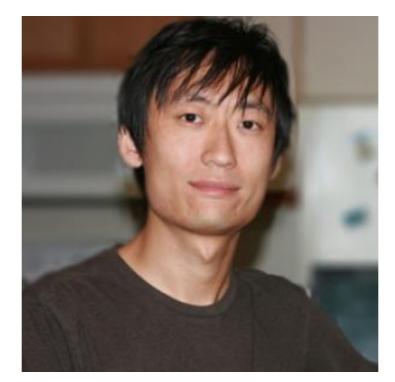
Sampling versus optimization in very high dimensional parameter spaces

Grigor Aslanyan Berkeley Center for Cosmological Physics UC Berkeley

Statistical Challenges in Modern Astronomy VI Carnegie Mellon University June 6, 2016

Collaborators



Uroš Seljak

Yu Feng

Chirag Modi

Sampling: Hamiltonian Monte Carlo (HMC)

- Each parameter becomes a "particle" position. Momentum variables are introduced. Particles follow Hamiltonian dynamics.
 U = -In(posterior).
- Huge advantage over random walk: Information in the derivatives is used to walk "in the right direction".
- Acceptance rate = 1 **theoretically**.
- For each iteration need to integrate equations of motion numerically using staggered leapfrog (or similar) methods.
 Typically ~10 numerical integration steps are taken per iteration.
- Method of choice for sampling high dimensional parameter spaces.
- **Tuning**: masses, integration steps, integration time.

Optimization: BFGS

Quasi-Newton method.

Needs the first, but not second derivatives.

At each iteration the inverse Hessian is estimated from previous iterations (never stored explicitly). A direction of move is deduced, followed by line search. Broyden, Fletcher, Goldfarb, Shanno

Line search: Moré-Theunte 1992

L-BFGS: Limited memory BFGS. Store and use only a few previous iterations. Works almost as well as BFGS!

$$\begin{array}{ll} \mbox{distance} & \mbox{Linear Model} \\ \mbox{distance} & \mbox{distance} & \mbox{distance} & \mbox{signal noise} & \mbox{S} = \left< {\bf ss}^{\dagger} \right> & \mbox{N} = \left< {\bf nn}^{\dagger} \right> \\ \mbox{C} \equiv \left< {\bf dd}^{\dagger} \right> = {\bf RSR}^{\dagger} + {\bf N} \end{array}$$

Binning:
$$\mathbf{S}_{l} = \{s_{m_{l}}\} (m_{l} = 1, \dots, M_{l})$$
 $\mathbf{Q}_{l} = \mathbf{R} \prod_{l} \mathbf{R}^{\dagger}$
 $\mathbf{RSR}^{\dagger} = \sum_{l} \Theta_{l} \mathbf{Q}_{l}$ projection matrix
Likelihood: $\mathcal{L}(\mathbf{d}|\mathbf{\Theta}) = (2\pi)^{-N/2} \det(\mathbf{C})^{-1/2} \exp\left(-\frac{1}{2}\mathbf{d}^{\dagger}\mathbf{C}^{-1}\mathbf{d}\right)$

Minimum variance estimator (**Wiener Filter**): $\hat{\mathbf{s}} = \mathbf{SR}^{\dagger}\mathbf{C}^{-1}\mathbf{d}$ For gaussian fields this is the same as the maximum probability estimator!

U.Seljak astro-ph/9710269

Linear ModelFisher matrix:
$$F_{ll'} = -\left\langle \frac{\partial^2 \ln \mathcal{L}(\mathbf{d}|\Theta)}{\partial \Theta_l \partial \Theta_{l'}} \right\rangle_{\hat{\Theta}}$$

The inverse is an estimate of the covariance matrix of the parameters: $\langle \hat{\Theta} \hat{\Theta}^{\dagger} \rangle - \langle \hat{\Theta} \rangle \langle \hat{\Theta}^{\dagger} \rangle = \mathbf{F}^{-1}$

Calculation:
$$F_{ll'} = \frac{1}{2} tr \left(\mathbf{Q}_l \mathbf{C}^{-1} \mathbf{Q}_{l'} \mathbf{C}^{-1} \right)$$

Window: $W_{ll'} = \frac{F_{ll'}}{\sum_{l'} F_{ll'}}$

Power spectrum quadratic estimator:

$$\hat{\Theta}_{l} = \frac{1}{2} \sum_{l'} F_{ll'}^{-1} \left[\mathbf{d}^{\dagger} \mathbf{C}^{-1} \mathbf{Q}_{l'} \mathbf{C}^{-1} \mathbf{d} - b_{l'} \right]$$
$$b_{l} = tr \left[\mathbf{N} \mathbf{C}^{-1} \mathbf{Q}_{l} \mathbf{C}^{-1} \right]$$

$$\left\langle \hat{\Theta}_l \right\rangle = \sum_{l'} W_{ll'} \Theta_{l'}$$

U.Seljak astro-ph/9710269

Estimating Noise Bias and Fisher Matrix

Noise bias: simulate noise: \mathbf{d}_n Pass through optimizer: $\mathbf{\hat{s}}_n$

$$b_l = \mathbf{\Pi}_l \mathbf{S}^{-1} \mathbf{\hat{s}}_n^{\dagger} \mathbf{\hat{s}}_n \mathbf{S}^{-1} \mathbf{\Pi}_l$$

