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Background: ABC

The posterior for θ given observed data xobs:

π(θ | xobs) =
f (xobs | θ)π(θ)∫
f (xobs | θ)π(θ)dθ

=
f (xobs | θ)π(θ)

f (xobs)

Approximate Bayesian Computation

“Likelihood-free” approach to approximating π(θ | xobs)
(f (xobs | θ) not specified)

Proceeds via simulation of the forward process

Why would we not know f (xobs | θ)?

1 Physical model too complex to write as a closed form
function of θ

2 Strong dependency in data
3 Observational limitations
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ABC for Astronomy

cosmoabc: Likelihood-free inference via Population Monte Carlo
Approximate Bayesian Computation (Ishida et al., 2015)

Approximate Bayesian Computation for Forward Modeling in
Cosmology (Akeret et al., 2015)

Likelihood-Free Cosmological Inference with Type Ia Supernovae:
Approximate Bayesian Computation for a Complete Treatment of
Uncertainty (Weyant et al., 2013)

Likelihood - free inference in cosmology: potential for the
estimation of luminosity functions (Schafer and Freeman, 2012)

Approximate Bayesian Computation for Astronomical Model
Analysis: A case study in galaxy demographics and morphological
transformation at high redshift (Cameron and Pettitt, 2012)
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Stellar Initial Mass Function: the dis-
tribution of star masses after a star for-
mation event within a specified volume
of space

Molecular cloud → Protostars → Stars
Image: adapted from

http://www.astro.ljmu.ac.uk

Properties of the cluster formation could include, for example, core
growth by accretion, interaction due to turbulent environment
(Bate, 2012)

Observation effects include aging, completeness, measurement
error
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Basic ABC algorithm

For the observed data xobs and prior π(θ):

Algorithm∗

1 Sample θprop from prior π(θ)

2 Generate xprop from forward process f (x | θprop)
3 Accept θprop if xobs = xprop
4 Return to step 1

∗Introduced in Pritchard et al. (1999) (population genetics)
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Step 3: Accept θprop if xobs = xprop

Waiting for proposals such that xobs = xprop would be computationally
prohibitive

Instead, accept proposals with ∆(xobs, xprop) ≤ ε
for some distance ∆ and some tolerance threshold ε

An accepted θ is a draw from the posterior if

P(Accept θprop | θprop = θ) ∝ f (xobs|θ) (the likelihood)
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Toy Example: Assume that xobs is Gaussian N(θ,1).

Suppose xobs = 1, ε = 0.1.
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Acceptance Prob.

(left) Propose θprop = 0; acceptance region for xprop in red
rectangle

(right) Consider all possible θ and calculate acceptance probability

Illustration from Chad Schafer
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xobs = 1, θ = 0, ε = 0.4.
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xobs = 1, ε = 1→
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θ

Likelihood

Acceptance Prob.
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ABC Background

Comparing xprop with xobs is not feasible.

When x is high-dimensional, will have to make ε too large in
order to keep acceptance probability reasonable.

Instead, reduce the dimension by comparing summaries,
S(xprop) and S(xobs).
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Gaussian illustration

Data xobs consists of 25 iid draws from Normal(µ, 1)

Summary statistics S(x) = x̄

Distance function ∆(S(xprop), S(xobs)) = |x̄prop − x̄obs|

Tolerance ε = 0.50 and 0.10

Prior π(µ) = Normal(0,10)
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Gaussian illustration: posteriors for µ

Tolerance: 0.5, N:1000, n:25

µ

D
en
si
ty

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

True Posterior
ABC Posterior
Input value

Tolerance: 0.1, N:1000, n:25

µ

D
en
si
ty

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0 True Posterior

ABC Posterior
Input value

11



How to pick a tolerance, ε?

Instead of starting the ABC algorithm over with a smaller
tolerance (ε), decrease the tolerance and use the already
sampled particle system as a proposal distribution rather than
drawing from the prior distribution.

