π

√

1− ρ2)). The conditional for x then requires that we treat y as
known. If y is known, we can reexpress the kernel of the density as

f(x|y) ∝ exp

{

−x2 − x(2ρy)

2(1− ρ2)

}

exp

{

− y2

2(1− ρ2)

}

,

and we can drop the latter exponential containing y2, because it is simply a
proportionality constant with respect to x. Thus, we are left with the left-hand
exponential. If we complete the square in x, we obtain

f(x|y) ∝ exp

{

− (x2 − x(2ρy) + (ρy)2 − (ρy)2)

2(1− ρ2)

}

,
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which reduces to

f(x|y) ∝ exp

{

− (x− ρy)2 − (ρy)2

2(1− ρ2)

}

.

Given that both ρ and y are constants in the conditional for x, the latter term
on the right in the numerator can be extracted just as y2 was above, and we
are left with:

f(x|y) ∝ exp

{

− (x− ρy)2

2(1− ρ2)

}

.

Thus, the full conditional for x can be seen as proportional to a univariate
normal density with a mean of ρy and a variance of (1− ρ2). We can find the
full conditional for y exactly the same way. By symmetry, the full conditional
for y will be proportional to a univariate normal density with a mean of ρx
and the same variance.

Writing a Gibbs sampler to sample from this bivariate density, then, is
quite easy, especially given that R (and most languages) have efficient algo-
rithms for sampling from normal distributions (rnorm in R). Below is an R
program that does such sampling:

#R program for Gibbs sampling from a bivariate normal pdf

x=matrix(-10,2000); y=matrix(-10,2000)

for(j in 2:2000)

{

#sampling from x|y

x[j]=rnorm(1,mean=(.5*y[j-1]),sd=sqrt(1-.5*.5))

#sampling from y|x

y[j]=rnorm(1,mean=(.5*x[j]),sd=sqrt(1-.5*.5))

}

This algorithm is quite similar to the Gibbs sampler shown previously for
the bivariate planar density. The key difference is that the conditionals are
normal; thus, x and y are updated using the rnorm random sampling function.

Figure 4.9 shows the state of the algorithm after 10, 50, 200, and 2,000
iterations. As the figure shows, despite the poor starting values of −10 for both
x and y, the algorithm rapidly converged to the appropriate region (within
10 iterations).

Figure 4.10 contains four graphs. The upper graphs show the marginal
distributions for x and y for the last 1,500 iterations of the algorithm, with
the appropriate “true” marginal distributions superimposed. As these graphs
show, the Gibbs sampler appears to have generated samples from the appro-
priate marginals. In fact, the mean and standard deviation for x are .059 and
.984, respectively, which are close to their true values of 0 and 1. Similarly, the
mean and standard deviation for y were .012 and .979, which are also close to
their true values.
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Fig. 4.9. Results of Gibbs sampler for standard bivariate normal distribution with
correlation r = .5: Two-dimensional view after 10, 50, 200, and 2,000 iterations.

As I said earlier, we are typically interested in just the marginal distri-
butions. However, I also stated that the samples of x and y can also be
considered—after a sufficient number of burn-in iterations—as a sample from
the joint density for both variables. Is this true? The lower left graph in the
figure shows a contour plot for the true standard bivariate normal distribution
with correlation r = .5. The lower right graph shows this same contour plot
with the Gibbs samples superimposed. As the figure shows, the countour plot
is completely covered by the Gibbs samples.

4.4.5 Reversing the process: Sampling the parameters given the data

Sampling data from densities, conditional on the parameters of the density,
as we did in the previous section is an important process, but the process of
Bayesian statistics is about sampling parameters conditional on having data,
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Fig. 4.10. Results of Gibbs sampler for standard bivariate normal distribution:
Upper left and right graphs show marginal distributions for x and y (last 1,500
iterations); lower left graph shows contour plot of true density; and lower right
graph shows contour plot of true density with Gibbs samples superimposed.

not about sampling data conditional on knowing the parameters. As I have
repeatedly said, however, from the Bayesian perspective, both data and pa-
rameters are considered random quantities, and so sampling the parameters
conditional on data is not a fundamentally different process than sampling
data conditional on parameters. The main difference is simply in the mathe-
matics we need to apply to the density to express it as a conditional density
for the parameters rather than for the data. We first saw this process in the
previous chapter when deriving the conditional posterior distribution for the
mean parameter from a univariate normal distribution.

