Comparing non-nested models in the search for new physics

Sara Algeri^{1,2} In collaboration with: Prof. David van Dyk¹ and Prof. Jan Conrad²

> ¹Department of Mathematics, Imperial College London, London, UK ²Department of Physics, Stockholm University, Stockholm, Sweden.

> > SCMA-VI, 2016

Statistical Tests for HEP

Detection of new physics - The scientific problem

Detection of a new particle

- E.g., Higgs boson, quark, neutrino.
- We want to detect a bump (the signal of the new particle) on top of a background flux.

Distinguish known astrophysics from new signals

- E.g., Dark Matter.
- We can even have a fake signal, i.e., something mimicking Dark Matter, but not a background to it.

Detection of a new particle - The statistical problem

Problems

 μ is on the boundary of its parameter space + β is not defined under H_0 .

Solutions

Testing on the boundary of the parameter space

Model:

$$\propto f(y, \alpha) + \mu g(y, \beta) \qquad \mu \ge 0$$
 (3)

For now, let β be fixed, the model in (3) is identifiable.

Test

$$H_0: \mu = 0$$
 versus $H_1: \mu > 0$

Test statistics*:

$$LRT = -2\log[\underbrace{L(0, \hat{\alpha}_{0}, -)}_{\text{Likelihood}} - \underbrace{L(\hat{\mu}, \hat{\alpha}, \beta)}_{\text{under } H_{0}}]$$

 * for the specific case of β fixed.

• μ is on the boundary \Rightarrow WE CAN USE Chernoff, 1954 i.e.:

$$LRT = \frac{d}{n \to \infty} \frac{1}{2}\chi_1^2 + \frac{1}{2}\delta(0)$$
 under H_0

S. Algeri (ICL, SU)

SCMA-VI, 2016 4 / 14

(4)

(5)

Testing with non-identifiable parameters

- If β fixed, under H_0 the LRT is asymptotically $\frac{1}{2}\chi_1^2 + \frac{1}{2}\delta(0)$.
- If we let β vary \Rightarrow Under H_0 , $\{LRT(\beta), \beta \in B\}$ is asymptotically a $\frac{1}{2}\chi_1^2 + \frac{1}{2}\delta(0)$ random process indexed by β .
- In practice:
 - Define a grid B_R of $R \beta_r$ values over the energy spectrum B.
 - $\forall \beta_r \in \boldsymbol{B}_R$ calculate $LRT(\beta_r)$.

We combine the *R* $LRT(\beta_r)$ values in a unique test statistics...

 $c = \max_{\beta_r \in \boldsymbol{B}_R} LRT(\beta_r)$

... and we produce a global p-value...

$$P(\sup_{\beta \in \boldsymbol{B}} LRT(\beta) > c) \tag{6}$$

...which we must calculate/approximate somehow!

Approximation of $P(\sup_{\beta \in \boldsymbol{B}} LRT(\beta) > c)$

From Davies, 1987 we have

 \Rightarrow use the "empirical" version of **Gross and Vitells, 2010**

$$P(\sup LRT(\beta) > c) \lesssim \frac{P(\chi_1^2 > c)}{2} + \frac{e^{-\frac{c-c_0}{2}}E[N(c_0)|H_0]}{(8)}$$

where $c_0 \ll c$ and $E[N(c_0)|H_0]$ is estimated using (few) Bootstrap simulations.

S. Algeri (ICL, SU)

SCMA-VI, 2016 6 / 14

Distinguish known astrophysics from new signals - The statistical problem

- The model for the know cosmic source is f(y, α);
- The model for the new source is g(y, β);
- $f \not\equiv g$ for any α and β .

Is f sufficient to explain the data, or does g provide a better fit?

Problem

f and g are non-nested.

Solutions

Cox, 1961-1962, Atkinson, 1970; etc., Bootstrap, next slides..

Theoretical solutions

Practical solutions

Note

In High Energy Physics (HEP) a discovery is claimed at 5σ significance. Simulating $O(10^8)$ from a detector might get quite prohibitive.

