LONG-PERIOD TRANSITING EXOPLANETS

Dan Foreman-Mackey

Sagan Fellow @ University of Washington github.com/dfm // dfm.io // @exoplaneteer

Creative Commons Attribution 4.0 International License

The "population" of exoplanets

Transiting exoplanets

Kepler

NGC6791

Credit NASA

Who cares?

The population of exoplanets

Burke et al. (2015)

Burke et al. (2015)

The frequency of Solar System analogs

Why Kepler?

Why Kepler?

Why Kepler?

Ingredients for population inference

Today's punch line

Candidates (green) from DFM et al. (in prep); Data from NASA Exoplanet Archive

How to find a transiting planet...

short-period How to find a transiting planet...

The anatomy of a transit

... just do the inference?
no.

Filter the data to "remove" systematics

Template-based grid of likelihoods

(restricted to systems with >2 transits)

Remove false alarms by "visual inspection"

Filter the data to "remove" systematics

Template-based grid of likelihoods

(restricted to systems with >2 transits)

Remove false alarms using magic

~190,000 target stars

Template-based grid of likelihoods

(restricted to systems with >2 transits)

Remove false alarms using magic

e.g. Wang et al. (2015); Uehara et al. (2016); Kipping et al. (2016)

Ingredients for population inference

Ingredients for population inference

A fully-automated detection method

1

Filter the data to "remove" systematics

Template-based grid of likelihoods

(restricted to high signal-to-noise candidates)

* fast GP regression at github.com/**dfm/george**

Still too expensive...

...use BIC*

* don't take this slide out of context

* github.com/dfm/george; Ambikasaran, DFM et al. (2014)

DFM et al. (in prep)

Why not Machine Learning?

(e.g. supervised classification)

The Kepler data are not Big[™].

all but ~0.02% of

The Kepler data are Boring[™].*

Results

DFM et al. (in prep)

1

Filter the data to "remove" systematics

Template-based grid of likelihoods

(restricted to high signal-to-noise candidates)

~40,000 target stars

Template-based grid of likelihoods

(restricted to high signal-to-noise candidates)

3

* some contamination from EB secondary eclipses

Candidates (green) from DFM et al. (in prep); Data from NASA Exoplanet Archive

DFM et al. (in prep)

Ingredients for population inference

DFM et al. (in prep)

20 0

30 60

occurrence rate in period range 2 – 25 years $\begin{array}{ll} R_E - R_N & R_N - R_J \\ \sim 0.40 & \sim 0.17 \end{array}$

per G/K- dwarf, per In-radius, per In-period

DFM et al. (in prep) compare with Bryan et al. (2016); Shvartzvald et al. (2016)

Summary

Fully automated discovery of longperiod transiting exoplanets in Kepler archival data

Empirical measurement of search completeness

Estimate of the occurrence rate of long-period exoplanets

Dan Foreman-Mackey github.com/dfm // dfm.io // @exoplaneteer