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Introduction

For most of the work I do in Cosmology I am trying to bring
new statistical tools/methodology to the science.

Today I am going to talk about the reverse:

Generalize a tool developed in Cosmology and make it available to
the wider statistical community

Ethan Anderes University of California at Davis



Spatial statistics
The difficulty with non-stationarity
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I would propose that non-stationarity random fields is the
bane of applied spatial statisticians.

Non-stationarity is almost always present in the data.

However, as statisticians we still don’t have an agreed upon
generic way to handle it.

When compared to the theory of stationary random fields we
know relatively little.
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Comparison of stationarity vrs non-stationarity in 1-d
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Figure: Top: Stationary processes. Bottom: Non-stationary processes
(images from Sly, 2007).
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Comparison of stationarity vrs non-stationarity in 2-d
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There are many proposals in the statistics literature for dealing
with non-stationarity.

Some examples

Spatially varying smoothing of white noise. See Fuentes,
Higdon, Benassi, Cohen, Istas, Ayache.

Basis expansions (Wavelets, EOF, etc.). See Nychka, Cressie,
Wikle.

Deformed stationary random fields. See Sampson, Guttorp,
Stein, EA.

Spatial varying spectral densities. See Priestley, Dahlhaus.

Most require complicated, computationally difficult, estimates
which do not lend themselves to uncertainty quantification and
analysis.
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Evolutionary spectra

The last example will come up later.

Spatially varying local spectral density

Z pxq “

ż

Rd

e ix ¨kApk , xq
a

Ck
dWk

p2πqd{2

where

Ck is a baseline spectral density.

dWk is a complex Gaussian white noise measure which
satisfies E |dWk |

2 “ dk.

Apk, xq is a spatially varying modulation of
?
Ck .

Think of Z pxq as a locally stationary process with local
spectral density given by |Apk , xq|2Ck .

The goal is to estimate Apk , xq given observations of Z pxq.
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Evolutionary spectra

Spatially varying local spectral density

Z pxq “

ż

Rd

e ix ¨kApk , xq
a

Ck
dWk

p2πqd{2

Methods developed for this process usually involve a local
spectral density estimate or local likelihood for estimating
properties of |Apk , xq|2Ck .

It is not clear, however, how one estimates the phase of
Apk, xq.

Is it identifiable? Estimable?
What does one gain/lose by letting the phase modulation
spatially vary?
What class of models satisfy |Apk , xq|2 “ 1?
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The quadratic estimate of CMB lensing
A beautiful application for random field non-stationarity
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The Cosmic Microwave Background (CMB)

The CMB is a old distant cosmological image. Here is a
recent picture taken from the Planck satellite:

Shows radiation fluctuations after the big bang

Observations are gravitationally lensed from intervening
matter.
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Gravitational lensing:

The bending or distortion of photon trajectories by the
gravitational influence of intervening matter.

Picture Credit: ESA
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Simulated CMB: No lensing
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Simulated CMB: lensing
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The lensing map is characterized by a lensing potential φ
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The primary goal of CMB lensing studies

The Data:
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The quadratic estimator of lensing

Developed by Hu and Okamoto (2001, 2002) for estimating
the lensing potential φpxq from the lensed CMB observations.

I started studying the quadratic estimate thinking it was going
to easy to beat with alternative methods.

It turns out to have some amazing properties...

... some of which are not entirely understood.
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Deriving the quadratic estimator

The unlensed CMB is isotropic

The Fourier transform of the unlensed CMB is
uncorrelated

The lensed CMB is non-isotropic

The non-stationarity induces auto-correlated in the
Fourier transform

The quadratic estimate works by detecting this
auto-correlation in the Fourier transform of the data.
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Deriving the quadratic estimator

Let T pxq denote the unlensed CMB, φpxq denote the lensing
potential.

The lensed CMB is modeled T̃ pxq “ T px `∇φpxqq.
To derive the quadratic estimator φ̂ Taylor expand around x

T̃ pxq « T pxq
loomoon

isotropic

`∇T pxq ¨∇φpxq
loooooooomoooooooon

not isotropic

Taking the Fourier transform

T̃` « T`
loomoon

spatially

uncorrelated

` i`T` ‹ i` φ`
loooooomoooooon

spatially

correlated

The quadratic estimate uses observed auto-correlation in T̃`,
modeled by the above linear term, to estimate φ.
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The quadratic estimate works amazingly well

Simulated lensed CMB

17o ˆ 17o patch of the sky
1024ˆ 1024 pixels

Estimated potential

Simulation truth potential
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The quadratic estimator is fast

1 Here is how easy it is to implement (in my new favorite
programing language: Julia)

2 Runs in about 0.4 seconds on a 1024ˆ 1024 image.

3 In contrast, a local likelihood approach takes hours to
compute (see E.A, Knox, van Engelen) .
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Accurate approximation of sampling variability

There is also an easily computable analytic approximation to
the sampling variability of the estimate.
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In contrast, a local likelihood approach needs a huge amount
of simulation to quantify estimation uncertainty.
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An example of some puzzling behavior

Recall that the quadratic estimate is derived with a first order
Taylor expansion of the lensing effect

T px `∇φpxqq « T pxq `∇T pxq ¨∇φpxq

called linear order lensing.