Let’s first consider a univariate normal distribution example. In the pre-
vious chapter, we derived two results for the posterior distributions for the
mean and variance parameters (assuming a reference prior of 1/σ2). In one, we
showed that the posterior density could be factored to produce (1) a marginal
posterior density for σ2 that was an inverse gamma distribution, and (2) a
conditional posterior density for µ that was a normal distribution:
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p(σ2|X) ∝ IG ((n− 1)/2 , (n− 1)var(x)/2)

p(µ|σ2, X) ∝ N
(
x̄ , σ2/n

)
.

In the second derivation for the posterior distribution for σ2, we showed
that the conditional (not marginal) distribution for σ2 was also an inverse
gamma distribution, but with slightly different parameters:

p(σ2|µ,X) ∝ IG
(

n/2 ,
∑

(xi − µ)2/2
)

.

Both of these derivations lend themselves easily to Gibbs sampling. Under
the first derivation, we could first sample a vector of values for σ2 from the
marginal distribution and then sample a value for µ conditional on each value
of σ2 from its conditional distribution. Under the second derivation, we would
follow the iterative process shown in the previous sections, first sampling a
value for σ2 conditional on µ, then sampling a value for µ conditional on the
new value for σ2, and so on.

In practice, the first approach is more efficient. However, some situations
may warrant the latter approach (e.g., when missing data are included). Here,
I show both approaches in estimating the average years of schooling for the
adult U.S. population in 2000. The data for this example are from the 2000
National Health Interview Survey (NHIS), a repeated cross-sectional survey
conducted annually since 1969. The data set is relatively large by social science
standards, consisting of roughly 40,000 respondents in each of many years. In
2000, after limiting the data to respondents 30 years and older and deleting
observations missing on education, I obtained an analytic sample of 17,946
respondents. Mean educational attainment in the sample was 12.69 years (s.d.
= 3.16 years), slightly below the mean of 12.74 from the 2000 U.S. Census.4

Below is an R program that first samples 2,000 values of the variance of
educational attainment (σ2) from its inverse gamma marginal distribution
and then, conditional on each value for σ2, samples µ from the appropriate
normal distribution:

#R: sampling from marginal for variance and conditional for mean

x<-as.matrix(read.table("c:\\education.dat",header=F)[,1])

sig<-rgamma(2000,(length(x)-1)/2 , rate=((length(x)-1)*var(x)/2))

sig<-1/sig

mu<-rnorm(2000,mean=mean(x),sd=(sqrt(sig/length(x))))

4 In calculating the mean from the census, I recoded the census categories for (1)
under 9 years; (2) 9-12 years, no diploma; (3) high-school graduate or equivalent;
(4) some college, no degree; (5) Associate degree; (6) Bachelor degree; and (4)
graduate or professional degree to the midpoint for years of schooling and created
a ceiling of 17 years, which is the upper limit for the NHIS.
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This program is remarkably short, first reading the data into a vector X
and then generating 2,000 draws from a gamma distribution with the appro-
priate shape and scale parameters. These draws are then inverted, because R
has no direct inverse gamma distribution; thus, I make use of the fact that, if
1/x is gamma distributed with parameters a and b, then x is inverse gamma
distributed with the same parameters. Finally, the program samples µ from
its appropriate normal distribution.

Below is the R program for the alternative approach in which µ and σ are
sequentially sampled from their conditional distributions:

#R: sampling from conditionals for both variance and mean

x<-as.matrix(read.table("c:\\education.dat",header=F)[,1])

mu=matrix(0,2000); sig=matrix(1,2000)

for(i in 2:2000)

{

sig[i]=rgamma(1,(length(x)/2),rate=sum((x-mu[i-1])^2)/2)

sig[i]=1/sig[i]

mu[i]=rnorm(1,mean=mean(x),sd=sqrt(sig[i]/length(x)))

}

Under this approach, we must select starting values for µ and σ2; here I
use 0 and 1, respectively (assigned when the matrices are defined in R), which
are far from their estimates based on the sample means. This approach also
necessitates looping, as we saw in the planar density earlier.

