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Sampling: Hamiltonian Monte Carlo (HMC)

Each parameter becomes a “particle” position. Momentum
variables are introduced. Particles follow Hamiltonian dynamics.
U = -In(posterior).

Huge advantage over random walk: Information in the derivatives
Is used to walk “in the right direction”.

Acceptance rate = 1 theoretically.
For each iteration need to integrate equations of motion
numerically using staggered leapfrog (or similar) methods.

Typically ~10 numerical integration steps are taken per iteration.

Method of choice for sampling high dimensional parameter
spaces.

Tuning: masses, integration steps, integration time.



Optimization: BFGS
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Needs the first, but not second =13 - =
derivatives. . 1

At each Iteration the inverse
Hessian Is estimated from
previous iterations (never
stored explicitly). A direction
of move Is deduced, followed

by line search. Line search: Moré-Theunte 1992

L-BFGS: Limited memory BFGS. Store and use only a few
previous iterations. Works almost as well as BFGS!
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Binning: S; ={sm,} (m=1,..., M) Q; = Rl;[lRT
RSR' = Z ©;Q; projection matrix
l

Likelihood:  £(d[®) = (2m) /2 det(C) /2 exp (—%d*c—ld)

Minimum variance estimator (Wiener Filter): § = SRTC~!d

For gaussian fields this is the same as the maximum probability
estimator!
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Estimating Noise Bias and Fisher Matrix

A

Noise bias: simulate noise: d,, Pass through optimizer: S,
b = I1;S~ 1575, S I,

Fisher matrix: simulate signal: Ss Pass through optimizer: Sg
For each bin I’ simulate extra signal in that bin only: Asy
sy = ss + Asp Pass through optimizer: S;/
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Power spectrum:
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|_inear case: Weak Lensing

Toy Example: 64x64 grid
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|_inear case: Weak Lensing

Toy Example: 64x64 grid
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esults

Original L-BFGS Linear Algebra
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Density Reconstructed density Wiener filter
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|_inear case: Weak Lensing

1024x1024 grid: ~million parameters

Power spectrum

500 Mpc/h f” ~ .. 500 Mpcrh



|_inear case: Weak Lensing

1024x1024 grid: ~million parameters
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Reconstruction

Original L-BFGS in action

Density By lteration: 0, x2 = 2417008. 63

500 Mpc/h 500 Mpc/h

CPU time ~ 1 min.



| -BFGS vs. Conjugate Gradient
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Power Spectrum
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Fiducial power is 50% larger than the true power.

CPU time ~ 1 hour



Nonlinear Case: Large Scale Structure

Grid: 1283, Box size: (750 Mpc/h)3
Nonlinear evolution: 2LPT (Second order Lagrangian perturbation theory)

Linear Density

o I Simulation
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Code used: fastPM (Yu Feng, Man-Yat Chu, Uros Seljak, 1603.00476)
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Reconstruction

Nonlinear density
Original L-BFGS in action

Nonlinear Density teration: 0, y2 = 6562030. 55

250 Mpc/h 250 Mpc/h
CPU time ~ 1 hour




| -BFGS vs. Conjugate Gradient
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Power Spectrum
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Fiducial power has no wiggles. Power spectra are convolved with window.

CPU time ~ 60 hours



Power Spectrum
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Showing ratio to fiducial (smooth) power.

CPU time ~ 60 hours



Comparison with HMC

Previously:
HMC: Jasche, Wandelt, 1203.3639, ...
Wang, Mo, Yang, van den Bosch, 71307.1348,...

« HMC Burnin: ~500 iterations (~5,000 function/derivative
calls).

e | -BFGS optimization: ~100 iterations (~100 function/
derivative calls).

« HMC correlation length: ~200.

« HMC sample of 10,000: ~100,000 function/derivative calls.

e L-BFGS full fisher matrix/power spectrum estimation:
~5,000 function/derivative calls.



summary

L-BFGS is a fast optimizer for very high dimensional parameter
spaces.

Conjugate gradient works almost as well as L-BFGS for the linear
case. Not so much for the nonlinear case.

Our reconstruction method works well for both linear and nonlinear
models with ~million parameters at least.

HMC is at least an order of magnitude more expensive. But if you
really need a full sample then HMC is the way to go.

DO NOT use HMC for minimization!

Optimizers (L-BFGS, Conjugate gradient) and HMC publicly
available (soon) as a part of the cosmo++ package: cosmopp.com


http://cosmopp.com

