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Who cares?



The population of exoplanets
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Burke et al. (2015) 

the data, rises toward small planets with a = -1.82 and has a
break near the edge of the parameter space. Given the low
numbers of observed planet candidates in the smallest planet
bins, the full posterior allowed behavior (1σ orange region ; 3σ
blue region) cannot distinguish between a rising or falling
PLDF for Rp 1 1.5 ÅR . Figure 9 shows the equivalent
information, but along the Porb dimension after marginalizing
over 0.75⩽ Rp ⩽ 2.5 ÅR and dPorb=31.25 days.

Formally, in our baseline analysis of the GK dwarf sample,
the double power law in the Rp model is unwarranted relative to
a single power law according to the Bayesian information
criterion (BIC) methodology for model comparison. However,
we choose to provide the final results in terms of the double
power law model for the following reasons: (a) the additional
flexibility of the double power law model provides a better fit
to the smallest Rp parameter space of most interest, whereas the
single power law model systematically overestimates (by ∼0.5
σ in a comparable data/model comparison to that shown in

Figure 6) the occurrence rates in the smallest Rp bins. (b) The
more complicated model ensures the ability to adapt to
variations in the PLDF in the sensitivity analysis of Section 6.2.
(c) Previous work on Kepler planet occurrence rates indicated a
break in the planet population for 12.0 Rp  2.8 ÅR (Fressin
et al. 2013; Petigura et al. 2013a, 2013b; Silburt et al. 2015).
(d) Finally, extending this work to a larger parameter space and
for alternative target selection samples, such as the KeplerM
dwarf sample where a sharp break at Rp ∼ 2.5 ÅR is observed
(Dressing & Charbonneau 2013; Burke et al. 2015), the double
power law in Rp is strongly (BIC >10) warranted.
Symptomatic of the weak evidence for a broken power law

model over the ⩽0.75 Rp ⩽ 2.5 ÅR range, Rbrk is not
constrained within the prior Rp limits of the parameter space.
When Rbrk is near the lower and upper Rp limits, a1 and a2 also
become poorly constrained, respectively. To provide a more
meaningful constraint on the average power law behavior for
Rp in the double power law PLDF model, we introduce aavg,
which we set to a a=avg 1 if ⩾R Rbrk mid and a a=avg 2
otherwise, where Rmid is the midpoint between the upper and
lower limits of Rp. We find a = - o1.54 0.5avg and
b = - o0.68 0.17 for our baseline result. We use aavg as a
summary statistic for the model parameters only to enable a
simpler comparison of our results to independent analyses of
planet occurrence rates and to approximate the behavior for the
power law Rp dependence if we had used the simpler single
power law model. The results for a single power law model in
both Rp and Porb are equivalent to the results for the double
power law model ( = oF 0.83 0.130 , a = - o1.56 0.3, and
b = - o0.68 0.17).

In Table 5, we provide the parameters of the PLDF that
maximizes the likelihood for the data in our baseline analysis as
well as the median and percentile posterior values for F0, β,
and aavg. Additional statistics for the full five parameter PLDF
can be estimated from the 10,000 posterior MCMC samples in
Table 4.

6.2. Sensitivity Analysis

Planet occurrence rate calculations are only as accurate as the
inputs. The baseline results of Section 6 represent our current
best set of data that are uniformly applicable to the

Figure 7. Same as Figure 6, but marginalized over 0.75 < Rp < 2.5 ÅR and bins
of dPorb = 31.25 days.

Figure 8. Shows the underlying planet occurrence rate model. Marginalized
over 50 < Porb < 300 days and bins of dRp=0.25 ÅR planet occurrence rates
for the model parameters that maximize the likelihood (white dash line).
Posterior distribution for the underlying planet occurrence rate for the median
(blue solid line), 1σ region (orange region), and 3σ region (blue region). An
approximate PLDF based upon results from Petigura et al. (2013a) for
comparison (dash dot line).

Figure 9. Same as Figure 8, but marginalized over 0.75 < Rp < 2.5 ÅR and bins
of dPorb=31.25 days.
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simultaneously solve for a parameterized completeness model
in addition to planet occurrence (Fressin et al. 2013; Farr et al.
2014; Mulders et al. 2015). Others avoid this shortcoming
altogether through an independent planet search pipeline and
pipeline completeness measurement (Petigura et al.
2013a, 2013b; Dressing & Charbonneau 2015).

