Characterizing *Kepler's* Transiting Planets in the Presence of Correlated Noise

Rebekah (Bekki) Dawson Penn State, Center for Exoplanets and Habitable Worlds

Acknowledgments: SAMSI Noise and Detrending Working Group (incl. Daniel Foreman-Mackey, Eric Ford, Ben Montet, Tom Loredo, Ruth Angus, Billy Quarles, Ian Czekala, Robert Wolpert, Jogesh Babu, Tom Barclay, David Hogg); Patricio Cubillos, Josh Carter

Kepler space telescope monitored the brightness of hundreds of thousands of stars

Star dims during planetary transit

Earth-sized: 80 ppm

Image Credit: NASA

Kepler discovered thousands of close-in planets

Kepler candidate discoveries: Borucki+11ab, Batalha+ 12, Burke+ 14, Mullaly+15

Kepler discovered thousands of planets

Kepler candidate discoveries: Borucki+11ab, Batalha+ 12, Burke+ 14, Mullaly+15

Gravitational interactions between planets cause transit timing variations

Image Credit: NASA Ames Research Center/Kepler Mission

Transit timing variations essential to understanding where close-in planets come from

e.g., Ultra-puffies

e.g. Jontof-Hutter et al. 2014, formation: Lee & Chiang 2016

Resonant orbits [with low libration amplitudes]

Kepler-223, Mills et al. 2016 Nature

Kepler data key characteristics

Time span: 4 years Cadence: 30 minutes (1 minute), evenly spaced Noise floor: 15 ppm

Earth-like transit signal: 80 ppm, 12 hour duration, 1 year period

Case study: how did Kepler-419b achieve its close-in, highly elliptical orbit?

Is its non-transiting companion orbiting in the same plane?

The companion's inclination has a subtle effect on the signal

Beside a long time (days)

The companion's inclination has a subtle effect on the signal

Besidnals (signal)

RID et al. 2014

We know the Kepler-419 dataset contains correlated noise

Common behavior: three segment spectrum

Case study: how did Kepler-419b achieve its close-in, highly elliptical orbit?

Is its non-transiting companion orbiting in the same plane?

Common behavior: three segment spectrum

Pre-detrending the data can lead to errors in the inferred planet properties

Barclay et al. 15, Kepler-91b Gaussian process regression correlated noise using george (Foreman-Mackey et al. in prep)

Previous pre-whitening treatment caused this planet to be misdiagnosed as an astrophysical false positive (Sliski & Kipping 14)

Two different correlated noise treatments yield consistent transit times

 Median filter detrending, Carter & Winn 2009 wavelet likelihood
Foreman-Mackey et al. in prep. Gaussian process regression likelihood with squared exponential covariance kernel, dan.iel.fm/george

R.

White noise

Wavelet transform computes power for different translations and scales

R.

Pink (1/f) noise

Wavelet transform computes power for different translations and scales

Wavelet likelihood method parametrizes noise into red σ_r and white σ_w component Carter & Winn 2009 (144 citations) based on Wornell 1996:

Signal Processing with Fractals: A Wavelet-Based Approach

$$\begin{split} \mathcal{L} &= \left\{ \prod_{m=2}^{M} \prod_{n=1}^{n_0 2^{m-1}} \frac{1}{\sqrt{2\pi\sigma_W^2}} \exp\left[-\frac{\left(r_n^m\right)^2}{2\sigma_W^2}\right] \right\} \\ &\times \left\{ \prod_{n=1}^{n_0} \frac{1}{\sqrt{2\pi\sigma_S^2}} \exp\left[-\frac{\left(\bar{r}_n^1\right)^2}{2\sigma_S^2}\right] \right\}, \\ &\sigma_S^2 &= \sigma_r^2 2^{-\gamma} g(\gamma) + \sigma_w^2, \\ &\sigma_W^2 &= \sigma_r^2 2^{-\gamma m} + \sigma_w^2, \end{split}$$

Dictated relationship between scale coefficients for 1/f^v noise

Gaussian process regression likelihood: prescription for covariance matrix

implemented using dan.iel.fm/george

translation

$$k(r^{2}) = \left(1 + \sqrt{5r^{2}} + \frac{5r^{2}}{3}\right) \exp\left(-\sqrt{5r^{2}}\right)$$

Radial Matern 5/2 kernel

Gaussian process generated with Matern kernel in frequency space

Common behavior: three segment spectrum

Gaussian process generated with Matern kernel in frequency space

Common behavior: three segment spectrum

Noise properties of Sun-like *Kepler* stars

Sometimes white-noise dominates

e.g., sunlike star KIC 12011630

 $\sigma_w = 35 \pm 1$

Simultaneous linear fitting: sometimes sufficient e.g., sun-like star KIC 8374139