Figure 4.11 shows the results of both algorithms. The first 1,000 draws have
been discarded from each run, because the poor starting values in the second
algorithm imply that convergence is not immediate. In contrast, under the
first method, convergence is immediate; the first 1,000 are discarded simply
to have comparable sample sizes. As the figure shows, the results are virtually
identical for the two approaches.

Numerically, the posterior means for µ under the two approaches were both
12.69, and the posterior means for σ2 were 10.01 and 10.00, respectively (the

means for
√

σ2 were both 3.16). These results are virtually identical to the
sample estimates of these parameters, as they should be. A remaining question
may be: What are the reasonable values for mean education in the population?
In order to answer this question, we can construct a 95% “empirical probability

interval” for µ by taking the 25th and 975th sorted values of µ from our
Gibbs samples. For both approaches, the resulting interval is [12.64 , 12.73],
which implies that the true population mean for years of schooling falls in this
interval with probability .95.

4.5 Conclusions

As we have seen in the last two chapters, the Bayesian approach to inference
involves simply summarizing the posterior density using basic sample statistics
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Fig. 4.11. Samples from posterior densities for a mean and variance parameter
for NHIS years of schooling data under two Gibbs sampling approaches: The solid
lines are the results for the marginal-for-σ2-but conditional-for-µ approach; and the
dashed lines are the results for the full conditionals approach.

like the mean, median, variance, and various quantiles of the distribution.
When posterior densities are such that these integral-based statistics cannot
be directly computed—e.g., when they are multivariate—modern Bayesian
statistics turns to sampling from the posterior density and to computing these
quantities just as we would when we have a sample of data.

Gibbs sampling provides a fairly easy method for sampling from multivari-
ate densities, so long as we can derive the appropriate conditional densities.
In most problems, this reduces simply to (1) treating other variables as fixed
in the joint density, and (2) determining how to sample from the resulting
conditional density. Sometimes, the conditional densities take known forms,
as they did in our normal distribution example. Other times, the conditional
densities may be derivable, but they may take unknown forms, as they did in
our linear and planar distributions examples. In the latter case, we may turn
to inversion or rejection sampling for sampling from the conditionals with
unknown forms.
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In some cases, however, inversion of a conditional density may not be pos-
sible, and rejection sampling may be difficult or very inefficient. In those cases,
Bayesians can turn to another method—the Metropolis-Hastings algorithm.
Discussion of that method is the topic of the next chapter. For alternative and
more in-depth and theoretical expositions of the Gibbs sampler, I recommend
the entirety of Gilks, Richardson, and Spiegelhalter 1996 in general and Gilks
1996 in particular. I also recommend a number of additional readings in the
concluding chapter of this book.

4.6 Exercises

1. Find the inverse distribution function (F−1) for y|x in the bivariate planar
density; that is, show how a U(0, 1) sample must be transformed to be a
draw from y|x.

2. Develop a rejection sampler for sampling data from the bivariate planar
density f(x) ∝ 2x + 3y + 2.

3. Develop an inversion sampler for sampling data from the linear density
f(x) ∝ 5x + 2. (Hint: First, find the normalizing constant, and then find
the inverse function).

4. Develop an appropriate routine for sampling the λ parameter from the
Poisson distribution voting example in the previous chapter.

5. Develop an appropriate routine for sampling 20 observations (data points)
from an N(0, 1) distribution. Then, reverse the process using these data
to sample from the posterior distribution for µ and σ2. Use the noninfor-
mative prior p(µ , σ2) ∝ 1/σ2, and use either Gibbs sampler described
in the chapter. Next, plot the posterior density for µ, and superimpose
an appropriate t distribution over this density. How close is the match?
Discuss.

6. As we have seen throughout this chapter, computing integrals (e.g., the
mean and variance) using sampling methods yields estimates that are not
exact in finite samples but that become better and better estimates as the
sample size increases. Describe how we might quantify how much sampling
error is involved in estimating quantities using sampling methods (Hint:
Consider the Central Limit Theorem).




