Playing Your CARDs Right: Deriving Nucleosynthetic Yield & Event Constraints from Observations of Halo and UFD Stars

Duane M. Lee, Ph.D. (Vanderbilt U.) Fisk-Vanderbilt Bridge Post-doctoral Fellow

Kathryn V. Johnston, Bodhi Sen, Jason Tumlinson, Josh D. Simon + JINA members

Statistical Challenges In Modern Astronomy VI, June 10, 2016

Chemical Abundance Ratio Distributions (CARDs)

- CARD modeling vs IMF-averaged GCE tracing and detailed individual stellar abundance measurements
- Examples of CARD analysis
- Applications of CARD analysis to astrophysical phenomena
- Add to some important questions posed by conference organizers and attendees

CARD modeling vs Other Methods

- CARDs reflect the main contributing factor to essentially all stellar progenitors' yields: their mass!
- CARDs can be used to probe the nature of processes that span the whole IMF or portions thereof
- CARD-generating models are robust against by peculiar abundance outliers
- CARD-generating models can leverage substantially more observational data than old, IMF-averaged GCE tracks
- You do not have to speculate about individual stellar enrichment histories like in e.g. detailed individual stellar abundance analysis
- You can marginalize over the yields from individual epochs of stellar evolution or single them out

Examples of CARD Analysis

- Lee et al. (2013) Using CARD models to explain the differences in observed Halo and UFD star CARDs —> constraining yields & sites
- Cescutti & Chiappini (2013) Qualitative comparison of CARD models to observations to support enrichment from various process including spinstars —> identifying sites & processes
- Schlaufman et al. (2013) Statistical Chemical Tagging of Observed Halo stars to assess a rough estimate of the relative contributions from Halo star progenitors —> constraining accretion events
- Lee et al. (2015) Proof of concept study to recover the luminosity function or accretion history profile of simulated MWlike galaxies —> detailed recovered halo accretion histories

 Previous work does not attempt to use CARD densities to work out SFHs or derive n-capture yield constraints

Constraining Accretion Events

 This work stresses need for better CARD dwarf model templates to work out SFHs or accretion histories — more accurate yields needed!!!

Recovering Halo Accretion Histories

 Lee et al. (2013) - Using CARD models to explain the differences in observed Halo and UFD star CARDs —> constraining yields & sites

What is needed to fit observations?
Stochastic Sampling of IMF (Salpeter)

- Stronger MDYs for n-capture
 elements than for alpha-elements
- Progenitor enriching stellar generations (M_ESG) are more massive for VMP MW Halo stars than for UFD stars

Culled sample distributions from Halo and UFD stars to compare to "one-shot" distribution models (all stars with [Fe/H] < -2.5)

 Lee et al. (2013) - Using CARD models to explain the differences in observed Halo and UFD star CARDs —> constraining yields & sites

Culled sample distributions from Halo and UFD stars to compare to "one-shot" distribution models (all stars with [Fe/H] < -2.5)

 Lee et al. (2013) - Using CARD models to explain the differences in observed Halo and UFD star CARDs —> constraining yields & sites

p-Value landscape as function of enriching stellar generation mass (M_ESG) and MDY strength (K_Sr, K_Ba) from MW Halo and UFD stars

 Lee et al. (2013) - Using CARD models to explain the differences in observed Halo and UFD star CARDs —> constraining yields & sites

Element (neutron-capture)	Metallicity (log Z)	$\kappa_{\rm empirical}^{8-10M_{\odot}}(r)^{\rm a}$	$\kappa_{ab initio}^{15-40 M_{\odot}} (s)^{b}$ (nr/rs)	$ \begin{array}{c} \kappa_{\text{inferred}}^{15-40M_{\odot}} (s)^{\text{c}} \\ (\text{rs/ss}) \end{array} $	This work
Strontium (Sr)	-5	$\sim -15 \text{ or } -18$	~3.3/5.8	~6.5/6.7	(≲−10), (≳7)
	-3		$\sim 4.5/6.6$	~7.4/…	
Barium (Ba)	-5	~-15	••••	~3.6/3.6	~(6–12)
	-3			~3.9/	

Table 1Strength of Mass-dependent Yields

Notes.

Chieffi & Limongi (2004) and Limongi & Chieffi (2012) provide another set of theoretical MDYs for Sr. From Chieffi & Limongi (2004) we find that the estimated MDYs for Sr given for progenitors with z > 0 to $z \simeq z_{\odot}$ results in strengths that are $1 \leq \kappa_{Sr} \leq 4$. The MDY for Sr for zero metallicity stars is $\kappa_{Sr} \simeq 8$ —compatible with our work. However, more recent work by the same authors (Limongi & Chieffi 2012) produces a $\kappa_{Sr} \leq 5$ for zero metallicity stars. This result is only marginally compatible with our findings.

^a Derived from empirical yields given in Cescutti (2012).

^b Derived from Figure 4.14 of Frischknecht (2012) for non-rotating (nr)/rotating stars (rs). Yields for Ba were not given.

^c Derived from Cescutti & Chiappini (2013) for rotating stars (rs) [their *as*-models]/*spinstars* (ss) [their *fs*-models].

MDYs from literature versus THIS WORK: ALL MDYs are greater in strength than the alpha-elements yields examined in this work!

 Lee et al. (2013) - Using CARD models to explain the differences in observed Halo and UFD star CARDs —> constraining yields & sites

What are some observable predictions? How many stars must you observe in UFDs to find at least ONE superabundant stars in Ba or Sr?

Probability of finding [Sr,Ba/Fe] > 0 star

What the some observable predictions? How many stars must you observe in UFDs to find at least ONE superabundant stars in Ba or Sr?

Probability of finding [Sr,Ba/Fe] > 0 star

What the some observable predictions? How many stars must you observe in UFDs to find at least ONE superabundant stars in Ba or Sr?

 Lee et al. (2013) - Using CARD models to explain the differences in observed Halo and UFD star CARDs —> constraining yields & sites

Ji et al. (Nature 2016)

What the some observable predictions? How many stars must you observe in UFDs to find at least ONE superabundant stars in Ba or Sr?

 Lee et al. (2013) - Using CARD models to explain the differences in observed Halo and UFD star CARDs —> constraining yields & sites

P. Francois et al. (2016)

What are some observable predictions? How many stars must you observe in UFDs to find at least ONE superabundant stars in Ba or Sr?

Future Endeavors

- Answer questions involving the r-process: what are all the significant sources for r-process elements? what is the dominant channel/source for the rprocess? Is [Ba/Fe] sufficient enough to distinguish between different rprocess channels or nucleosynthetic sites? What elements in general are good for disentangling nucleosynthetic enrichment sites from one another in GCE models? in observations
- Refine my statistical methods approach to maximize the return on data inference as I expand my analysis into three or more CARD dimensions
- Constrain the occurrence rate of neutron star mergers (+exotic SN) in UFDs
- Derive general analytic solutions or approximations to the PDFs for MDY functions to increase the speed of analysis

Clear Skies and Bug-less Codes! Thank You! Questions?

Duane M. Lee, Ph.D. (Vanderbilt U.) Fisk-Vanderbilt Bridge Post-doctoral Fellow