 $\sigma_w = 106 \pm 8 \text{ ppm},$ $\sigma_r = 700 \pm 40 \text{ ppm}$

 $\sigma_w = 150 \pm 5 \text{ ppm}$

Simultaneous polynomial fitting: sometimes sufficient

e.g., sun-like star KIC 3970397 σ_w =88±2 ppm, σ_r =53±5 ppm

 $\sigma_w = 86 \pm 3 \text{ ppm}$

Simultaneous polynomial fitting: sometimes insufficient

e.g., sun-like star KIC 4819602

 $\sigma_w = 0 \pm 10 \text{ ppm}, \sigma_r = 8799 \pm 200 \text{ ppm}$ $\sigma_w = 64 \pm 8 \text{ ppm}, \sigma_r = 580 \pm 30 \text{ ppm}$

Kepler sun-like star properties: wavelet likelihood

no polynomial

Kepler sun-like star properties: wavelet likelihood

simultaneous line

Kepler sun-like star properties: wavelet likelihood

simultaneous polynomial

Kepler sun-like star properties: GPR likelihood

simultaneous line

Kepler sun-like star properties: GPR likelihood

simultaneous polynomial

Kepler sun-like star properties: GPR likelihood

no polynomial

Kepler sun-like star properties: Gaussian process regression, timescale

Correlated noise treatment: key questions

- Which stars merit a correlated noise treatment?
- How do we optimize the use of out-of-transit data to infer noise hyperparameters?
- Do wavelet likelihood functions or Gaussian process regression likelihood functions perform better? Which wavelet families and noise power law (wavelets) or kernels (GP regression) is best suited?
- What degree polynomial, if any, should be simultaneously fit to each data chunk?
- How do correlated noise treatments perform on short cadence data? (1 min vs. 30 min cadence)

Example transit time posteriors Better recovery when accounting for correlated noise (red dashed) and multi-modal posteriors captured

Model 1: Joint modeling of transits + line with white noise likelihood Model 2: Joint modeling of transits + line with Gaussian process likelihood

Worse recovery when correlated noise is not accounted for in the likelihood

Based on fits to 50 sets of 16 injected transits for Sun-like star with significant correlated noise

Summary and future work

- Systematic study of correlated noise treatment for inferring transit times is underway; will only be relevant for subset of stars
- Correlated noise treatment needs to be assessed for its impact on other key transit observables, e.g., depth, duration
- Correlated noise is an even more severe problem for radial velocity method of planet detection and characterization, including interplay of noise and aliasing due to gaps in time sampling

Summary and future work

- Systematic study of correlated noise treatment for inferring transit times is underway; will only be relevant for subset of stars
- Correlated noise treatment needs to be assessed for its impact on other key transit observables, e.g., depth, duration
- Correlated noise is an even more severe problem for radial velocity method of planet detection and characterization, including interplay of noise and aliasing due to gaps in time sampling

Extra slides

The radial-velocity technique

Earth twin: 10 cm/s

Image Credit: ESO/L. Calçada

Transit vs. radial- velocity challenges	Transit (mostly space)	Radial-velocity (ground)
Planet duty cycle	Low (0.3% for Earth twin)	100% (but 0% for other line diagnostics)
A priori planet probability	Low (~few percent)	High (≥~50%)
Datapoints	~100,000 or more	~100
Signal repetition	Detectable changes in period, duration	Undetectable for most planets
Time sampling	Even, continuous	Uneven, gaps

, **•** `,

.....

Time sampling for a complicates RV interpretation

55 Cnc e

GJ 581d

Alpha Cen b

One of first mini-Neptunes discovered

Habitable zone super-Earth

Orbits nearby star

Radial velocity sampling

Noise-free sinusoid with GI 581 HARPS sampling

Use the fingerprint of

A revised, ultra-short period

Time sampling for a complicates RV interpretation

GI 581 d: alias ambiguity Udry: 07: Mayor + 09: RID & Fabrycky 10: Robertson + 14

P = ?

Stellar activity

P = 67 days

P = 84 days

Stellar activity: a stochastic, quasi-periodic signal

Aliasing and activity cycles

Less time sampling during inactive cycle

Aliasing and activity cycles

Stellar activity signal experiences extra aliasing when activity is low during sampling gap

probability of recovery

Stellar activity signal experiences extra aliasing when activity is low during sampling gap

Aliasing ambiguities may tip us off about stellar activity

Time sampling for a complicates RV interpretation

55 Cnc e

GJ 581d

Alpha Cen b

One of first mini-Neptunes discovered

Habitable zone super-Earth

Orbits nearby star

Alpha Cen b: the danger of pre-whitening

Dumusque+ 12:

- 1) detrend
- 2) fit planet parameters
- 3) check for aliasing

Rajpaul+15, 16

- 1) notice planet frequency in the window function
- 2) account for stellar activity simultaneous with orbit fitting with Gaussian processes

Alpha Cen b: the danger of pre-whitening

Dumusque+ 12:

- 1) detrend
- 2) fit planet parameters
- 3) check for aliasing

Rajpaul+15, 16

1) notice planet frequency in the window function

2) account for stellar activity simultaneous with orbit fitting with Gaussian processes

$$f_{alias} = \int f_{true} \pm f_{sample}$$

long-term activity!