Abstractly write the full expansion as

rT “ δ0 rT ` δ1 rT ` δ2 rT ` ¨ ¨ ¨

where δn rT “ Opφnq. So that δ1 rT ” ∇T pxq ¨∇φpxq.
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An example of some puzzling behavior

Even though the quadratic estimate is derived from the linear
model...

data “ δ0 rT ` δ1 rT ` N

...it works spectacularly on “all order lensing” data

data “ δ0 rT ` δ1 rT ` δ2 rT ` ¨ ¨ ¨ ` N.

This is what you might expect when the higher order terms
δn rT , for n ě 2 are small.
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An example of some puzzling behavior

However, if one simulates from the model used to derive the
estimate ....

data “ δ0 rT ` δ1 rT `���
��XXXXXδ2 rT ` ¨ ¨ ¨ ` N.

...the estimator bonks with incredibly huge bias.

Weird.
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The quadratic estimator is unlike any estimator of
non-stationarity I’ve studied.

It would be an extremely powerful estimator if one could
generalize it to other problems.

To do this, however, we need to understand what makes the
quadratic work and why it has such small bias on all order
lensing.
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A connection with phase modulation

Note the Fourier decomposition of the unlensed CMB
temperature (in the flat sky approximation)

T pxq “

ż

Rd

e ix ¨k
b

CTT
k

dWk

p2πqd{2

so the lensed CMB can be written

rT pxq “

ż

Rd

e ipx`∇φpxqq¨k
b

CTT
k

dWk

p2πqd{2

“

ż

Rd

e ix ¨k e i∇φpxq¨k
looomooon

Apk,xq

b

CTT
k

dWk

p2πqd{2

Lensing non-stationarity is a spatially varying spectral phase
modulation.

Could there be a larger theory here?
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A generalized quadratic estimator
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Taylor expansion analysis

Lets try and figure out why the quadratic estimate has such
low bias.

Start with the all order lensing expansion.

rT “ δ0 rT ` δ1 rT ` δ2 rT ` ¨ ¨ ¨ .

Since quadratic estimate φ̂ is linear in the quadratic form
rT pxq rT pyq, written abstractly as p rT q2, so it is natural to
expand p rT q2 and regroup by order of φ

p rT q2 “ pδ0 rT q2
loomoon

I

` 2pδ0 rT qpδ1 rT q
loooooomoooooon

II

`pδ1 rT q2 ` 2pδ0 rT qpδ2 rT q
looooooooooooomooooooooooooon

III

` ¨ ¨ ¨

Now we can analyze the quadratic estimate applied to each
term individually.
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p rT q2 “ pδ0 rT q2
loomoon

I

` 2pδ0 rT qpδ1 rT q
loooooomoooooon

II

`pδ1 rT q2 ` 2pδ0 rT qpδ2 rT q
looooooooooooomooooooooooooon

III

` ¨ ¨ ¨

Term I controls the estimation variance in φ̂. It is often called
the ‘shape noise’ or ‘Gaussian noise’.

The estimator φ̂ is designed around term II . Applying φ̂ to II
will yield a low-noise zero-bias estimate.

The remaining terms III , IV , . . . result in estimation bias.
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p rT q2 “ pδ0 rT q2
loomoon

I

` 2pδ0 rT qpδ1 rT q
loooooomoooooon

II

`pδ1 rT q2 ` 2pδ0 rT qpδ2 rT q
looooooooooooomooooooooooooon

III

` ¨ ¨ ¨

The success of the quadratic estimate is driven by the fact
that III ` IV ` ¨ ¨ ¨ is small.

What’s interesting is that it is not because the higher order
terms δ2 rT , δ3 rT ` ¨ ¨ ¨ are small.

Rather, the terms within III , IV , . . . are highly negatively
correlated and combine to make small bias
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p rT q2 “ pδ0 rT q2
loomoon

I

` 2pδ0 rT qpδ1 rT q
loooooomoooooon

II

`pδ1 rT q2 `���
��

��XXXXXXX2pδ0 rT qpδ2 rT q
looooooooooooomooooooooooooon

III

` ¨ ¨ ¨

This is why linear lensing (or truncating to any order) breaks
the quadratic estimate: it prohibits the cancellation within
each term III , IV , . . .

The question remains:

What is it about lensing that enables this
cancellation and does it exist anywhere else?
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To understand which non-stationary models exhibit this
cancellation one needs to realize that map level Taylor
expansions are misleading when there exists distributional
invariance.

For example let v P Rd be large enough as to make a zeroth

order Taylor expansion inaccurate

T px ` vq ff T pxq

However, if T is stationary this Taylor expansion is exact in a
distributional sense

T px ` vq
D
“ T pxq
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The right way to analyze the Taylor expansion is in the
distributional sense.

Taking expected value of p rT q2 expansion gives

E p rT pxq rT pyqq

“ C p0qpx´yq
looooomooooon

EpI q

`C p1qpx´yq ¨ pθpxq´θpyqq
looooooooooooooomooooooooooooooon

EpII q

`Oppθpxq´θpyqq2q
loooooooooomoooooooooon

EpIII q

` ¨ ¨ ¨

where θpxq :“ ∇φpxq.

