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Sampling: Hamiltonian Monte Carlo (HMC)
• Each parameter becomes a “particle” position. Momentum 

variables are introduced. Particles follow Hamiltonian dynamics. 
U = -ln(posterior). 

• Huge advantage over random walk: Information in the derivatives 
is used to walk “in the right direction”. 

• Acceptance rate = 1 theoretically. 

• For each iteration need to integrate equations of motion 
numerically using staggered leapfrog (or similar) methods. 
Typically ~10 numerical integration steps are taken per iteration. 

• Method of choice for sampling high dimensional parameter 
spaces. 

• Tuning: masses, integration steps, integration time.



Optimization: BFGS
Quasi-Newton method.

Needs the first, but not second 
derivatives.

At each iteration the inverse 
Hessian is estimated from 
previous iterations (never 
stored explicitly). A direction 
of move is deduced, followed 
by line search.

L-BFGS: Limited memory BFGS. Store and use only a few 
previous iterations. Works almost as well as BFGS!

Line search: Moré-Theunte 1992
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Minimum variance estimator (Wiener Filter):
For gaussian fields this is the same as the maximum probability 
estimator!



Linear Model
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Fisher matrix:

The inverse is an estimate of the covariance matrix of 
the parameters:

Calculation:

Power spectrum quadratic estimator:

Window: Wll0 =
Fll0P
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Estimating Noise Bias and Fisher Matrix
Noise bias: simulate noise:       Pass through optimizer: dn ŝn

bl = ⇧lS
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Fisher matrix: simulate signal: ss Pass through optimizer: ŝs
For each bin    simulate extra signal in that bin only:l0 �sl0
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|ŝn(kl)|2

↵�
*P

l0 Wll0K
�1
l0

P
kl0

|ss(kl0)|2P
kl
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Linear case: Weak Lensing
Toy Example: 64x64 grid

Power spectrum



Linear case: Weak Lensing
Toy Example: 64x64 grid

Add noise and mask

Observed data:



Results
L-BFGS Linear Algebra

Fisher matrix:

Original



Linear case: Weak Lensing
1024x1024 grid: ~million parameters

Power spectrum



Linear case: Weak Lensing
1024x1024 grid: ~million parameters



Reconstruction
Original L-BFGS in action

CPU time ~ 1 min.



L-BFGS vs. Conjugate Gradient



Power Spectrum

CPU time ~ 1 hour
Fiducial power is 50% larger than the true power.



Nonlinear Case: Large Scale Structure
Grid: 1283, Box size: (750 Mpc/h)3

Nonlinear evolution: 2LPT (Second order Lagrangian perturbation theory)

Simulation

2LPT

Noise

Code used: fastPM (Yu Feng, Man-Yat Chu, Uros Seljak, 1603.00476)



Reconstruction
Original L-BFGS in action

CPU time ~ 1 hour

Nonlinear density



L-BFGS vs. Conjugate Gradient



Power Spectrum

CPU time ~ 60 hours
Fiducial power has no wiggles. Power spectra are convolved with window.
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Power Spectrum

CPU time ~ 60 hours
Showing ratio to fiducial (smooth) power.
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Comparison with HMC
Previously: 
HMC: Jasche, Wandelt, 1203.3639,… 
          Wang, Mo, Yang, van den Bosch, 1301.1348,…

• HMC Burnin: ~500 iterations (~5,000 function/derivative 
calls). 

• L-BFGS optimization: ~100 iterations (~100 function/
derivative calls). 

• HMC correlation length: ~200. 

• HMC sample of 10,000: ~100,000 function/derivative calls. 

• L-BFGS full fisher matrix/power spectrum estimation: 
~5,000 function/derivative calls.



Summary
• L-BFGS is a fast optimizer for very high dimensional parameter 

spaces. 

• Conjugate gradient works almost as well as L-BFGS for the linear 
case. Not so much for the nonlinear case. 

• Our reconstruction method works well for both linear and nonlinear 
models with ~million parameters at least. 

• HMC is at least an order of magnitude more expensive. But if you 
really need a full sample then HMC is the way to go. 

• DO NOT use HMC for minimization! 

• Optimizers (L-BFGS, Conjugate gradient) and HMC publicly 
available (soon) as a part of the cosmo++ package: cosmopp.com

http://cosmopp.com