Christiansen et al. (2015) rectify this shortcoming by
directly measuring the Kepler pipeline completeness of the
Q1-Q16 Kepler pipeline run (Tenenbaum et al. 2014) through
Monte-Carlo transit injection and recovery tests. In this study,
we make use of the Christiansen et al. (2015) Kepler pipeline
completeness parameterization in order to derive the planet
occurrence rates from the resulting Q1-Q16 Kepler planet
candidate sample of Mullally et al. (2015). Another highlight
of this study is a comprehensive analysis of the systematic
errors present in deriving planet occurrence rates with
Kepler data. As exemplified in Youdin (2011) and Dong &
Zhu (2013), we undertake a sensitivity analysis where we
iteratively change an input assumption and recalculate the
occurrence rates. We investigate the following input assump-
tions: pipeline completeness systematics, orbital eccentricity,
stellar parameter systematics, planet parameter systematics, and
planet sample classification systematics.

This paper is organized as follows. Section 2 describes the
pipeline completeness model that quantifies the survey
completeness for any target observed by Kepler. Sections 3
and 4 summarize the stellar properties and planet sample from
the Q1-Q16 Kepler pipeline run adopted for derivation of the
planet occurrence rates. We extend the analysis techniques of
Youdin (2011) by increasing the complexity of the parameter-
ized model for the planet occurrence rate and employ Markov
Chain Monte-Carlo (MCMC) methods for solving the para-
meter estimation problem in Section 5. Section 6.1 presents
results for the planet occurrence rate using a baseline set of
inputs, and we thoroughly explore the systematic errors in this
result through a sensitivity analysis in Section 6.2. We compare
the occurrence rate analysis with previous efforts in Section 7.
We apply the resulting occurrence rates to determine the
occurrence rate for terrestrial planets with an orbital period
equivalent to Venus in Section 9 as well as extrapolating these
results toward longer periods (Section 8) in order to measure a
one year terrestrial planet occurrence rate in Section 10.
Finally, Section 11 summarizes the future work necessary to
improve the accuracy for the resulting planet occurrence rates.

2. KEPLER PIPELINE COMPLETENESS MODEL

This section details an analytic star-by-star model for the
Kepler pipeline completeness. A critical component for model-
ing the completeness of Kepler observations is simulating
the performance of the TPS pipeline module which is
responsible for characterizing the noise present in a light curve
and detection of the transit signals (Jenkins 2002; Tenenbaum
et al. 2012, 2013, 2014). The performance of a transit survey can
be fully specified with intensive, end-to-end Monte Carlo signal
injection and recovery tests (Weldrake & Sackett 2005; Burke
et al. 2006; Hartman et al. 2009; Christiansen et al. 2013; Seader
et al. 2014). Unfortunately, due to their numerically intensive
nature, Monte-Carlo injection tests are not amenable to a
systematic sensitivity analysis, and the tests are limited to the
subset of targets that one performs the analysis upon. Therefore,
we present a simplified analytic model for the Kepler pipeline
that can be readily applied to any observed Kepler target using a

minimum of input data. Fortunately, the joint noise character-
ization, filtering, and detection properties of TPS were designed
to facilitate a well defined and tested detector response for transit
signals even in the presence of astrophysical broadband or red
noise (Jenkins 2002). Given the well defined properties of the
TPS detector, our analytic completeness model can achieve high
fidelity after it is calibrated with Monte-Carlo injection tests. For
a single target, we parameterize the pipeline completeness over a
two-dimensional (2D) grid of orbital period, Porb, and planet
radius, Rp.

2.1. Multiple Event Statistic (MES) Estimation

Modeling pipeline completeness requires modeling the
statistical behavior of TPS and its response to noise in the
presence of a signal (Jenkins 2002; Seader et al. 2013). In the
presence of broadband red noise, TPS considers the so-called
MES to measure the strength of a potential transit signal. In the
null hypothesis case of no signal present, the MES distribution
is Gaussian with an average of zero and unit variance. In the
alternative hypothesis case for the presence of a signal, the
MES distribution is Gaussian but the average MES is shifted
proportional to the S/N of the transit signal. The first step for
modeling pipeline completeness is to estimate the expected
MES of a transit signal for a specified Porb and Rp. This requires
an estimate of the expected transit duration,

�t =
æ

è
ççç

ö

ø
÷÷÷÷
æ
è
ççç

ö
ø
÷÷÷ -

P R

a
e6

1 day
1 hr, (1)dur

orb 2

where e is the orbital eccentricity, and the stellar radius, �R , and
orbital semimajor axis, a, are in a consistent set of units. In
Equation (1), we assume Rp� �R , shorten the transit duration
from the central crossing time by a factor of p 4 for its
expectation assuming a uniform distribution of icos for the
orbital inclination (Gilliland et al. 2000; Seager & Mallén-
Ornelas 2003), and include the expected dependence on the
transit duration with e (Burke 2008). We explore the sensitivity
of our results to >e 0 in Section 6.2.2.
Next, we determine the noise present in the light curve

data averaged over the transit duration of interest. TPS

Figure 1. Fractional completeness model for the host to Kepler-22b (KIC:
10593626) in the Q1-Q16 pipeline run using the analytic model described in
Section 2.
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The frequency of Solar System analogs
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Why Kepler?