Particle system: (1) retained sampled values, (2) importance
weights

Beaumont et al. (2009); Moral et al. (2011); Bonassi and West
(2004)
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Gaussian illustration: sequential posteriors
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Tolerance sequence, ε1:10:
1.00 0.75 0.53 0.38 0.27 0.19 0.15 0.11 0.08 0.06
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We propose an ABC algorithm for inference on the stellar IMF
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Examples of IMF models

Power-law: Salpeter (1955)
- Used a power law with α = 2.35

Broken power-law: Kroupa (2001)

Φ(M) ∝ M−αi ,M1i ≤ M ≤ M2i

α1 = 0.3 for 0.01 ≤ M/M∗
Sun ≤ 0.08 [Sub-stellar]

α2 = 1.3 for 0.08 ≤ M/MSun ≤ 0.50
α3 = 2.3 for 0.50 ≤ M/MSun ≤ Mmax

Log-Normal model: Chabrier (2003)

ξ(logm) =
dn

d logm
= 0.158× exp

(
−(logm − log 0.08)2

2(0.69)2

)
∗1 MSun = 1 Solar Mass (the mass of our Sun)
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ABC for the stellar initial mass function

We propose an ABC algorithm with a new data-generating model

Can account for various observational limitations and uncertainties
Goal is to capture information about the cluster formation process

Use ideas of preferential attachment [“Rich get richer” (Yule,
1925; Simon, 1955)]

Applications: wealth distribution, evolution of citation networks,
number of internet page links

Often considered underlying mechanism for data exhibiting
power-law behavior (D’Souza et al., 2007)

16



Proposed Model Generation Process

1 Fix cloud mass that forms stars: Mecl

2 mt ∼ Exponential(λ) enters the system of stars, t = 1, 2, . . .
3 The mass quantity mt does one of the following:

Starts a new star
Joins an existing star

4 Process is complete when the total mass reaches Mecl
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Proposed Model Form

A mass, mt , entering the system will

Form a new star with probability

πt = min (1, α)

Join existing star k , k = 1, . . . , nt , with probability

πkt ∝ Mγ
k,t

α = probability of entering mass forming a new star

γ = growth component (γ = 1 is linear growth)

The generating process is complete when the total mass of formed
stars reaches Mecl . The possible ranges of parameters are λ > 0,
α ∈ [0, 1), and γ > 0.
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Selecting summary statistics

Use simplified model: broken power-law, assume independent draws
Account for the following observation effects:

Aging −→ more massive stars die faster
Completeness function:

P(observing star | m) =


0, m < Cmin
m−Cmin

Cmax−Cmin
, m ∈ [Cmin,Cmax]

1, m > Cmax

Measurement error

L(α | m1:nobs
, ntot ) =(

P(M > Tage ) +

(
1− α

M1−α
max − M1−α

min

)∫ Cmax

Cmin

M−α ×
(
1−

M − Cmin

Cmax − Cmin

)
dM

)ntot−nobs

×
nobs∏
i=1

{∫ Tage

2
(2πσ2)

− 1
2 m−1

i e
− 1

2σ2 (log(mi )−log(M))2
(

1− α

M1−α
max − M1−α

min

)
M−α

×
(
I{M > Cmax} +

(
M − Cmin

Cmax − Cmin

)
I{Cmin ≤ M ≤ Cmax}

)
dM

}
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Summary statistics

We want to account for the following with our summary statistics
and distance functions:

1 Shape of the observed Mass Function

ρ1(mprop,mobs) =

[∫ {
f̂logmprop(x)− f̂logmobs

(x)
}2

dx

]1/2

2 Number of stars observed

ρ2(mprop,mobs) = |1− nprop/nobs |

mprop = masses of the stars simulated from the forward model
mobs = masses of observed stars
nprop = number of stars simulated from the forward model
nobs = number of observed stars
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Simulation Study with simpler model

1 Draw n = 103 stars

2 IMF slope α = 2.35 with Mmin = 2 and Mmax = 60

3 N = 103 particles

4 T = 30 sequential time steps
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Special cases of proposed forward model

Yule-Simon model: mt fixed, γ = 1, α = 0.30

Chinese restaurant process: mt fixed, γ = 1, α = 0, modified πt
(prob of forming a new star)
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Summary of 183 stars
Size and color of points based on final mass
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Bate (2012) simulation

Growth of 183 stars
Color of lines based on start time
bluer = formed earlier, redder = formed later
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Bate (2012) simulation - ABC posteriors

2000 particles, 23 time steps, Mtot = 88.68
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Summary

ABC can be a useful tool when data are too complex to define a
reasonable likelihood

Selection of good summary statistics is crucial for ABC posterior to
be meaningful

A challenge in describing the Stellar Initial Mass Function is
capturing the cluster formation mechanism

We proposed a Preferential Attachment mechanism for the ABC
forward model
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THANK YOU!!!
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