Fisher matrix: simulate signal: \mathbf{s}_s Pass through optimizer: $\mathbf{\hat{s}}_s$ For each bin l' simulate extra signal in that bin only: $\Delta \mathbf{s}_{l'}$

 $\mathbf{s}_{l'} = \mathbf{s}_s + \Delta \mathbf{s}_{l'} \quad \text{Pass through optimizer: } \mathbf{\hat{s}}_{l'}$ $F_{ll'} = \frac{K_{l'}}{2\Theta_l^2} \left\langle \frac{\sum_{k_l} |\Delta \hat{s}_l(k_l)|^2}{\sum_{k_{l'}} |\Delta s_{l'}(k_{l'})|^2} \right\rangle \quad \text{with } \Delta \mathbf{\hat{s}}_{l'} = \mathbf{\hat{s}}_{l'} - \mathbf{\hat{s}}_s$ $K_{l'} \text{ is the number of modes}$

Power spectrum:

$$\hat{\Theta}_{l} = \sum_{k_{l}} \left(|\hat{s}(k_{l})|^{2} - \left\langle |\hat{s}_{n}(k_{l})|^{2} \right\rangle \right) \left\langle \frac{\sum_{l'} W_{ll'} K_{l'}^{-1} \sum_{k_{l'}} |s_{s}(k_{l'})|^{2}}{\sum_{k_{l}} |\hat{s}_{s}(k_{l})|^{2}} \right\rangle$$

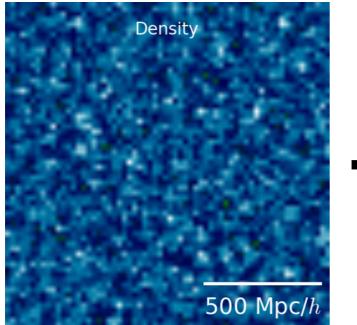
Linear case: Weak Lensing

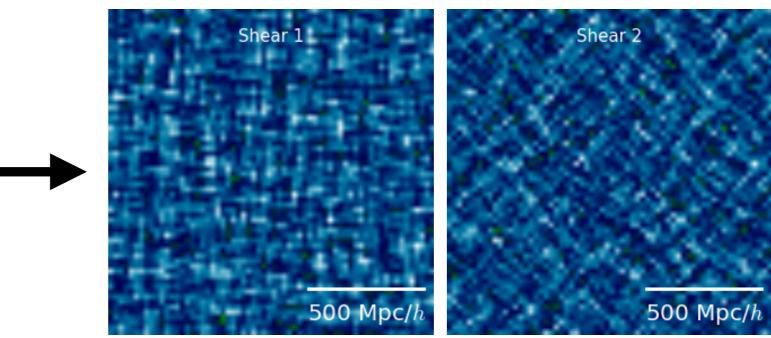
Toy Example: 64x64 grid

Power spectrum Density 3.0 2.5 2.0 1.0 0.5 0.0 0.05 0.20 0.25 0.10 0.15 500 Mpc/h kShear 2 Shear 500 Mpc/h 500 Mpc//

Linear case: Weak Lensing

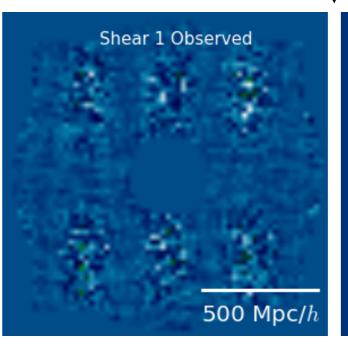
Toy Example: 64x64 grid

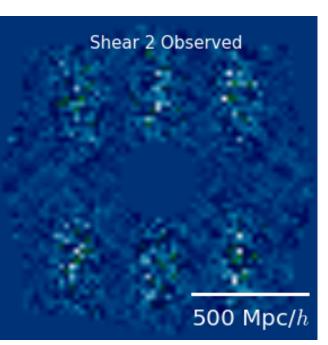




Add noise and mask

Observed data:



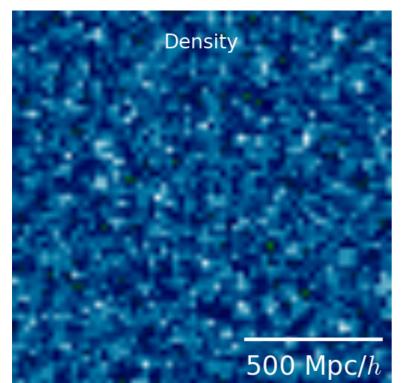


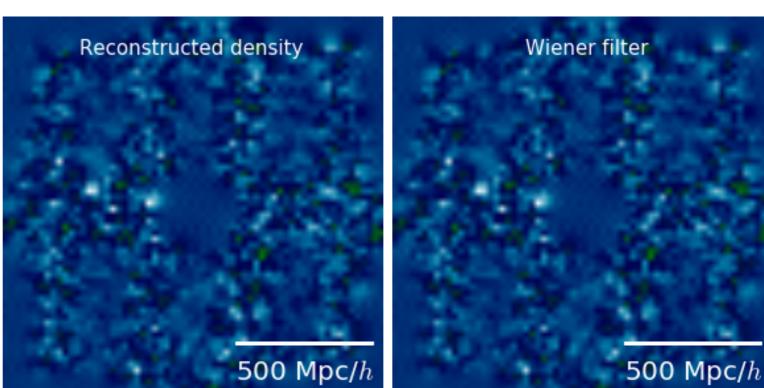
Results

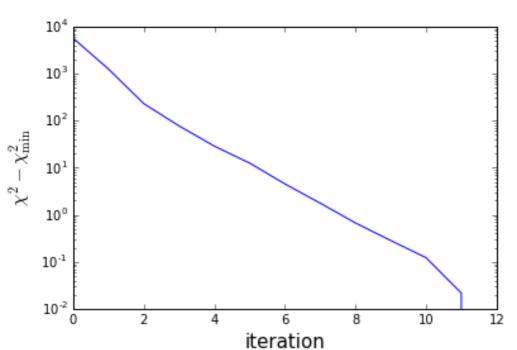
L-BFGS

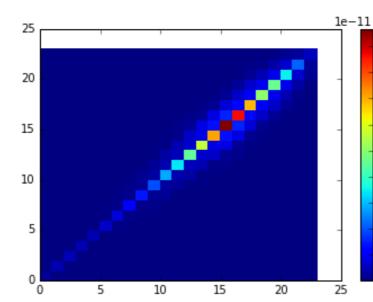
Original

Linear Algebra









Fisher matrix:

1.35

1.20

1.05

0.90

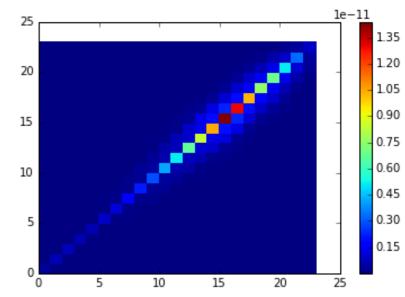
0.75

0.60

0.45

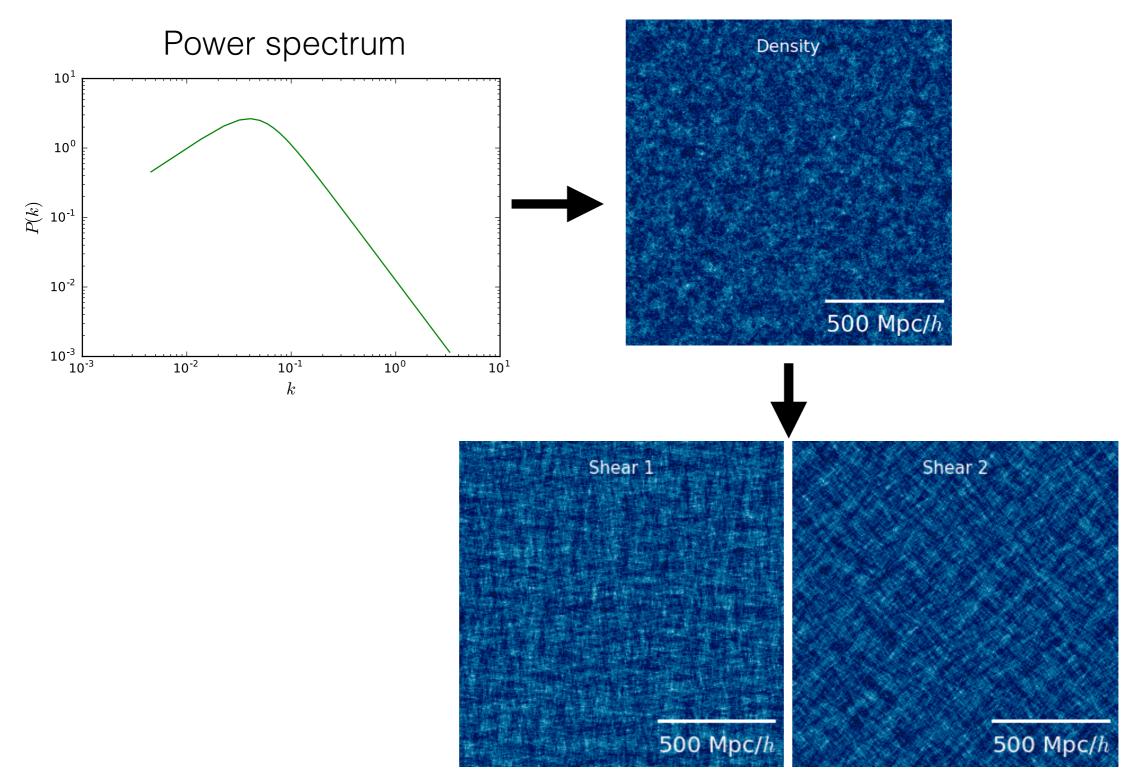
0.30

0.15



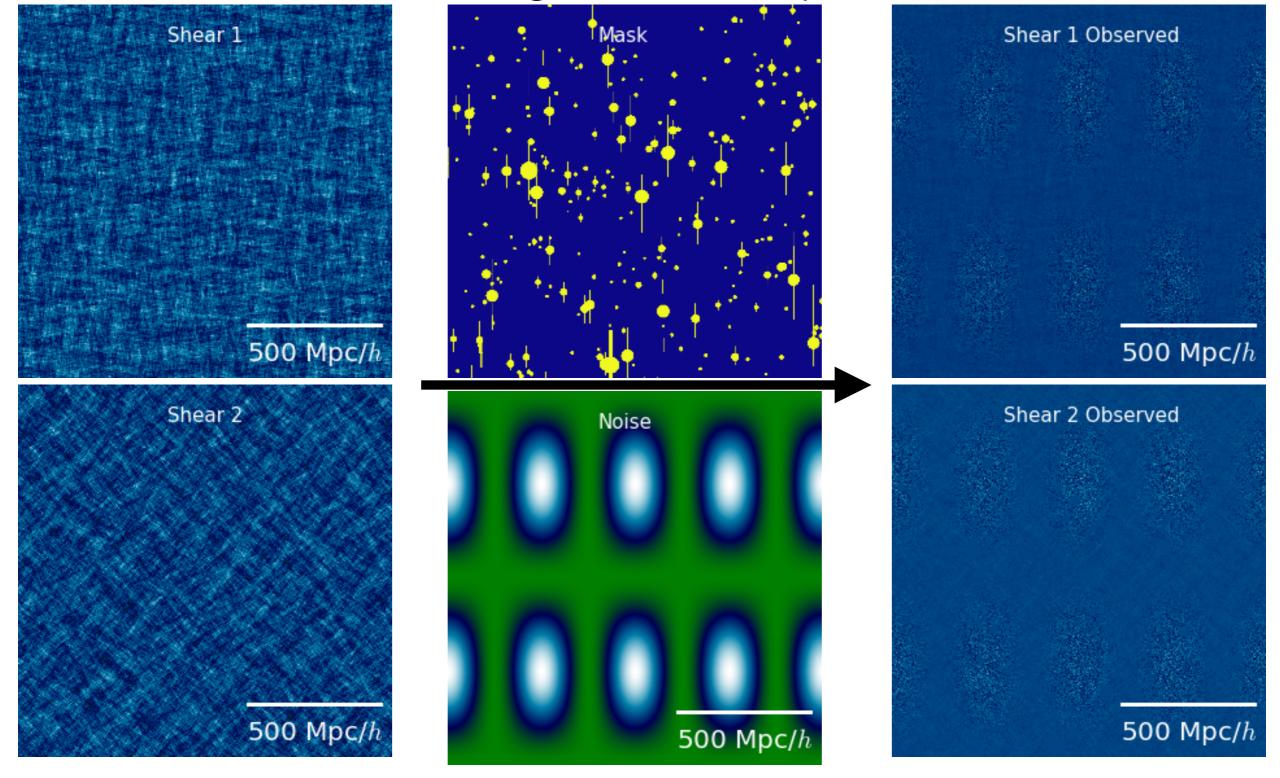
Linear case: Weak Lensing

1024x1024 grid: ~million parameters