1 Systematic target selection

Why Kepler?

2 Homogeneous stellar properties

3 Sensitivity to small planets



1 Systematic target selection

Why Kepler?

2 Homogeneous stellar properties

3 Sensitivity to small planets

4 The data exist



1 Systematic planet candidate catalog

Ingredients for population inference

2 Measured completeness & reliability

3 Quantification of false positive rates



Today's punch line
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Candidates (green) from DFM et al. (in prep); Data from NASA Exoplanet Archive 



How to find a transiting planet…



How to find a transiting planet…
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+

planet star space craft detector signal

+ + =

The anatomy of a transit
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… just do the inference?
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How to find "short-period" transiting exoplanets

1 Filter the data to "remove" systematics

2 Template-based grid of likelihoods 
(restricted to systems with >2 transits)

3 Remove false alarms by 
"visual inspection"
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How to find "short-period" transiting exoplanets

1 ~190,000 target stars
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3 Remove false alarms using magic



How to find "short-period" transiting exoplanets

1 ~190,000 target stars

2 ~35,000 candidates

3 ~5,000 exoplanets
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How to find "long-period" transiting exoplanets

e.g. Wang et al. (2015); Uehara et al. (2016); Kipping et al. (2016)



How to find "long-period" transiting exoplanets

1 Visual inspection

e.g. Wang et al. (2015); Uehara et al. (2016); Kipping et al. (2016)



Ingredients for population inference

1 Systematic planet candidate catalog

2 Measured completeness & reliability

3 Quantification of false positive rates



Ingredients for population inference

1 A fully-automated detection method



My method for finding long-period transiting planets

1 Filter the data to "remove" systematics

2 Template-based grid of likelihoods 
(restricted to high signal-to-noise candidates)

3 Remove false alarms using model 
comparison
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star space craft detector signal

+ + =
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* fast GP regression at github.com/dfm/george



Still too expensive…



…use BIC*

* don't take this slide out of context
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Gaussian Process*

* github.com/dfm/george; Ambikasaran, DFM et al. (2014)
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DFM et al. (in prep)
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Why not Machine Learning?
(e.g. supervised classification)



The Kepler data are not Big™.



The Kepler data are Boring™.*

* don't quote me

all but ~0.02% of



Results
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My method for finding long-period transiting planets

1 Filter the data to "remove" systematics

2 Template-based grid of likelihoods 
(restricted to high signal-to-noise candidates)

3 Remove false alarms using model 
comparison



My method for finding long-period transiting planets

1 ~40,000 target stars

2 Template-based grid of likelihoods 
(restricted to high signal-to-noise candidates)

3 Remove false alarms using model 
comparison



My method for finding long-period transiting planets

1 ~40,000 target stars

2 ~4,000 candidates

3 Remove false alarms using model 
comparison



My method for finding long-period transiting planets

1 ~40,000 target stars

2 ~4,000 candidates

3 17 exoplanets*

* some contamination from EB secondary eclipses
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Ingredients for population inference

1 Systematic planet candidate catalog

2 Measured completeness & reliability

3 Quantification of false positive rates



3 5 10 20
period [years]

0.1

0.2

0.5

1.0

2.0

R
P
/R

J

0.9± 0.1

3.8± 0.1

19.6± 0.2

53.5± 0.5

71.0± 0.6

78.5± 0.7

81.5± 0.8

83.8± 1.2

0.0± 0.0

3.9± 0.1

18.2± 0.2

50.1± 0.5

64.7± 0.6

70.8± 0.7

74.6± 0.7

76.5± 1.1

0.0± 0.0

3.2± 0.1

17.8± 0.2

48.7± 0.5

63.4± 0.6

67.7± 0.6

70.4± 0.7

72.3± 1.0

0.0± 0.0

3.3± 0.1

16.2± 0.2

45.7± 0.4

55.2± 0.5

59.0± 0.6

60.6± 0.6

62.5± 0.9

0

30

60

0 30 60

DFM et al. (in prep)



Candidates (green) from DFM et al. (in prep); Data from NASA Exoplanet Archive 
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DFM et al. (in prep) 
compare with Bryan et al. (2016); Shvartzvald et al. (2016)

RE – RN 
~0.40

RN – RJ 
~0.17

per G/K- dwarf, per ln-radius, per ln-period

occurrence rate in period range 2 – 25 years



1
Fully automated discovery of long-
period transiting exoplanets in Kepler 
archival data

2 Empirical measurement of search 
completeness

3 Estimate of the occurrence rate of 
long-period exoplanets

Summary
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