S. Algeri (ICL, SU)	Statistical Tests for HEP
---------------------	---------------------------

A new formulation of the problem

Consider a comprehensive model which includes $f(y, \alpha)$ and $g(y, \beta)$ as special cases:

$$(1 - \eta)f(y, \alpha) + \eta g(y, \beta)$$
(9)

Thus, considering the model in (9) we test

 $H_0: \eta = 0$ versus $H_1: \eta > 0$

To exclude intermediate values of η we can interchange the roles of the hypotheses and test

$$H_0: \eta = 1$$
 versus $H_1: \eta < 1.$

< ロト < 同ト < ヨト < ヨト

From a new formulation to a well known problem

Model:

$$(1 - \underbrace{\eta}_{\substack{\text{Tested}\\\text{on the}\\\text{boundary}}})f(y, \alpha) + \eta g(y, \underbrace{\beta}_{\substack{\text{Not}\\\text{defined}\\\text{under}\\H_0}}) \text{ with } 0 \le \eta \le 1$$
(10)

Test:

 $\begin{array}{ll} H_0:\eta=0 \quad \text{versus} \quad H_1:\eta>0\\ \text{similar argument for } H_0:\eta=1 \quad \text{versus} \quad H_1:\eta<1 \end{array}$

Note!

These are precisely the same issues we encounter when detecting new particles \implies we already have a solution!

0	A 1		CH
<u> </u>	Alge	ri (50

Statistical Tests for HEP

SCMA-VI, 2016 9 / 14

(日) (同) (日) (日)

Does it actually work? Let' s see an example...

More examples in: S. Algeri, J. Conrad and D.A. van Dyk. A method for comparing non-nested models with application to astrophysical searches for new physics. MNRAS: Letters, 2016.

S. Algeri (ICL, SU)

Statistical Tests for HEP

SCMA-VI, 2016 10 / 14

イロト 不得下 イヨト イヨト

What if we have just few events?

Simulation with "not-that-large" N

For a comparison with other inferential procedure see: Algeri S. et al. *Looking for a Needle in a Haystack? Look Elsewhere!* Submitted, 2016.

S. Algeri (ICL, SU)

▲ ■ ▶ ■ ● ○ Q C SCMA-VI, 2016 11 / 14

Realistic data analysis

- We simulated 200 events a 5 years observation of putative dark matter source from the Fermi Large Area Telescope (LAT).
- The Fermi LAT is a *γ*-ray telescope on board the earth-orbiting Fermi satellite.

Results§

<u>Power-law vs. dark matter</u> p-value= $2.7 \cdot 10^{-5}$ (sig. 4.038σ)

Dark matter vs. power-law

p-value = 0.528

- To improve the power of the test one could take into account:
 - γ -ray directions.
 - Instrumental error.
- [§] Using *R package 'NONnest'*, S. Algeri, 2015. S. Algeri (ICL, SU)

Image from: Cowen R. *Space telescope to get software fix*. Nature, Vol. 491, 2012.

Statistical Tests for HEP

SCMA-VI, 2016 12 / 14

Conclusions and future works

We have presented a two-step solution to a compare competing non-nested models:

- **Step 1** Extend the parameter space of the models to be compared through an additive comprehensive model.
- Step 2 Apply Gross and Vitells, 2010 on the model in Step 1.

Advantages of the procedure	Limitations and future works

- (Extremely) easy to implement.
- No extensive calculations on a case-by-case basis.
- Computationally more efficient than standard Bootstrap simulations.

- It does not handle multi-dimensional nuisance parameter under *H*₁.
- The nuisance parameter under *H*₀ is required to lie in the interior of its parameter space.
- Improvement of the GV bound w.r.t the dependence structure of the LRT perocess.

References

- S. Algeri et al. Looking for a Needle in a Haystack? Look Elsewhere! A statistical comparison of approximate global p-values. Submitted, 2016.
- S. Algeri, J. Conrad and D.A. van Dyk. A method for comparing non-nested models with application to astrophysical searches for new physics. In: MNRAS: Letters, 2016.
- S. Algeri, R package 'NONnest' (2015). Download: http://wwwf.imperial.ac.uk/~sa2514/Research.html.
- A. C. Atkinson. "A Method For Discriminating Between Models". In: Journal of the Royal Statistical Society. Series B (Methodological) 32.3 (1970).
- L. Bergström, p. Ullio, and J.H. Buckley. "Observability of rays from dark matter neutralino annihilations in the Milky Way halo". In: Astroparticle Physics 9.2 (1998).
- H. Chernoff. "On the Distribution of the Likelihood Ratio". In: The Annals of Mathematical Statistics 25.3 (1954).
- D. R. Cox. "Tests of Separate Families of Hypotheses". In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. (1961).
- D. R. Cox. "Further Results on Tests of Separate Families of Hypotheses". In: Journal of the Royal Statistical Society. Series B (Methodological) 24.2 (1962).
- R. B. Davies. "Hypothesis Testing when a Nuisance Parameter is Present Only Under the Alternatives". In: Biometrika 74.1 (1987).
- E. Gross and O. Vitells. "Trial factors for the look elsewhere effect in high energy physics". In: The European Physical Journal C 70.1-2 (2010), pp. 525-530.

イロト イポト イヨト イヨト 二日