The challenges analysing Gaia Time Series

Laurent Eyer¹

Nami Mowlavi¹, Dafydd W.Evans², Berry Holl¹, Lorenzo Rimoldini¹, Alessandro Lanzafame³, Leanne Guy¹, Shay Zucker⁴, Brandon Tingley⁵, Isabelle Lecoeur-Taïbi¹, Maroussia Roelens¹, Jan Cuypers⁶, Joris De Ridder⁷, Sara Regibo⁷, Manuel López⁸, Jonas Debosscher⁷, Maria Süveges¹, Luis Sarro⁹, Gisella Clementini¹⁰, Silvio Leccia¹¹, Vincenzo Ripepi¹¹, Fabio Barblan¹, André Moitinho¹², Krzysztof Nienartowicz¹, Diego Ordoñez-Blanco¹, Jonathan Charnas¹, Grégory Jévardat de Fombelle¹

¹Department of Astronomy, University of Geneva, Versoix, Switzerland
²Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
³Dipartimento di Fisica e Astronomia, Universita di Catania, Catania, Italy
⁴Department of Geosciences, Tel Aviv University, Tel Aviv, Israel
⁵Institut for Fysik og Astronomi, Aarhus Universitet, Aarhus, Denmark
⁶Royal Observatory of Belgium, Brussels, Belgium
⁷Instituut voor Sterrenkunde, KU Leuven, Leuven, Belgium
⁸ Centro de Astrobiologia, Departamento de Astrofisica, Villanueva de la Canada, Spain
⁹Departamento de Inteligencia Artificial, UNED, Madrid, Spainl
¹⁰INAF Osservatorio Astronomico di Bologna, Bologna, Italy
¹¹INAF-Osservatorio Astronomico di Capodimonte, Napoli, Italy
¹²Faculdade de Ciencias de Universidade de Lisboa, Lisboa, Portugal

Statistical Challenges in Modern Astronomy Carnegie Mellon University, Pittsburgh, USA Wednesday June 8, 2016

Introduction: Ptolemy vs Hipparcos vs Gaia catalogues

121 6 R Almagest Ptolemy ~150 AD Here ed. of 1528

Challenges of Gaia in terms of time series analysis

- How to deal with large data set? (e.g. reshuffle data to get time series per source)
- How to gather qualitatively different quantities? (astrometry, photometry, spectra)
- How to handle different number of measurements (from 40 to 250), sparse and different samplings?
- How to deal with heteroscedastic data?
- How to do when there are poor estimates of uncertainties?
- How to search for "small" signals in "noisy" data?
- How to perform model selection?
- How to compute the significance of peaks in a periodogram
- How to deal with the aliasing problem
- How to classify variable objects?
- How do we crossmath?
- How to rank objects?
- •etc...

Five year nominal scanning law (NSL)

Full scanning law movie on YouTube: <u>https://www.youtube.com/watch?v=IRhe2grA9wE</u>

Courtesy of Berry Holl

Five year nominal scanning law (NSL)

Full scanning law movie on YouTube: <u>https://www.youtube.com/watch?v=lRhe2grA9wE</u>

Epoch photometric precision

scatter

Pragmatic approach

- Develop a "method"
 - Test on simulated data (often very simple)
 - Test on real data
- Apply it to real Gaia data
 - Start on "easy" signal, e.g. large signal to noise ratio
 - Start with law numbers of objects
- Interact with the data (subsamples) at all levels of the analysis

Unexpected Features Analyses

Selection of sources observed by Gaia from Ecliptic Pole Scanning Law (790,000 sources)

South Ecliptic Pole region (part of Large Magellanic Cloud): Gaia and other surveys

(Equatorial coordinates, deg)

To get the data flavour Comparison with OGLE

Image of the Week (March 05, 2015): RR Lyrae stars

Credits: ESA/Gaia/DPAC/CU5/CU7/INAF-OABo, Gisella Clementini, Dafydd Evans, Laurent Eyer, Krzysztof Nienartowicz, Lorenzo Rimoldini and the Geneva CU7/DPCG and CU7/INAF-OACN teams.

General Variability Detection

Classical hypothesis testing can't be applied because of "poor" estimates of uncertainties

Detection was done with a classifier (Random Forest) attributes were computed a training set was defined (based on OGLE)

Two fundamental quantities to estimate:

- -Completeness
- -Contamination

Characterisation

Time series per object:

```
Time<sub>(i)</sub>, G-, BP-, RP- mag<sub>(i)</sub> [ or radial velocity<sub>(i)</sub> ]
```

i=1,..., number of measurements

Goal: To define attributes

- statistical parameters
- Modelling

-Period search

-Fourier Series and polynomial fit

Characterisation: few examples of modelling

Classification

Supervised classification (several methods):

Classification

Confusion matrix of Random Forest using cross-matched data (OGLE, Hipparcos, AAVSO, Milliquas)

Classification of RR Lyrae and Cepheid stars

Gisella Clementini, Silvio Leccia, Vincenzo Ripepi, Nami Mowlavi, Isabelle Lecoeur

Classical overtone Cepheid 3 candidate anomalous Cepheids Type 2 Cepheid

Credits: ESA/Gaia/DPAC/CU5/DPCI/CU7/INAF-OABo/INAF-OACn Gisella Clementini, Vincenzo Ripepi, Silvio Leccia, Laurent Eyer, Lorenzo Rimoldini, Isabelle Lecoeur-Taibi, Nami Mowlavi, Dafydd Evans, Geneva CU7/DPCG and the whole CU7 team. The photometric data reduction was done with the PhotPipe pipeline at DPCI; processing data were received from the IDT pipeline at DPCE.

Specific Object Studies: Eclipsing binaries

Eclipsing binaries go to a dedicate treatment (Université Libre de Bruxelles) for a full modelling

Here, simple modelling (fit with "two Gaussians") are made The solutions enable a ranking

Highest rank

Specific Object Studies: Eclipsing binaries

Lowest rank

Phase

Global Variability studies

Comparison of distribution functions of RR Lyrae stars

The data releases

Data release caveats/limitations

- All sources have been treated as single stars
- Some filtering has been applied, e.g.;

-Omit sources with too few observations, without astrometry and/or photometry, with very elongated positional error ellipses, ...

-Upper limit on errors in parallax, position, and photometry

- No high-proper-motion stars ($\mu > 3.5$ arcsec/year)
- Various unmodeled effects left in the data (chromaticity, CTI, micro-meteoroid hits, microclanks, ...)
- Basic-angle-variation correction derived from on-board metrology
- Cross-matching limited by crude attitude, IGSL, and spurious sources
- Cyclic processing loops not yet closed
- All of these issues will be addressed in upcoming releases!

Warning: the above weaknesses will lead to spatially-correlated systematics in DR1: do not blindly average astrometric quantities