Each term in the above expansion is function of x ´ y and
θpxq ´ θpyq only. In E.A.& Guinness [arxiv:1603.03496] we argue
this is the essential feature which makes the quadratic estimate
have such low bias and which can be generalized.
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Generalizing to other non-stationary random fields

Consider a general non-stationary random field Z pxq on Rd where
the non-stationarity is characterized by a vector field
θpxq : Rd Ñ Rd .

Definition (E.A.& Guinness)

Z pxq is said to have local invariant non-stationarity if it’s
covariance function has the form

covpZ pxq,Z pyqq “ K
`

x´y ,θpxq´θpyq
˘

with K : Rd ˆ Rd Ñ R.

The name local invariance expresses the fact that the local
behavior of Z pxq is invariant to the magnitude of θpxq.
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Local invariant non-stationarity

To derive a quadratic estimate for these random fields, expand the
second argument of K

K
`

x ý ,θpxq´θpyq
˘

“ C p0qpx´yq`C p1qpx´yq¨pθpxq´θpyqq`¨ ¨ ¨

Generalized quadratic estimate (E.A.& Guinness)

A generalized quadratic estimate can always be constructed from
the above expansion when θpxq is characterized by a potential
θk “ ξkφk and has the form

φ̂` “ A`

d
ÿ

p“1

ξ˚p,`

ż

e´ix ¨`A pxqBppxq
dx

p2πqd{2

where A` :“ Z obs
` {CZZobs

` and Bp,` :“ i2 imagpC
p1q
p,` qZ

obs
` {CZZobs

`
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Generalized quadratic estimate

φ̂` “ A`
řd

p“1 ξ
˚
p,`

ş

e´ix ¨`A pxqBppxq dx
p2πqd{2

Inherits the same attractive features of the quadratic estimate
of Hu and Okamoto

Estimates non-stationarity via the empirical correlation of
Fourier frequencies.
Fast and easy to implement.
Fast and accurate analytic approximations to sampling
variability and bias.
Exhibits surprisingly low bias

Low bias is not guaranteed, but seems to persist when θpxq
has small to moderate fluctuations and/or smoothness.
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Example: spatially varying spectral phase modulation

Z pxq “
ş

Rd e
ix ¨ke iθpxq¨ηk

?
Ck

dWk

p2πqd{2

ηk : Rd Ñ Rd satisfies η´k “ ´ηk .

Evolutionary spectral model with Apk , xq “ e iθpxq¨ηk so that
|Apk , xq|2 “ 1.

Behaves like a generalized warping process...local
magnification/demagnification can alter the differentiability of
the process.

Z pxq has local invariant non-stationarity ùñ there exists a
generalized quadratic estimate for θpxq assuming ηk and Ck

are given.
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In 1-d

Figure: ηk is constructed so that Z pxq approximates a spatial variation in
the Matérn smoothness parameter ν.
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In 1-d

Figure: The derivations in arxiv:1603.03496 yield accurate analytic
approximations to variance and bias segmented by spatial frequency.
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In 2-d

Figure: φpxq is a curl potential in this example. Z pxq models a locally
varying change in Matérn smoothness and local scale (inversely related).
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These generalized quadratic estimates can still have bias when
∇θpxq is large ....
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... but the bias is accurately quantified˚ under Gaussian random
field models for φ

˚The local spectral densities of these models have an interesting

connection with L2 Wasserstein geodesics that allow one to predict (the

shaded region on the previous slide) the size of ∇θpxq which results in

large bias.
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The bias reduction due to local invariance

Consider the following two stochastic processes on t P rπ,´πq

Z ptq has local invariant non-stationarity. rZ ptq does not.
Yet they have very similar expansions

where
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The bias reduction due to local invariance

Using the previous covariance expansions one can derive
separate quadratic estimates of φptq under Z ptq and rZ ptq.
Even though the two expansions are only different by sign
changes, the behavior of the estimates are completely
different.
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Concluding Remarks
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Overview

Defined an extended class of non-stationary random fields,
and a corresponding generalized quadratic estimate, which
share the same attractive statistical properties of the original
quadratic estimate from Hu and Okamoto.

We identified a particular form of non-stationarity, local
invariance, which encourages a delicate cancellation of
estimation bias.

This generalized quadratic estimate is particularly adept at
detecting small departures from stationarity and allows fast,
accurate quantification of mean square sampling properties.
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Future work

Extensions to general θpxq : Rd Ñ Rm in the random phase
model.

Non-separable exponents e iθpxq¨ηk Ñ e iθpx ,kq

In the evolutionary spectra case, one can always write

Apk , xq “ eγpx ,kqe iθpx ,kq

where γpx , kq, θpx , kq P R.

It may be possible to build a general theory of inference for
γpx , kq and θpx , kq:

The variance of local frequencies ÝÑ estimating γpx , kq
Correlation of frequencies ÝÑ estimating θpx , kq.
Scaling up this estimate for detecting spatially varying
cosmological parameters.
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Thanks!
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