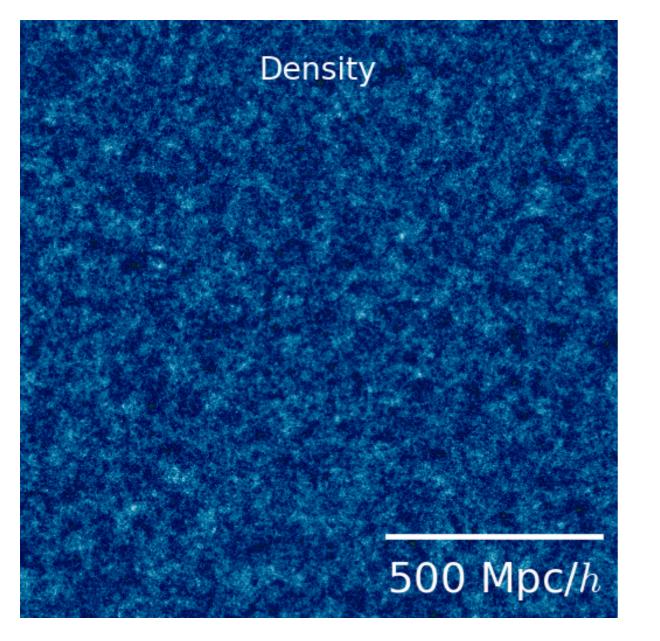
Linear case: Weak Lensing

1024x1024 grid: ~million parameters



Reconstruction

Original



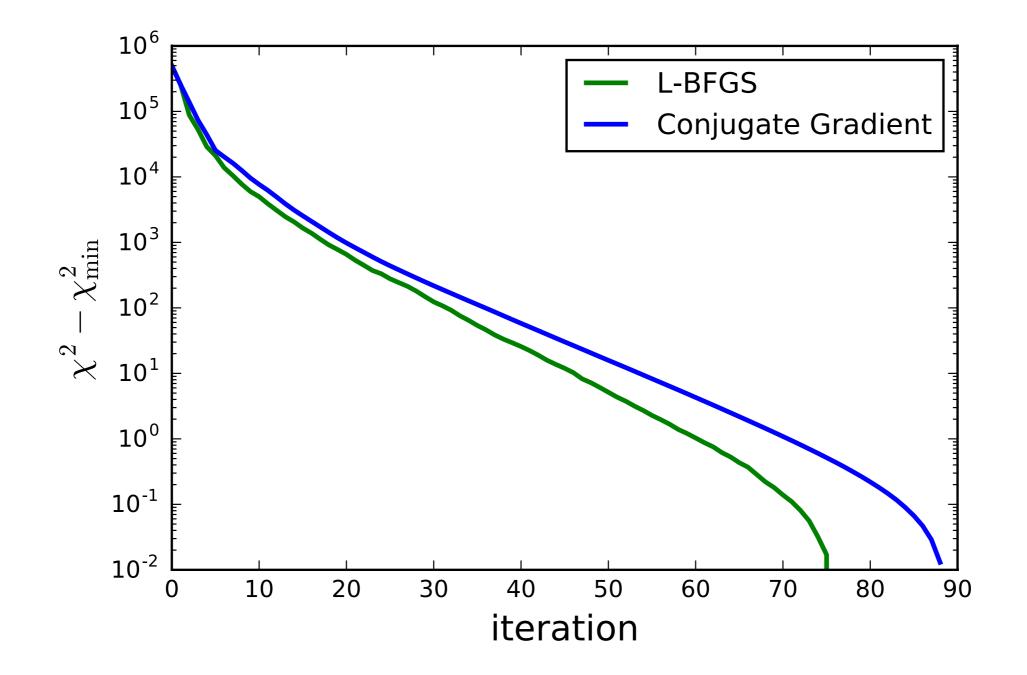
L-BFGS in action

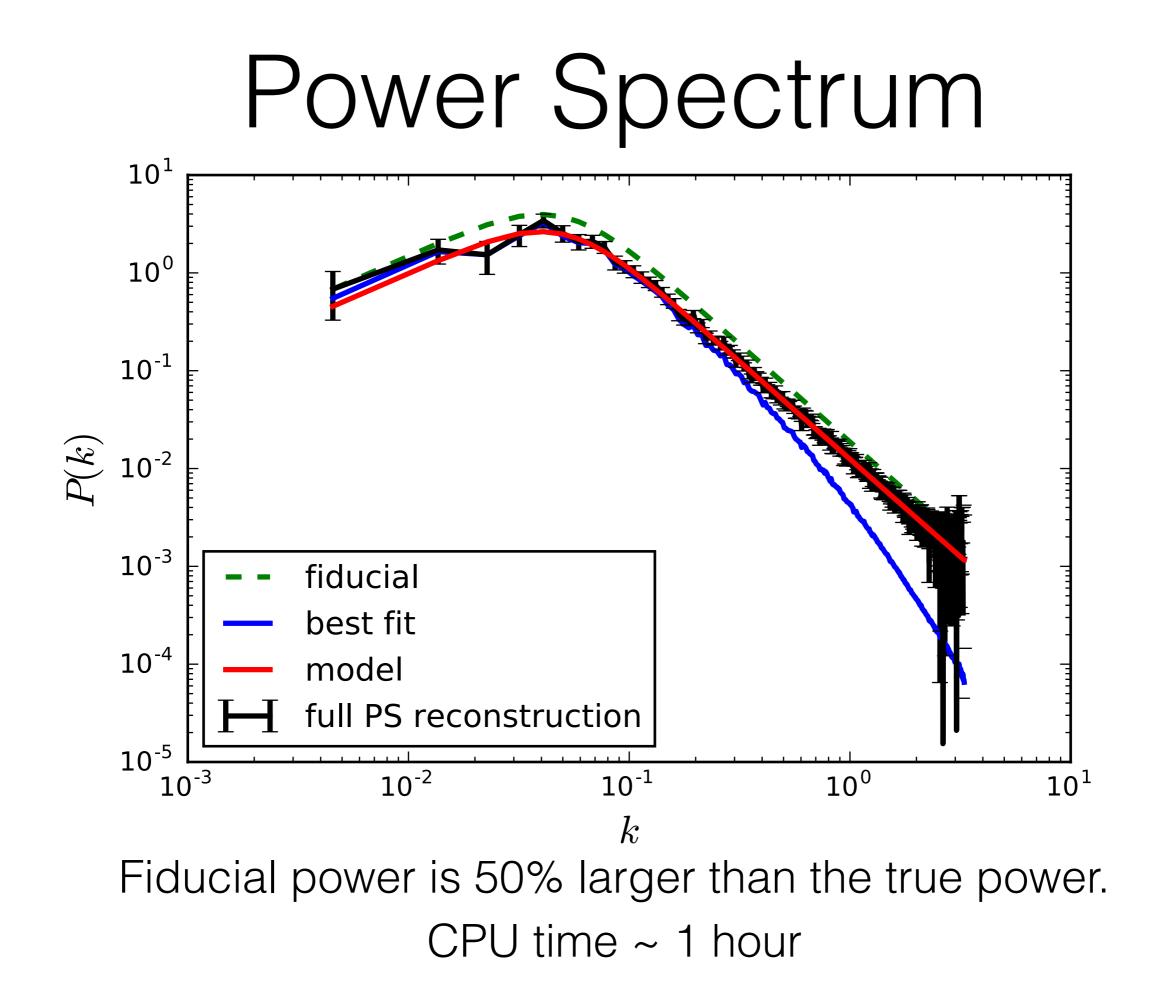
Iteration: 0, $\chi^2 = 2417008.63$

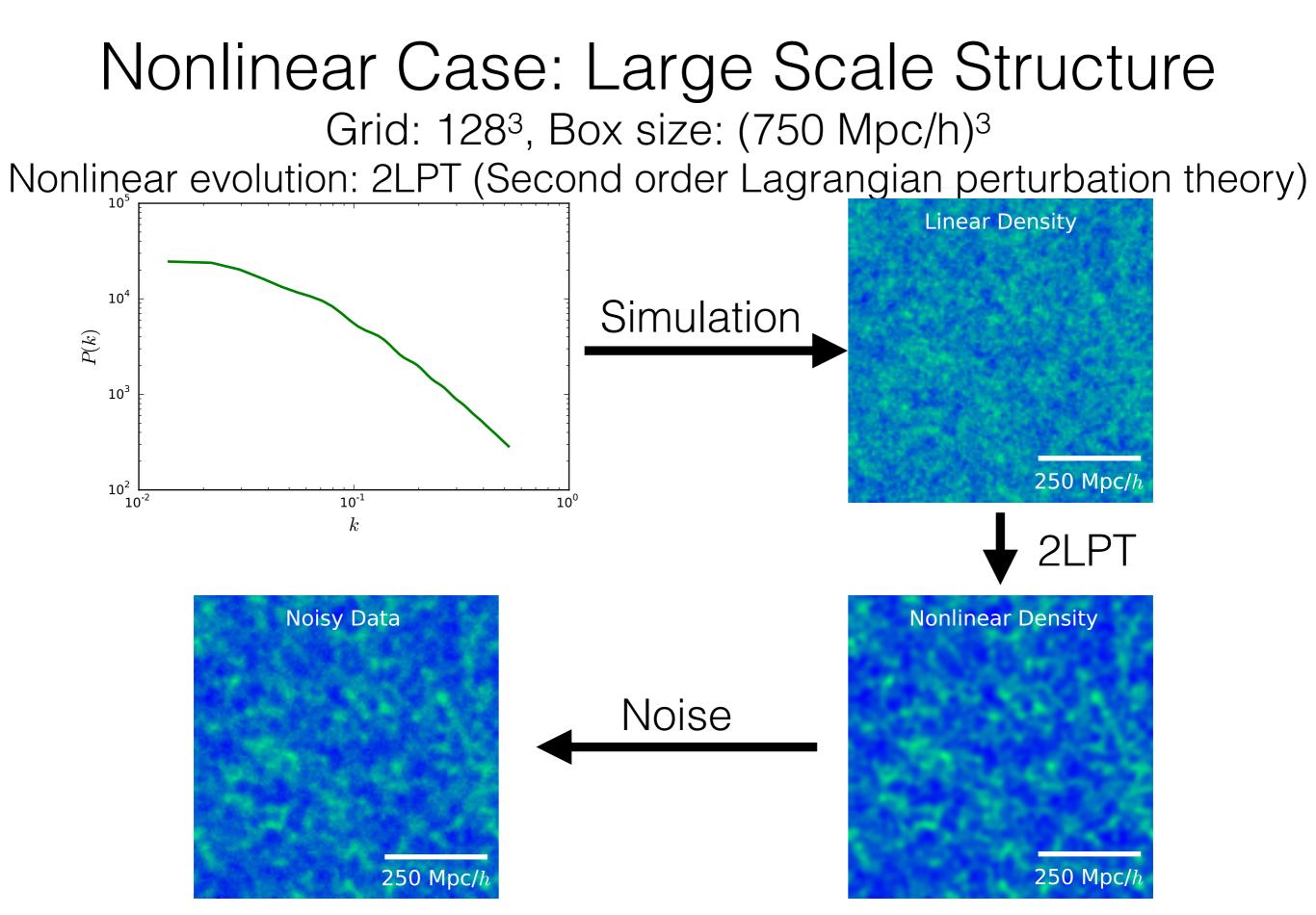
CPU time ~ 1 min.

500 Mpc/h

L-BFGS vs. Conjugate Gradient







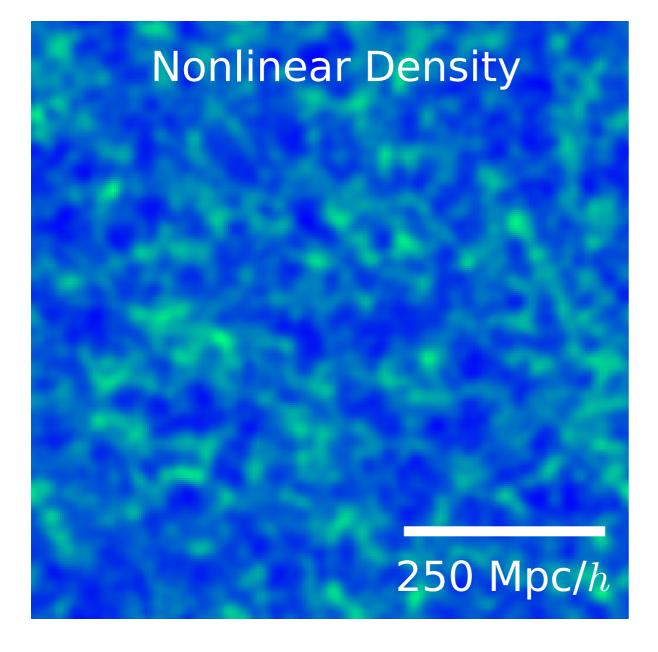
Code used: fastPM (Yu Feng, Man-Yat Chu, Uros Seljak, 1603.00476)

Reconstruction

Nonlinear density

Original

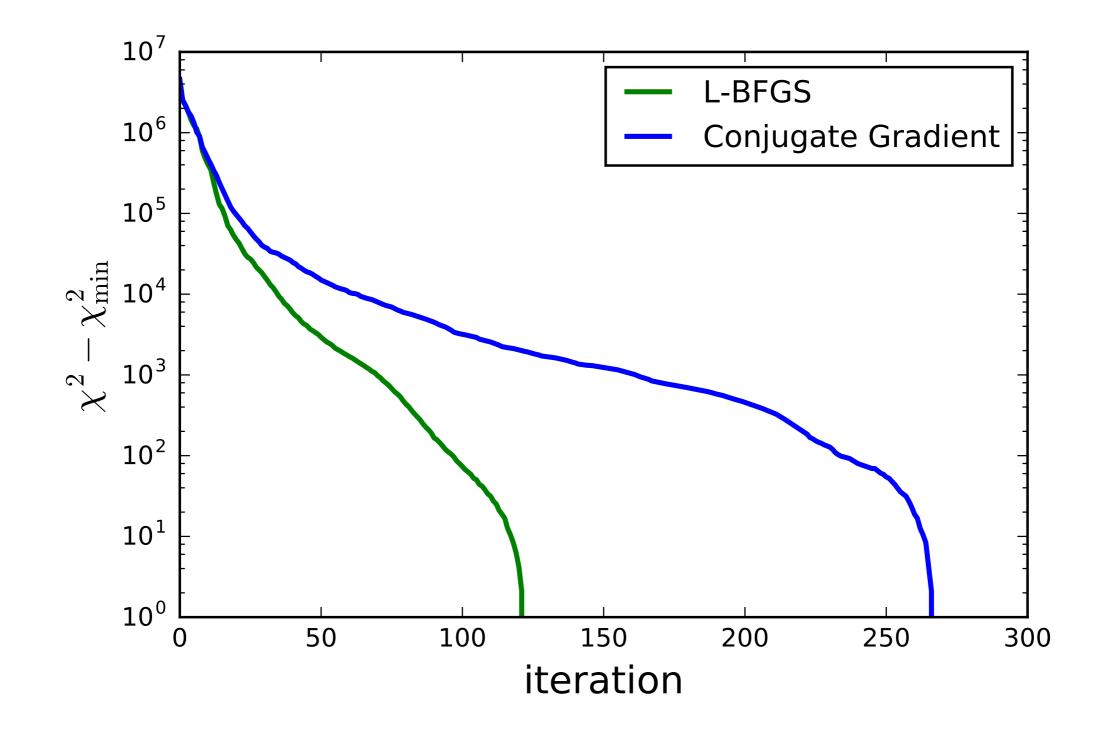
L-BFGS in action

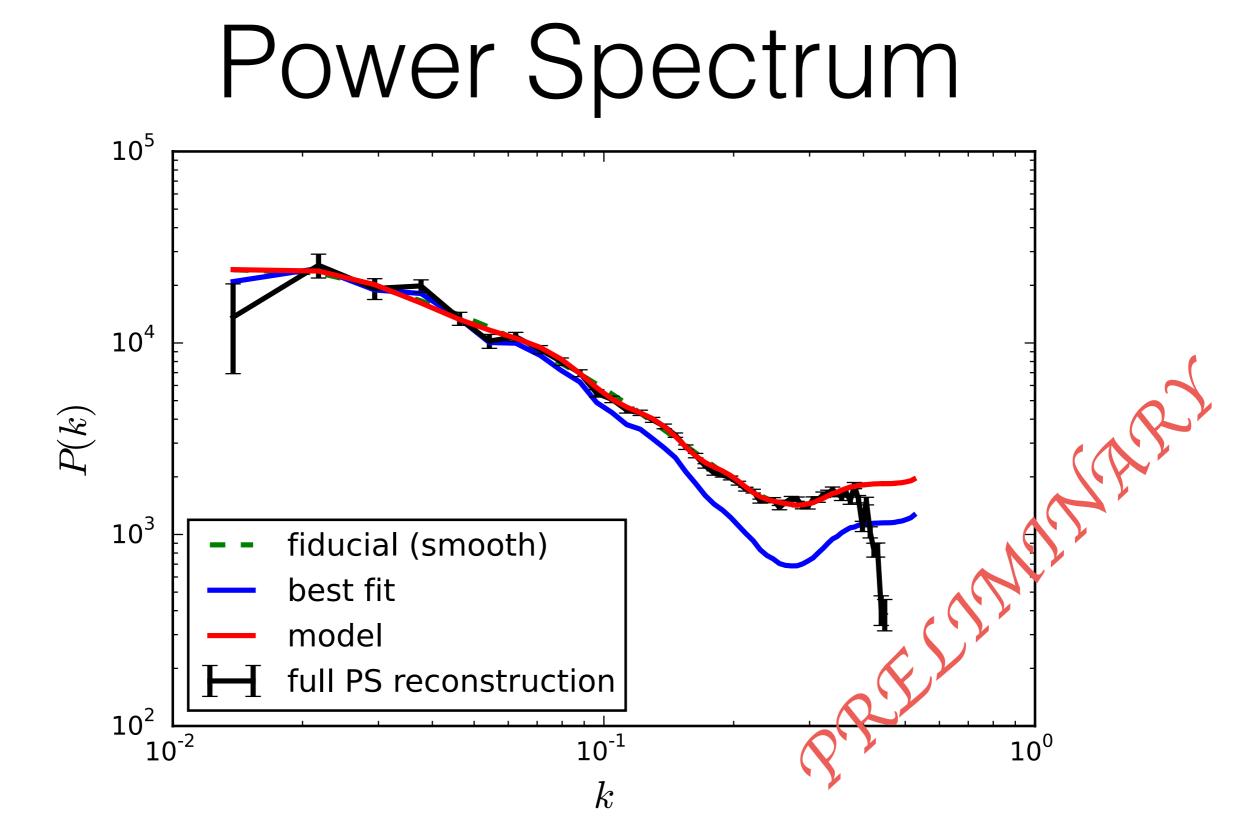


Iteration: 0, $\chi^2 = 6562030.55$

CPU time ~ 1 hour

L-BFGS vs. Conjugate Gradient

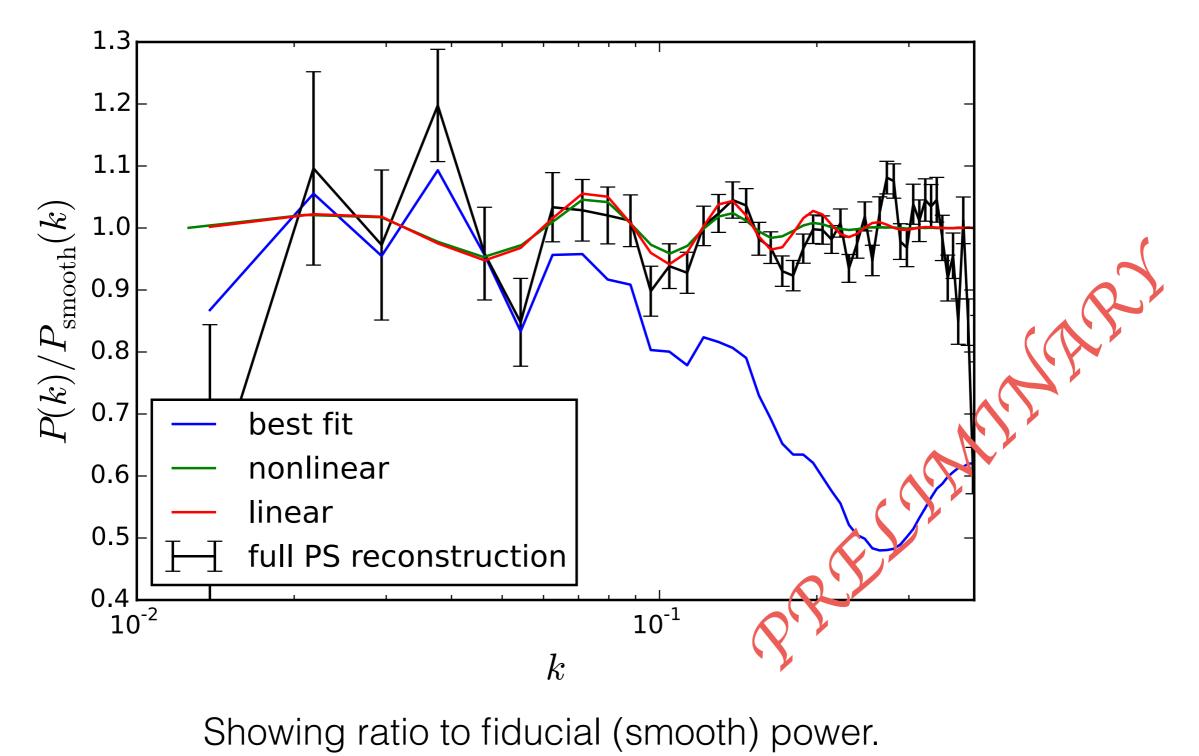




Fiducial power has no wiggles. Power spectra are convolved with window.

CPU time ~ 60 hours

Power Spectrum



CPU time ~ 60 hours

Comparison with HMC

Previously:

HMC: Jasche, Wandelt, 1203.3639,...

Wang, Mo, Yang, van den Bosch, 1301.1348,...

- HMC Burnin: ~500 iterations (~5,000 function/derivative calls).
- L-BFGS optimization: ~100 iterations (~100 function/ derivative calls).
- HMC correlation length: ~200.
- HMC sample of 10,000: ~100,000 function/derivative calls.
- L-BFGS full fisher matrix/power spectrum estimation: ~5,000 function/derivative calls.

Summary

- L-BFGS is a fast optimizer for very high dimensional parameter spaces.
- Conjugate gradient works almost as well as L-BFGS for the linear case. Not so much for the nonlinear case.
- Our reconstruction method works well for both linear and nonlinear models with ~million parameters at least.
- HMC is at least an order of magnitude more expensive. But if you really need a full sample then HMC is the way to go.
- DO NOT use HMC for minimization!
- Optimizers (L-BFGS, Conjugate gradient) and HMC publicly available (soon) as a part of the cosmo++ package: <u>cosmopp.com</u>